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Abstract: Person re-identification is the technique of identifying the same person in different camera
shots, known as ReID for short. Most existing models focus on single-modality person re-identification
involving only visible images. However, the visible modality is not suitable for low-light environments
or at night, when crime is frequent. In contrast, infrared images can reflect the nighttime environment,
and most surveillance systems are equipped with dual-mode cameras that can automatically switch
between visible and infrared modalities based on light conditions. In contrast to visible-light cameras,
infrared (IR) cameras can still capture enough information from the scene in those dark environments.
Therefore, the problem of visible-infrared cross-modality person re-identification (VI-ReID) is proposed.
To improve the identification rate of cross-modality person re-identification, a cross-modality person
re-identification method based on a two-branch network is proposed. Firstly, we use infrared image
colorization technology to convert infrared images into color images to reduce the differences between
modalities and propose a visible-infrared cross-modality person re-identification algorithm based on
Two-Branch Network with Double Constraints (VI-TBNDC), which consists of two main components: a
two-branch network for feature extraction and a double-constrained identity loss for feature learning. The
two-branch network extracts the features of both data sets separately, and the double-constrained identity
loss ensures that the learned feature representations are discriminative enough to distinguish different
people from two different patterns. The effectiveness of the proposed method is verified by extensive
experimental analysis, and the method achieves good recognition accuracy on the visible-infrared image
person re-identification standard dataset SYSU-MM01.

Keywords: person re-identification; cross-modality; modal transformation; two-branch neural network

1. Introduction

With the widespread use of video surveillance systems in cities, techniques that use
images captured by cameras to determine whether pedestrians appearing in different
images are the same person and predict their behavior from the generated trajectories have
been widely used in the fields of smart video surveillance and criminal investigations.
The technique, which uses computer vision and machine learning to retrieve the presence
of a person with the same identity in images or video sequences, is known as person
re-identification (Re-ID). Person re-identification has not only a very pressing application
need but also a very important research value. In recent years, person re-identification has
received widespread attention from academia and industry and is a research hotspot in
computer vision.

Traditional visible-light surveillance cameras are no longer suitable for scenes that
require 24-h surveillance, such as road traffic and prisons. At present, many surveillance
systems and intelligent devices are equipped with automatic visible-to-infrared mode
switching functions. The problem of person re-identification in visible and infrared modali-
ties needs to be solved urgently. The main task of cross-modality person re-identification is
to retrieve a visible image or an infrared image of a specific individual, given the image
library in both modalities, to match images belonging to the same individual. It plays an
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important role in various surveillance videos and intelligent applications and has attracted
increased attention in research sessions.

At present, we have achieved good results in the field of single-modality person
re-identification, such as person re-identification based on visible light mode, which has
reached 95% rank-1 under the Market1501 dataset [1,2], but there are still big challenges
in the field of cross-modality person re-identification. There are significant differences
between the images captured in the two modalities: RGB images have three channels
containing the visible light color information of red, green, and blue, while IR images
have only one channel containing the intensity information of near-infrared light, and the
wavelength ranges of the two are also different from the perspective of imaging principles.
Different sharpness and lighting conditions can produce very different effects on the two
types of images. Such inconsistent information distribution can disrupt the feature learning
process of neural networks. Therefore, cross-modality person re-identification research
focuses on reducing the negative impact caused by the differences between modalities.

To solve the above-mentioned problem, this study proposes a two-branch cross-modality
person re-identification algorithm, which first uses infrared image colorization technology to
preprocess infrared images and convert infrared data into color data to reduce the heterogeneous
gap between inter-modality images to some extent, then inputs the two kinds of data into
parameter-independent feature extraction networks separately, and then embeds the extracted
cross-modality features into the shared network after dual constraint modeling of intra-modality
and inter-modality features, allowing the network to learn better.

The main contributions of this study are as follows:

• applying the infrared image colorization technique to the field of cross-modality
person re-identification.

• extracting the features of the two modalities separately and mapping the two modali-
ties features into the same feature space.

• handling both intra-modality and cross-modality disparities simultaneously.

2. Related Works
2.1. Colorization of Infrared Images

In recent years, the rapid development and wide application of deep learning have
provided a somewhat significant reference value for the image coloring field. Combining deep
learning and infrared image coloring together reduces manual operations and interventions
by putting a large number of infrared images into neural networks for training and learning,
extracting image features, and thus achieving colorization of infrared images. To date, infrared
image colorization remains a challenging topic with significant and far-reaching implications
for this application area. Recently, convolutional neural network (CNN)-based methods have
emerged as the predominant paradigm for nearly all computer vision tasks. CNNs have
shown excellent performance in stereo vision [3], image classification [4], cross-spectral domain
correlation, etc.

In 2016, Larsson [5] and Zhang [6] quantized the chromaticity space into discrete colors and
performed logistic regression to predict the color histogram to handle multimodality. Larsson
et al. processed grayscale images with VGG-16 and used spatially localized multilayer slices
(supercolumns) as descriptors for each pixel. The system was de-trained from end to end and
used to predict the chromaticity distribution and hue of a given supercolumn descriptor pixel.
In the same year, Limmer et al. proposed an integrated method of deep learning techniques
for the spectral transmission of NIR to RGB images [7]. The method utilizes a deep multiscale
convolutional neural network (CNN) for direct estimation of low-frequency RGB values.

In 2017, Varga et al. used two parallel convolutional neural network architectures with
the same structure and a reference image to perform colorization [8]. One of the CNNs uses
the reference image to help the other CNN perform color prediction on the input image.
Deshpande et al. implemented a low-dimensional embedding of the color domain using
a variational self-encoder (VAE) to construct the loss term of the VAE decoder and avoid
blurring of the output [9]. Finally, a conditional model of multimodality distribution of
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grayscale images with color embedding was developed, which produces different colors
for the samples of the conditional model.

In 2018, Suárez et al. [10] added a feature hierarchy to each layer in a stacked GAN archi-
tecture and used a polynomial loss function composed of intensity loss (MSE), structure loss
(SSIM), and adversarial loss. The model can generate high-quality color infrared images. Dong
et al. [11] proposed a method that first uses an encoder-decoder to convert NIR images into
RGB images and then uses an assistant network to enhance edges and stabilize color regions.

In 2019, Mehri et al. [12] proposed a model of three-channel feedback, which solved
the problem of being unable to obtain real values during the learning phase of unpaired
datasets. For the reason that RGB images have more information than NIR images, Sun
et al. [13] constructed an asymmetric model that considers different network capacities
according to different conversion directions based on cyclic GAN. This model can deal with
the problem of data unregistration caused by the brightness difference between RGB and
NIR. Dong et al. [14] first used an edge-aware auto encoder decoder composed of an auto
encoder decoder (AED) and an auxiliary assistant to generate RGB output. Furthermore,
under the guidance of the weight map, the detailed information of the input NIR image was
multi-resolution fused with the generated RGB image, so that more details were retained
in the coloring result.

In 2020, Wang et al. [15] combined semantic segmentation and transfer learning in
infrared colorization to obtain color images that are better in peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM). Among them, transfer learning can obtain rich
color information in the case of insufficient training data, and semantic segmentation can be
used as global prior information to make the boundary of the image clearer and significantly
reduce the color error of the texture area. Sekiguchi et al. [16] combined a colorization
network and a loss network and used perceptual loss and pixelwise loss functions, which
can obtain a good structure with a limited number of NIR and RGB image pairs.

In 2021, Park et al. [17] exploited the correlation between individual NIR bands and
RGB by using multi-band NIR images. It can successfully colorize the multi-band NIR im-
ages using a two-branch structure and the constraint of the proportional gradient between
NIR and RGB. Kim et al. [18] proposed a near-infrared colorization model based on the
correlation module of VAE and U-Net and enhanced texture and chrominance information
by extracting the relationship between luminance and chrominance components.

In 2022, in order to improve the efficiency of infrared image colorization without
affecting its performance, Jiang et al. [19] used 4×4 the Discrete Cosine Transform (DCT)
to divide low-frequency and high-frequency details to reduce the difficulty of network
training and the Residual (RIR) module to improve the colorization efficiency. Zhou et
al. [20] introduced feature weights in UNet++ to obtain better minutiae coloring results.
Furthermore, the brightness network was used to balance the overall color of the image so
that the generated image is closer to the real image.

2.2. Cross-Modality Person Re-Identification

The main challenge facing cross-modality person re-identification is the huge dif-
ferences between the two modalities. How to model the modality to better reduce the
differences between the two modalities images and learn the robustness features shared
between the two modalities is the key to current research. The two main research methods
are representation-based learning and metric-based learning and then modality conversion-
based learning methods have been proposed to achieve modality style conversion between
RGB images and IR images, thus converting the cross-modality person re-identification
problem into a person re-identification problem in a single modality.

In 2017, Wu et al. [21] proposed to define the cross-modality person re-identification
problem for the first time in the field of person re-identification, analyzed three network
architectures, and proposed a deep zero-complement data pre-processing method to compare
and evaluate the performance of these four networks.
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In 2018, Ye et al. [22] used a two-stream CNN network with identity loss and contrastive
loss to learn multi-modality shareable features for cross-modal matching, and then solved the
viewpoint variation problem of different cameras by compressing the features to the modalities.
Using DCNN as the framework, Dai et al. [23] combined identification loss and cross-modality
triplet loss, which minimizes the class of internal identification ambiguity and maximizes
the class spacing of cross-modality similarity. Zhang et al. [24] learned the common features
through the RGB branch and IR branch, which are represented by 3D tensors. Furthermore, a
Contrastive correlation network (CCN) was used to capture the semantic differences between
paired person images.

In 2019, Hao et al. [25] proposed a hyperspherical manifold embedding model. The
modality transformation approach mainly uses the Generative Adversarial Network (GAN)
as a modality transformer to transform human images from one modality to another and to
achieve the interconversion of the two. Wang et al. [26] proposed a Dual-Level Discrepancy
Reduction Learning (D2RL). Wang et al. [27] proposed an end-to-end alignment generation
adversarial network for cross-modality person re-identification tasks. The pixel alignment
module converts RGB images into IR images; the feature alignment module maps real and
synthetic IR images into the same feature space and supervises the features using identity
label-based classification and triadic loss; the joint discrimination module is responsible for
discriminating between real and fake IR images, and the first two learn from each other
through the identity consistency property to obtain robust features.

In 2020, Liu et al. [28] proposed a central triad loss, which calculates a mean value as the
center for the features of each ID in a mini-batch and calculates the triad loss between class
centers, which can relax the strict constraint between samples. Unlike previous GAN methods,
Zhang et al. [29] proposed a TS-GAN approach, which guides a student model to extract
discriminable features by pre-training a teacher model. First, a real RGB image was used to
generate a fake IR image by GAN, and then the fake IR image and the real IR image were
used as inputs to the teacher model to generate a feature mapping, which guides the student
model in the backbone to generate a feature mapping as well, and the discriminative features
can be obtained by extracting high-level semantic information in the high-level embedding
layer. To better utilize the infrared image information, Fan et al. [30] proposed the Cross-
Spectrum Image Generation (CSIG) method to generate images of multiple spectra and the
Dual-Subspace Pairing Strategies (DSPS) to utilize the generated spectral images. The problem
that the intra-class distance is larger than the inter-class distance in the infrared mode was
solved. The Dynamic Hard Spectrum Mining-DHSM method was also proposed to optimize
the randomness strategy for cross-spectrum generation to be more biased towards generating
hard-trained samples.

In 2021, Fu et al. [31] systematically investigated the manually designed architecture
and determined that proper separation of the batch normalization (BN) layers is the key to
greatly facilitating cross-modality matching. Based on this observation, the best separation
scheme was found for each BN layer. A new approach, called Cross-modality Neural
Architecture Search (CMNAS), was proposed. It consists of a BN-oriented search space in
which standard optimization can be accomplished by cross-modality tasks. Liu et al. [32]
trained the grayscale maps generated from RGB maps together with IR maps to reduce
the differences between modalities while also preserving the structural information of
the original RGB maps; a new FC layer and BN layer were added in front of a single
FC layer when calculating the ID loss, which can increase the efficiency of ID loss; three
kinds of bidirectional losses were designed in ranking loss to compare comprehensively:
cross-modality loss, intra-modality loss, and inter-modality loss, which also achieved
better results.

In 2022, Hu et al. [33] reduced the modal gap between visible and infrared images and
enhanced the feature representation by integrating DrRD, MiDR, and ROD to extract iden-
tity and domain-dependent features. Zhang et al. [34] proposed a comprehensive hybrid
metric learning framework by combining four similarity constraints. The framework was
compatible with any pairing-based loss function. Based on Circle loss [35], Liu [36] pro-
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posed a new memory-enhanced one-way metric learning method for VI-ReID and solved
the modal imbalance problem by creating memory banks based on two specific modalities.

3. Methodology
3.1. Design of Two-Branch Network

Since ResNet was proposed, it has been widely used in various fields of deep learning
due to its simple and practical characteristics. Many algorithms in the VI-ReID domain are
also completed using ResNet.

Two-branch networks were introduced as early as when Wu et al. [23] proposed the
cross-modality person re-identification problem and are a common approach to accom-
plishing feature extraction in cross-domain tasks. The two-branch network structure first
extracts single-modality features from the input RGB and IR images using two separate
networks and then projects the extracted RGB and IR features into the shared feature space
of VI-ReID using a parameter sharing network.

The data for the two modalities contains both modality-related feature information and
identity-matching-related feature information. It is necessary to distinguish modality informa-
tion from identity information and map more identity information to the shared feature space
to improve the identity recognition capability under unified feature representation. Therefore,
a two-branch network is designed for feature extraction of different modalities, in which the
parameters of the shallow layer are independent to extract modality-specific information, which
solves the problem of differences caused by modality between different data. Meanwhile, the
two-branch network utilizes a partially shared structure to learn multimodal shareable features
by extracting modality-specific information and modality-shared information simultaneously.

The two-branch cross-modality person re-identification network proposed in this
paper uses ResNet50 as the backbone network, and its network structure is shown in
Figure 1.

Figure 1. Two-branch network structure diagram.

According to the description in the literature [37], the backbone network ResNet50
can be divided into five parts, as shown in Table 1, which gives the naming of the ResNet50
network structure and the description of the corresponding layer parameters.
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Table 1. ResNet50 neural network structure naming and parameter description.

Name of Network Layer Description of the Parameters

Conv1 7 × 7,64,stride 2
3 × 3,max pool,stride 2

Conv2
1× 1, 64

3× 3, 64
1× 1, 256

× 3

Conv3
1× 1, 128

3× 3, 128
1× 1, 512

× 4

Conv4
1× 1, 256

3× 3, 256
1× 1, 1024

× 6

Conv5
1× 1, 512

3× 3, 512
1× 1, 2048

× 3

In the process of information extraction by the neural network, the shallow convolu-
tional layer mainly captures the low-level visual information of the image, and the deeper
the network is, the more high-level semantic information can be extracted, which contains
more identity discriminative information. The data from both modalities in the cross-
modality person re-identification task have shared identity feature information as well
as modality-specific feature information, and the model needs to acquire more features
related to identity information to achieve good results. Therefore, the designed two-branch
network uses parameter-independent network structure in the shallow layer to extract the
low-level visual information of the two modalities separately, and the parameter-sharing
deep layer is used to extract the shared features.

The two-branch network structure has two main components: feature extraction and
feature embedding. In the feature extraction part, the two branches input visible data and
colored pseudo-visible data, respectively, which can capture modality-specific information
about different images; the feature embedding part focuses on learning the shared space
across modalities and characterizing the extracted features. The learning objectives mainly
contain cross-modality and intra-modality constraints.

Feature extraction. The model uses ResNet50 as the backbone of the feature extraction
network for the backbone network layers Conv1, Conv2, Conv3, Conv4, and Conv5, where
Conv1 and Conv2 are shallow layers with no shared parameters, while Conv3, Conv4, and
Conv5 are deep layers with shared network parameters, so that more features related to
identity discrimination can be learned. As shown in Figure 1, given the visible light input
data R or the infrared input data FR, the feature maps fv or fi are obtained through the
backbone network ResNet50.

Feature embedding. To learn the discriminative information of two different modal-
ities, we introduce a fully connected layer after the two-branch feature extractor, where
the parameters of the fully connected layer are shared to model the shared modality in-
formation. Otherwise, the features learned by the two modalities may be in completely
different subspaces. The shared structure serves as a projection function to project two
different modalities into a common space. The feature map fv or fi map obtained in feature
extraction is cut into n parts along the horizontal direction, and n ∗ 2048 dimensional
features are obtained using a global pooling layer on each part. In order to further reduce
the feature dimension, a 1× 1 kernel convolution layer and BatchNorm layer are used
to reduce the dimension of each 2048-dimensional component feature, and finally a 256-
dimensional feature expression is obtained. Therefore, for each input image R or FR, n
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256-dimensional features fvt or fit can eventually be represented. Subsequent features are
trained by fully connected layers, where each feature fvt or fit is viewed independently.
The fully connected layer parameters designed for each person are shared, and each feature
has its corresponding probability prediction output pi through the fully connected layer,
which is used to calculate the identity loss lid.

3.2. Design of Loss Function

The loss is mainly considered in the following two aspects: (1) cross-modality con-
straint, for the huge inter-modality differences, the core idea is that the distance of different
IDs in different modalities should be greater than the distance of the same ID in differ-
ent modalities, and the distance of different IDs in the same modality is greater than the
distance of the same ID in different modalities; (2) intra-modality constraint, i.e., identity
classification loss, to distinguish different samples in the same modality.

For the feature differences between same-modality and cross-modality, the loss func-
tion is designed as follows:

As shown in Figure 2, where the same color represents the same modality, the same
border shape represents the same ID, and the cross-modality constraint target is that the
distance of different IDs within the same modality is greater than the distance of the same
ID within the cross-modality, i.e., d(vi, ti) < d(vi, vj), d(vi, ti) < d(ti, tj). Similarly, the
distance across different IDs of a modality should be greater than the distance across the
same ID of a modality, i.e., d(vi, ti) < d(vi, tj). The intra-modality constraint objective is to
distinguish different IDs under the same modality.

Figure 2. Design of the loss function.



Electronics 2023, 12, 3193 8 of 19

In terms of objective function construction, a multi-objective joint optimization is
performed as shown in Equation (1), including identity loss lid for sample identity identifi-
cation under the same modality and cross-modality constraint lcross.

ltotal = lid + lcross (1)

where lid = − 1
n ∑n

i=1 log(p(yi|xi)), n denotes the number of samples trained by each batch,
and p(yi|xi) denotes the predicted probability that the input image xi and its class label yi,
after softmax classification, xi is recognized as class yi. lcross in turn includes the constraint
lcross1 between the distance of the same ID across modalities and the distance of different
IDs within the same modality and the distance of different IDs across modalities and the
distance of the same ID across modalities lcross2.

lcross1 =
n

∑
i=1

max[(p + d(vi, ti)−mind(vi, vj)), 0]

+
n

∑
i=1

max[(p + d(ti, vi)−mind(ti, tj)), 0]
(2)

lcross2 =
n

∑
i=1

max[(p + d(vi, ti)−mind(vi, tj)), 0]

+
n

∑
i=1

max[(p + d(ti, vi)−mind(ti, vj)), 0]
(3)

where v denotes visible data, t denotes infrared data, and i, j denote sample IDs, p is a
predefined threshold value.

4. Experiments
4.1. Dataset and Evaluation Criteria

SYSU-MM01. SYSU-MM01 is the first standard dataset in the field of cross-modality
(RGB-IR) person re-identification, which consists of 6 cameras (4 RGB and 2 IR). The dataset
contains 491 people with a total of 287,628 RGB images and 15,792 IR images. Each person
is captured by at least two cameras with different positions and viewpoints. The training set
consists of 395 people with 22,258 RGB images and 11,909 IR images. The test set consists
of 96 people, with 3803 IR images as the query set and 301 randomly selected RGB images
as the gallery set.

RegDB. RegDB [38] contains 412 different person identities; 10 RGB images and
10 thermal images are collected for each identity, and the weather conditions and the
camera shooting viewpoint are the same in images of the same identity. There were
254 females and 158 males, and 156 out of 412 were photographed from the front and
256 from the back. The 4120 identity images of 206 individuals are selected as the training
set, and the 4120 identity images of the remaining 206 individuals are used for testing.
RegDB has two evaluation modes. One is visual-infrared matching, which searches for
infrared images based on a given visible image. The other is infrared-visible matching,
which uses a given infrared image to search for a visible image.

The recognition rates of rank1, rank10, and rank20 in the Cumulative Match Charac-
teristic (CMC) curve were used as evaluation metrics. Higher values of all three indicate
more accurate recognition in different settings. In addition, mean Average Precision (mAP),
a commonly used evaluation metric in the field of information retrieval, was used as an
evaluation method for the cross-modality person re-identification task. Higher values of
mAP indicate better retrieval capabilities of the model.
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4.2. Experimental Details

The model in this study is trained on Pytorch and implemented based on an NVIDIA
3080 GPU. Stochastic gradient descent (SGD) [39] is used for network optimization, and
the initial learning rate is set to 0.01 and gradually decreases after every 30 iterations.
The number of iterations (epoch) is set to 60, and each batch is sampled for 8 different
identity data types, including 4 visible and 4 infrared data types; the batch size is set to 64
during training.

4.3. Experiments Result

Comparison with existing methods. To verify the effectiveness of the proposed
algorithm, experiments are carried out on the SYSU-MM01 dataset in all search modes and
indoor search modes according to the evaluation metrics in this section. The compared
algorithms include traditional LOMO [40], HOG [41], basic algorithms such as One-stream,
Two-stream, and zero-padding [23] based on feature learning, BDTR [42], D-HSMER [25]
methods that add metric learning on top of representation learning, and GAN networks
using the AlignGAN [27] algorithm, etc.

(1) All search mode
The cross-modality person re-identification algorithm based on a two-branch network

proposed in this section achieves an accuracy of 52.3% for its rank-1 and 50.25% for mAP in
the global search mode, which is a big improvement compared with the existing methods.
Several representative VI-ReID algorithms are selected for comparison with the proposed
method, the experimental results are presented in Table 2, and the performance comparison
is presented in Figure 3.

(2) Indoor search mode
The proposed cross-modality person re-identification algorithm based on a two-branch

network also performs well in indoor search mode, and its rank-1 accuracy reaches 59.25%
accuracy and mAP reaches 63.74% accuracy in indoor search mode, which is a big improve-
ment compared with the existing methods. The specific experimental results are shown in
Table 3, and the performance comparison is shown in Figure 4.

As can be seen from Figure 5, the result of “indoor search mode” is more obvious than
that of “all search mode”, mainly because the attention information of indoor images is
relatively uniform and the indoor background is more single than that of outdoor. The gap
between the generated image and the actual image in the process of modal conversion is
smaller, so the subsequent recognition effect will be better.

Table 2. VI-ReID results of different methods on SYSU-MM01 in all-search mode.

Methods r = 1 r = 10 r = 20 mAP

HOG 2.76 18.25 31.91 4.24
MLBP 2.12 16.23 28.32 3.86
LOMO 1.75 14.14 26.63 3.48
GSM 5.29 33.71 52.95 8.00
One-stream 12.04 49.68 66.74 13.67
Two-stream 11.65 47.99 65.50 12.85
Zero-padding 14.80 54.12 71.33 15.95
CmGAN 26.97 67.51 80.56 27.80
BCTR 16.12 54.90 71.47 19.15
BDTR 17.01 55.43 71.96 19.66
AlignGAN 42.4 85.0 93.7 40.7
Hi-CMD 34.9 77.6 - 35.9
AGW 47.5 84.39 92.14 47.65
VI-TBNDC(ours) 52.30 88.6 95.5 50.25
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Figure 3. Performance comparison of different methods on SYSU-MM01 in all-search mode.

Table 3. VI-ReID results of different methods on SYSU-MM01 in indoor-search mode.

Methods r = 1 r = 10 r = 20 mAP

Zero-padding 20.58 68.38 85.79 26.92
TONE 20.82 68.86 84.46 26.38
HCML 24.52 73.25 86.73 30.08
cmGAN 31.63 77.23 89.18 42.19
eBDTR 32.46 77.42 89.62 42.46
MAC 36.43 62.36 71.63 37.03
MSR 39.64 89.29 97.66 50.88
AlignGAN 45.9 87.6 94.4 54.3
AGW 54.17 91.14 95.8 62.97
VI-TBNDC(ours) 59.25 91.32 97.64 63.74

Among the compared methods, LOMO [40] and HOG [41] apply traditional algorithms
that cannot extract useful features at this stage, so the accuracy is low. One-stream, Two-
stream, and zero-padding [23] are cross-modality person re-identification methods based
on feature learning, which only perform representation learning without further metric
learning, so the results are not too good. BDTR [42] and D-HSMER [25] add metric learning
to the feature learning, so the recognition accuracy is higher than the accuracy using only
feature learning. Although BDTR [42] also uses a two-branch network for different modality
feature extraction, its backbone network, AlexNet [43], has low depth and cannot extract
more feature information, which results in poor performance. AlignGAN [27] is based
on a generative adversarial network with modality transformation, converting visible (or
IR) images into IR (or visible) modality images, narrowing the modality differences, and
unifying the images to the same modality; thus, the recognition accuracy will be better. The
proposed method builds discriminative features based on the reduction of inter-modality
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differences while using the dual constraints of the two-branch network, which leads to
better performance on the SYSU-MM01 dataset.

Figure 4. Performance comparison of different methods on SYSU-MM01 in indoor-search mode.

Figure 5. Comparison of indoor search and all search results.

Since infrared and visible images are taken with different modalities, they have drasti-
cally different appearances. Therefore, it is not efficient to map them directly to the feature
space. To alleviate this problem, this paper uses GAN to colorize infrared images to reduce
the modality discrepancy by unifying the image representation. In addition, color images
can also be grayscaled to reduce the modality discrepancy.
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The experimental results are presented in Table 4, where the differences between the
two modality conversion methods are mainly reflected in rank-1 and mAP scores. Among
them, in the all-search mode, infrared image colorization has 1.16% and 2.60% higher
rank-1 and mAP scores than color image grayscale, respectively. In the indoor search mode,
infrared image colorization has 4.36% higher rank-1 and 1.62% higher mAP scores than
color image grayscale. Infrared images have no color information, and although graying
color images reduces their color difference, NIR images have much weaker dependence on
R, G, and B than they do on each other, resulting in NIR images that differ from grayscale
images converted from RGB images [19].

Table 4. Results of different modality conversion methods on SYSU-MM01.

Methods All-Search Indoor-Search
r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP

VI-TBNDC(gray) 51.14 88.39 95.21 47.65 54.89 91.66 97.17 62.12
VI-TBNDC(ours) 52.30 88.60 95.50 50.25 59.25 91.32 97.64 63.74

4.4. Ablation Study

Effectiveness of pre-processing the IR image with colorization. The infrared data
is converted into color images by using the generative adversarial network, and the in-
frared images with only one channel are converted into RGB images with three channels,
which reduces the difference between modalities to a certain extent and provides great
convenience for cross-modality person re-identification.

The specific conversion process consists of two stages, an image generation stage and
an image discrimination stage. First, in the image generation stage, the model learns to
colorize a given input such that the original infrared image becomes an RGB image. The
specific structure of the generator G is shown in Figure 6.

Figure 6. Structure diagram of the generator G.

In the second stage, the discriminative model is used to estimate the probability
that the generated image comes from the training dataset. The specific structure of the
discriminator D is shown in Figure 7. The generative model G is obtained by training
from NIR images to produce color RGB images. In addition, the discriminative model D is
trained to assign the correct label to the generated color image according to the provided
real color image, and finally, the purpose of modal conversion is achieved.
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Figure 7. Structure diagram of discriminator D.

The generator (G) and discriminator (D) are both feed-forward neural networks that
play a min-max game against each other. The generator converts near-infrared images to
visible images. A set of data (real image (z) or a generated image (G(z)) is fed into the
discriminator to generate the probability that this data is real (P(z)). The discriminator
is optimized to improve its probability for real data (given real images) and reduce its
probability for fake generated data (miscolored NIR images), as introduced in reference [44],
and the specific process is shown in Equation (4).

5θg
1
m

[
log D

(
xi
)
+ log

(
1− D

(
G
(

z(i)
)))]

(4)

where m is the number of samples in each batch, x is the real image, and z is the color
NIR image generated by the network. The weights of the discriminator network (D) are
updated by boosting its stochastic gradient.

On the other hand, in order to increase the probability that the generated data will
be highly rated, the generator will be optimized, and the specific process is shown in
Equation (5).

5θg
1
m

m

∑
i=1

log 1− D
(

G
(

z(i)
))

(5)

where m is the number of samples in each batch, and z is the color NIR image generated
by the network. As in the previous case, the weights of the generator network (G) are
updated by decreasing its stochastic gradient. Figure 8 shows part of the infrared image
colorization effect.

As can be seen from Table 5, the rank1 metric improves by 2.7% and the mAP metric
improves by 3.8% compared with the baseline on the SYSU-MM01 dataset after preprocessing
the infrared images with colorization, which indicates that colorization of the infrared images
does have the effect of reducing the inter-modality differences, and by this operation the
infrared images can be converted to visible images. The reduction of modality differences
between the two provides convenience for feature extraction as well as feature matching in
the subsequent person re-identification network, and the improvement in metrics verifies the
effectiveness of the conversion network in cross-modality person re-identification.
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Table 5. Comparison of infrared image colorization pre-processing experiments.

Pre-Processed or Not r = 1 r = 10 r = 20 mAP

No pre-processing 49.8 85.2 92.2 48.60
Pre-processed 51.3 88.6 95.5 50.25

Figure 8. Infrared image colorization results.

Effectiveness of backbone. Ye et al. in the literature [42] also mentioned the use of
a two-branch network for feature information extraction of two modalities, where the
backbone network used is AlexNet [43] and the backbone network used in this paper is
ResNet50. Here, different backbone networks are used to perform feature extraction on the
SYSU-MM01 dataset to validate the rationality of the chosen backbone network.

As can be seen from Table 6, the best results were achieved with ResNet50 as the
backbone network of the two-branch cross-modality person re-identification algorithm.
Due to the different depths of the networks, there are differences in the extracted image
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features, and thus the model performance can also vary significantly. Specifically, the
AlexNet network was proposed earlier, and the various capabilities are weaker compared
with the ResNet network. AlexNet consists of an 8-layer structure, of which the first 5 layers
are convolutional layers and the next 3 layers are fully connected layers, and the features
extracted in the convolution process are limited, so it cannot achieve better results. The
mAP can only reach 20.3%, and the performance of rank-1 is only 20.5%. ResNet18 has
increased the number of layers compared with AlexNet and added the residual network
structure, so the effect is significantly better than AlexNet, and the speed is relatively
faster due to the fewer layers of the network, but the deeper pedestrian features cannot be
extracted, so the performance is poor in the ResNet series backbone network. ResNet34
has more layers than ResNet18 and has improved feature extraction ability; thus, the
performance has improved, with 3.2% and 1.9% improvements in mAP and rank1 metrics,
respectively, but it is still not the best. ResNet50 has the best performance among the three,
with 50.25% in the mAP metric and 52.30% in rank1 metric.

Table 6. Performance comparison of different backbone networks.

Method Backbone mAP Rank-1

VI-TBNDC

AlexNet 20.3 20.5
ResNet18 43.6 45.3
ResNet34 46.8 47.2
ResNet50 50.25 52.30

4.5. Visualization of the Results

Figure 9 shows the visualization of the proposed method in this paper; three samples are
selected and the top 10 images closest to them are displayed; the results are correctly indicated
with green borders, and red means not the same id as the sample; the results show that the
proposed method in this paper has better performance on the SYSU-MM01 dataset.

target 1 to be queried

target 2 to be queried

Figure 9. Cont.
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target 3 to be queried

Figure 9. Visualization of the results.

5. Conclusions

This paper proposes a cross-modality person re-identification method based on a
two-branch network for infrared and visible images. Firstly, the method introduces the
infrared image colorization technique into the field of person re-identification and uses this
technique to reduce inter-modality differences and achieve better results. Furthermore, a
two-branch network is proposed, using ResNet50 as the backbone of the feature extraction
network and extracting feature information common to both modality data and unique to
each modality separately. Using a parameter-independent network structure in the shallow
layer and a weight-sharing network structure after the convolutional layer conv2. The
low-level semantic features of the two modalities are extracted separately, and then the two
modalities features are embedded in the same network to extract the high-level semantic
features with identity discriminative information. Finally, a cross-modality hybrid loss
function is proposed for the feature differences between same-modality and cross-modality,
which effectively corrects the model using the mutual constraints between the modalities
and effectively mitigates the negative impact of modality differences on cross-modality
person re-identification. Good results are obtained in the SYSU-MM01 dataset using a
near-infrared camera, demonstrating the usefulness of the proposed method in the cross-
modality person re-identification task. During the experimental analysis, the performance
of different backbone networks under the same dataset is verified, justifying the choice of
ResNet50 as the backbone network. It also verifies the superiority of this network among
current cross-modality person re-identification algorithms and analyzes the reasons for its
better performance compared with other classical algorithms.
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