
Citation: Jiang, Y.; Yu, Y.; Tang, L.;

Yang, J.; Lu, Y.; Yu, Z. A Low Jitter,

Wideband Clock Generator for

Multi-Protocol Data Communications

Applications. Electronics 2023, 12,

3196. https://doi.org/10.3390/

electronics12143196

Academic Editor: Raffaele

Giordano

Received: 7 June 2023

Revised: 20 July 2023

Accepted: 21 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Communication

A Low Jitter, Wideband Clock Generator for Multi-Protocol
Data Communications Applications
Yingdan Jiang 1,2, Yang Yu 2, Lu Tang 3 , Junhao Yang 2, Yujia Lu 3 and Zongguang Yu 1,2,*

1 School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
dg1723044@smail.nju.edu.cn

2 The 58th Research Institute of China Electronic Technology Group Corporation, Wuxi 214072, China
3 Engineering Research Centre of RF-ICs & RF-Systems, Ministry of Education, Southeast University,

Nanjing 210096, China; lutang2k@seu.edu.cn (L.T.); 220215943@seu.edu.cn (Y.L.)
* Correspondence: yuzg58@163.com

Abstract: This paper presents a charge-pump phase-locked loop (PLL) frequency-synthesizer-based
low-jitter wideband clock generator for multi-protocol data communications applications. Automatic
frequency calibration (AFC) using linear variable time window technology and modified multi-
modulus dividers (MMD) based on sub-multi-modulus dividers (SMMD) are developed for faster
locking, lower jitter, and implementation of multi-protocol data communications applications. The
clock generator is fabricated in 0.18 µm CMOS technology. The measured division ratio of the
multi-modulus divider ranges from 1.875 to 25, and the output frequency is 46.875~625 MHz. The
lock time does not exceed 30 µs, while jitter is less than 500 fs.

Keywords: clock generator; multi-modulus divider; automatic frequency calibration; low jitter

1. Introduction

The quality and speed of data communication in fiber optic communication, image
transmission, and serial communication depend significantly on clock performance, while
the clock is the major bottleneck. Different applications, including SONET, Ethernet,
and HDTV, require various levels of jitter, number of output channels, and frequency
range [1–3]. Research shows that optimization of the loop adaptive tuning mechanism is
the paramount factor for multi-protocol compatible clocks [4,5]. For massive MHz telecom
services, reasonably designed AFC and MMD are necessary.

With a relatively faster calibration speed and simpler structure, the binary frequency
search algorithm has been widely used in AFCs. Various methods have been devised to
reduce lock time. Direct frequency error detection and calibration using multiphase [6] or
multiplied reference clock [7] are introduced to reduce the comparison time. From a lock-
time perspective, AFC based on time-to-digital converter (TDC) counting can reduce the
counting period and improve the locking speed significantly, but this method is mainly used
in all digital phase-locked loops (ADPLL). Many AFC techniques have also been proposed
in [8–10]. In order to strengthen the applicability of the clock generator by increasing the
loop divider ratio, methods such as compressing the reference clock frequency range and
expanding the divider ratio of MMD can be implemented. Prior research generally confirms
that the division ratio extension is invariably achieved by improving two dimensions of
integer or fractional-N division accuracy [11,12]. While the MMD is composed of the pre-
scalers and the counters expand the logic control bit width of the counter, the consumption
of hardware cannot be ignored.

A low-jitter wideband clock generator with loop adaptive tuning architecture featuring
an AFC with linear variable time window (LVTW) technology and improved MMD is
developed in this article. This technology allows for higher lock accuracy with reduced
time consumption by linearly changing the number of reference clock counting cycles.
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Additionally, the clock generator introduces an improved MMD design, which includes
SMMD. These SMMDs provide dynamic feedback divider ratios for AFC, simplifying the
frequency division operation of the MMD.

The contribution of this proposal lies in its ability to achieve a reasonable compromise
between wider bandwidth, lower phase noise, and faster locking ability in clock generation
for multi-protocol data communications applications. Since the digital circuitry in a con-
ventional charge pump phase-locked loop is on the low side, it is reasonable to consume
additional hardware resources in exchange for an increase in locking speed. Meanwhile,
the optimization of the algorithm provides another optimization idea for the development
of AFC. The measurement results demonstrate the effectiveness of the proposed approach
and its potential to significantly improve the performance of clock generators in the field.

2. MMD-Based Loop Adaptive Architecture

As shown in Figure 1, the clock generator comprises a phase/frequency detector
(PFD), a charge pump (CP), a loop filter, a voltage-controlled oscillator (VCO), an AFC with
LVTW, and an MMD.
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Figure 1. Block diagram of the proposed clock generator.

Due to the large initial hopping in the successive approximation (SAR) search al-
gorithm, the accuracy required at the beginning of frequency calibration is not high. A
scaling factor, λ, is introduced to linearly decrease the clock counting time according to
the number of clock counting, which is summarized as AFC with LVTW technology. The
MMD is implemented by three fixed divider ratios cascaded SMMDs. The division ratio is
configured by the logical control word D [4:0] to control the related data selector.

The AFC and MMD parts are the core of the adaptive module, and the architecture
details are provided in the following subsections.

2.1. Fast AFC with LVTW

The working mechanism of the proposed AFC is shown in Figure 2. Traditionally,
clock generators have used fixed counting time for the reference clock in the AFC process.
This means that the counting period remains constant, which can result in longer lock times
and limited frequency resolution. The counting period is adjusted by linearly changing the
number of reference clock counting cycles. By doing so, it reduces the lock time while still
ensuring accurate frequency resolution. This is a significant improvement over traditional
AFC techniques, as it allows for faster locking and better performance.
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The PLL is disconnected before the AFC starts, the control voltage of the VCO, Vctrl , is
set to half the supply voltage, and SW [2:0] is initialized to 100. After all registers have been
reset, LVTW is introduced into the AFC process to dynamically change the counting time
of the time window, which is different from the regular AFC operation. The output signal
of VCO is counted in a variable time window, and the counting value is compared with the
target. The curve is adjusted downwards when ε ≥ 0 and upwards when ε < 0. This series
of operations is designed to ensure that the most suitable tuning curve can be selected.
While the AFC operation is finished, the AFC loop will be disconnected and returned to
the PLL.

The implementation of LVTW is shown in Figure 3. During all the counting cycles,
the total counting time of AFC consumed by the counter is Ttotal = B

(
M/ fre f + ∆Tdelay

)
.

∆Tdelay is the interval time between two adjacent time windows, M is the number of
counting periods, and B is the number of bits of the AFC output control words. In order to
distinguish two adjacent frequency points of the VCO, ∆ fVCO. Increasing M or decreasing
the feedback frequency division ratio, Ndiv, has the same effect on improving AFC frequency
resolution. In order to balance the influence of M and Ndiv on ∆ fVCO, a balance factor, α, is
introduced. So M is as follows, while KVCO refers to the tuning gain of the VCO.

M ≥ α
Ndiv

KVCO
fre f (1)
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In the PLL with conventional AFC, α is set to a fixed value to obtain a fixed M [13].
The LVTW technology constructs M by introducing a scaling factor, λ, which is strongly
correlated with the number of AFC control bits, thus adjusting the counting time of the
VCO feedback clock. M is

M =
[α0 + λ(T − 1)]Ndiv,min

KVCO
fre f , T ∈ [1, B] (2)

where T is the T-th counting cycle currently being executed by the AFC. Ndiv,min is the
minimum feedback divider ratio, and λ = (αmax − α0)/(B− 1).

Compared to the case of fixed M in each cycle, the feedback clock counting time for
the proposed operation is shorter. As the number of counting cycles increases, TTW keeps
getting longer. However, the frequency resolution is not affected by this process. Due to the
large initial hopping amplitude of the SAR search algorithm [14], it is not necessary that
∆ fAFC approaches the limit of the frequency resolution required by the system (correspond-
ing to α = αmax). When the AFC output control bit is close to the target frequency, ∆ fAFC
is required to be more accurate, and M should be increased appropriately to improve the
frequency search accuracy. Based on LVTW technology, the reduced counting time is

∆Ttotal =
Ndiv,min

KVCO
[B(αmax − α0)−

λB(B− 1)
2

] (3)

If ∆Tdelay is ignored, the percentage of time reduction, PTR, is

PTR =
1
2
[1− α0

αmax
] (4)

αmax corresponds to the minimum resolution requirement and cannot be changed
arbitrarily. The percentage of lock time reduction can be adjusted by choosing the value of
α0. In the case of αmax = 4, α0 = 2, it can be calculated from Equation (4) that the locking
time can be compressed by up to 25% using the LVTW technology.

2.2. MMD Based on Adaptive Tunning

The working mechanism of the MMD plays a crucial role in enhancing the system’s
performance [15]. The MMD is implemented by the cooperation of SMMDs, which are
built in with several relatively fixed divider ratios. The external 5-bit control signal selects
the division ratio of these three independent SMMDs and then combines them with the
expected division ratio of the system. Compared to traditional methods, the proposed
MMD-based architecture offers several improvements. It allows for a wider range of
division ratios, enabling the clock generator to cover a broader frequency range. The
improved MMD also reduces hardware consumption, making the clock generator more
efficient and cost-effective.

As shown in Figure 4, SMMDs are implemented by cascading 2/3 division units of
latches based on current mode logic [15]. A retimer consisting of flip-flops and buffers is
adopted to mitigate clock jitter accumulation and minimize the delay time in the feedback
chain of the divider [16]. The retimer is based on a phase interpolator (PI). It could retime
received data with input jitter and noise in order to export clean waveforms. The feedback
clock signal in the SMMDs no longer passes through the multi-input AND gates of the
2~N-1 stages and feeds the last-stage clock signal to the first-stage multi-input AND gate
AND_1 directly.
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The SMMDs are composed of pre sub-multi-modulus divider (PSMMD), feedback
sub-multi-modulus divider (FSMMD), and output sub-multi-modulus divider (OSMMD),
which are equipped with several relatively fixed divider ratios. CW_P [1:0] and CW_O [1:0],
derived from MUX_P (multiplexer for PSMMD) and MUX_O (multiplexer for OSMMD), are
generated via the logic synthesis of D [1:0]. The logic synthesis process of D [1:0] is shown
in Figure 5. The division ratios of PSMMD and FSMMD are configured by CW_P [1:0] and
CW_O [1:0] to dynamically reduce the current error between the clock counting number
and the desired number. Meanwhile, MUX_F (multiplexer for FSMMD) is controlled by
D [4:2] to configure the division ratios of the OSMMD directly. The division relationship
between D [4:0] and SMMD is shown in Table 1.
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Table 1. The division relationship between D [4:0] and SMMD.

D [1:0]

PSMMD FSMMD

D [4] D [3] D [2] OSMMD

Logical Synthesis 0 0 0 1

CW_P [1:0] CW_F [1:0] 0 0 1 2

00 00 3 24 0 1 0 3
00 01 3 25 0 1 1 4
01 10 4 20 1 0 1 6
10 11 5 15 1 1 1 8

However, the delay time inside the SMMDs increases with the length of division
chains, especially in MMDs based on the basic division unit cascade structure, which
is determined by the inherent characteristics of the internal logic gates. In this type of
MMD [17,18], the clock delay of the counter is not negligible as the division ratio changes.
In the application of wide division ratios, the longer transient process of this type of clock
driver is caused.

Assuming that the clock delay time of the N-stage 2/3 division unit is Tdn, the delay
time is reduced to

∆Ttotal =
N−1

∑
i=2

Tdi

The simulation of the delay time of the SMMDs for cascaded 2~4 stage 2/3 dividers
in the tt corner at 27 ◦C is shown in Figure 6. The output phase noise of the FSMMD is
−145 dBc /Hz @ 1 MHz, which reduces the phase noise by 9 dBc/Hz compared to the
situation without a retime, as shown in Figure 7. The delay time simulation results for
SMMD (fCK = 1.8 GHz) at different corners and temperatures are shown in Table 2. The
delay time of SMMD has increased at a slow corner (100 ◦C), while it has reduced a few
nanoseconds at a fast corner (0 ◦C). The phase noise deteriorates by 3.2 dBc/Hz (slow
corner, 100 ◦C) and 2.9 dBc / Hz (fast corner, 0 ◦C), respectively, for FSMMD compared to
−145 dBc/Hz @ 1 MHz (typical corner, 27 ◦C).
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Table 2. Delay time of SMMD (N = 5) at different corners.

fCK = 1.8 GHz Slow Corner,
100 ◦C

Typical Corner,
27 ◦C

Fast Corner,
0 ◦C

N = 2 87 ns 80 ns 75 ns

N = 3 102 ns 95 ns 90 ns

N = 4 115 ns 108 ns 103 ns

N = 5 126 ns 119 ns 114 ns

To verify the effect of MMD-based LVTW technology on improving the locking speed,
we used 3-bit AFC for loop lock simulation. The reference clock frequency was 25 MHz, and
the frequency resolution of VCO was 30 MHz/LSB, with Ndiv set to 75. The simulations
were conducted with fixed M and variable M based on LVTW, as shown in Figure 8.
Compared to fixed M, the lock time based on the variable was reduced by 23.9%. It is
worth noting that the simulated values may be smaller than the theoretical values due to
the high resource consumption caused by LVTW-based digital logic circuits in operation.
Furthermore, the fact that ∆Tdelay is not included in the derivation of Ttotal causes the actual
AFC time to be larger as well.
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3. Other Building Blocks
3.1. VCO

Due to the specific frequency division mechanism of MMD, the bandwidth require-
ment of VCO is not harsh. In MHz telecom applications, the VCO output frequency only
needs to be maintained as a series of specific discrete frequencies. At the same time,
attention should be paid to the power consumption and phase noise of VCO.

A schematic of VCO is shown in Figure 9 [19,20]. The required tuning frequency is
easy to achieve, but the difficulty of the design lies in how to reduce the phase noise. In
order to construct a small KVCO and reduce the effect of the subtle jitter of Vctrl on the phase
noise of VCO, a 3-bit switch capacitor array is used. The design of variable capacitors
must meet the requirements of overlapping frequency, which is also the basis for selecting
the size of variable capacitors [21]. The cumulative MOS transistor variable capacitor has
the lowest power consumption and phase noise among all variable capacitors provided
by the foundry. Therefore, this variable capacitor was adopted in the LC-VCO design of
this article. The high-pass filter used to avoid output signal attenuation is composed of R1
and C1. The KVCO comparative simulation of single-channel and three-channel parallel
structures with variable capacitors is shown in Figure 10. An inductance is used to suppress
the second harmonic at the common source of the cross-coupled pair.
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3.2. CP

As shown in Figure 11, the programmable CP adopts a 4-bit binary weighted current
switch structure, which outputs a total of 16 discrete current values from 30 µA to 0.5 mA.
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The operational amplifier based on feedback structure enables both charge and discharge
current mismatch and the spur level to be reduced effectively. M8~M11 are used as switch-
ing tubes with an aspect ratio of 50:1 provided by the PFD with four differential inputs.
The aspect ratio of M12~M17 is 9:1, and they are controlled by the switch control words
code [2:0] and code_N [2:0], and the switch control words are generated by UP, DN, CT1,
and CT2 [22].
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Figure 11. Schematic of CP.

The feedback mechanism introduced by the operational amplifier has advantages in
the control of gate voltage of M12~M13, which can suppress current mismatch. On the other
hand, the size of the transistors M12~M17 in the charging and discharging branches should
be carefully designed to reduce the mismatch. The simulation of the charge–discharge
current mismatch of the programmable charge pump is shown in Figure 12. In addition,
the simulation indicates that the charge–discharge current mismatch does not exceed 0.1%
at a typical corner; meanwhile, it does not exceed 0.13% at the slow corner and 0.15% at the
fast corner, respectively.
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4. Measurement Results

The proposed clock generator was fabricated in 0.18 µm CMOS technology. The layout
and PCB for measurement are shown in Figures 13 and 14, respectively.
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Figure 14. PCB for measurement.

The measurement setup is presented in Figure 15. The reference signal is provided by a
crystal oscillator of 25 MHz, and power is supplied by a 1.3 V low dropout regulator (LDO).
During the adaptive frequency calibration, the power management module provides 0.65 V
for VCO to ensure that Vctrl remains at the center of the frequency bands. The MMD
division ratio selection signal is controlled by an external microcontroller unit (MCU). The
pad O_PAD of the output stage is connected to the phase noise analyzer to measure the
phase noise of the overall system. In addition, VCO_PAD and VCO_SIG are drawn from
the VCO, respectively, to obtain the curve of tuning and Vctrl .
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The VCO tuning curve shown in Figure 16 indicates that there is an overlap between
adjacent frequency bands in different colors, which ensures the continuous frequency
modulation of the VCO. The tuning frequency of VCO covers 1.79~2.05 GHz. Compared
with the wide tuning range of VCO in other types of PLL systems, 1.8~2 GHz VCO meets
the requirements of wideband design and simplifies the design of oscillators [23–25]. The
output frequency of the clock generator is shown in Figure 17. Continuous clock frequency
provided by a clock generator is not required for many communication systems. The pro-
posed clock generator can generate 24 discrete clock frequencies covering 46.875~625 MHz,
which meets the data transmission needs of communication systems such as GigE, HDTV,
SATA, SONET, 10 G Fibre Channel, XGMII, etc. [26,27].
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The input reference frequency of the clock generator is 25 MHz. After MMD is di-
vided by 24, the output clock is 599.9 MHz. In addition, the transient result of 𝑉  is 
shown in Figure 18, which indicates that the loop lock time does not exceed 30 µs. The 
phase noise of the VCO is −120.39 dBc/Hz @ 1 MHz, as shown in Figure 19. In Figure 20, 
the phase noise of the overall PLL is −128 dBc / Hz at the frequency offset of 1 MHz, and 
the RMS jitter integrated from 10 kHz to 20 MHz is 492 fs. Finally, a summary and com-
parison table of clock performance is given in Table 3. 
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The input reference frequency of the clock generator is 25 MHz. After MMD is divided
by 24, the output clock is 599.9 MHz. In addition, the transient result of Vctrl is shown in
Figure 18, which indicates that the loop lock time does not exceed 30 µs. The phase noise of
the VCO is −120.39 dBc/Hz @ 1 MHz, as shown in Figure 19. In Figure 20, the phase noise
of the overall PLL is −128 dBc / Hz at the frequency offset of 1 MHz, and the RMS jitter
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integrated from 10 kHz to 20 MHz is 492 fs. Finally, a summary and comparison table of
clock performance is given in Table 3.
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Table 3. Performance comparison.

Process VCO TR/
GHz

LO Output
Range/GHz

Power/
mW

Ref. Freq./
MHz

Lock Time
(Including
AFC Time)

Out-Band PN
@ 1 MHz
(dBc/Hz)

FoMT
1

[6] 0.13 µm
CMOS 1.9–3.8 1.9–3.8 15.36 40 <10.025 µs <117.57

(fc = 3.8 GHz) NA

[7] 0.5 µm
BiCMOS 1.15–1.75 1.15–1.75 54.6 13 50 µs (AFC) −129

(fc = 1.4 GHz) −178

[10] 0.18 µm
CMOS 2.3–3.7 0.05–4.8 94 10/20 <40 µs −127

(fc = 1.8 GHz) −211.2

[14] 0.11 µm
CMOS 1.5–2.4 0.09–0.77 20.28 6 90 µs

50 µs (AFC) <100 @ 100 kHz NA

This
work

0.18 µm
CMOS 1.79–2.05 0.047–0.625 30 25 <29 µs −128

(fc = 600 MHz) −204

1 FoMT = FoM− 20log[Tuning Range(TR)/10], FoM = PN − 20log[( f0/∆ f ) + 10log(PDC/1mW)].

5. Conclusions

In this paper, a clock generator for MHz telecom application is proposed using a
loop adaptive tuning structure based on LVTW technology and modified MMD. This
structure adopts the method of reducing the feedback clock counting period to achieve
a fast lock. Compared with the existing MMD, the improved MMD achieves the multi-
protocol application under a unified architecture with its special internal structure and
method of external controlling. The configuration method of external split ratio simplifies
the configuration process. In addition, the feedback divider with variable division ratios
improves the rate of VCO capture. This clock generator for MHz telecom application
can operate over a temperature range of −45~125 ◦C and remains thermally stabilized.
Under the temperature condition of 27 ◦C, due to the improvement in the loop adaptive
architecture structure, the system configures integer or fractional division ratios of 1.875~25
for the clock generator. The clock generator provides a range of output frequencies of
46.87~625 MHz. With a maximum lock time of no more than 30 µs and jitter of no more
than 500 fs, the proposed clock generator meets the clock frequency requirements of most
communication systems.
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