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Abstract: In this paper, a soft-error-aware radiation-hardened 6T SRAM cell has been implemented
using germanium-based dopingless tunnel FET (Ge DLTFET). In a circuit level simulation, the
device-circuit co-design approach is used. Semiconductor devices are very prone to the radiation
environment; hence, finding out the solution to the problem became a necessity for the designers.
Single event upset (SEU), also known as soft error, is one of the most frequent issues to tackle in
semiconductor devices. To mitigate the effect of soft error due to single-event upset, the radiation-
hardening-by-design (RHBD) technique has been employed for Ge DLTFET-based SRAM cells. This
technique uses RC feedback paths between the two cross-coupled inverters of an SRAM cell. The
soft-error sensitivity is estimated for a conventional and RHBD-based SRAM cell design. It is found
that the RHBD-based SRAM cell design is more efficient to mitigate the soft-error effect in comparison
to the conventional design. The delay and stability parameters, obtained from the N-curve, of the Ge
DLTFET-based SRAM cell performs better than the conventional Si TFET-based SRAM cell. There is
an improvement of 305x & 850x in the static power noise margin and write trip power values of the
Ge DLTFET SRAM cell with respect to the conventional Si TFET SRAM cell.

Keywords: germanium based dopingless tunnel FET (Ge-DLTFET); radiation-hardening-by-design
(RHBD) technique; SRAM cell; single event upset (SEU)

1. Introduction

Static random-access memory (SRAM) is an important component in lightweight
satellites for space applications, owing to its high packaging density and better logic
performance [1]. However, space contains highly energetic particles viz. protons, neutrons,
α-particles, heavy ions, etc. When these particles strike on any digital circuit, electron–hole
pairs are generated along the path they traverse [1]. These charges get accumulated at
the sensitive node, thereby creating a transient voltage signal at that node. When the
amplitude of the transient signal exceeds the switching threshold of the circuit, the stored
data at that sensitive node gets altered. The phenomenon changes the logic state of the
bit stored in the SRAM cell node, which is called single event upset (SEU) or soft error [2].
In the sub nanometer regime, the SRAM stability is more vulnerable to SEU [3–5]. Due to
scaling of the technology node, the space of the transistor decreases, resulting in a reduced
silicon/polysilicon/metal layer area, which makes the device more sensitive to radiation
effect. This phenomenon further affects the multiple nodes of the circuit [6–8] due to the
accumulated charge. Moreover, the SRAM functionality is affected due to the introduction
of radiation. Hence, for the SRAM to work efficiently, it becomes necessary to remove this
effect. In order to mitigate the SEU effect in the transistor itself, a method has been proposed
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here. The same SEU may be viewed as tolerable or intolerable by the user depending on
the desired reliability of the electronic device. In various research papers, many SEU
removal techniques have been utilized to achieve a suitable radiation hardness for a device.
Some of the ways to mitigate single-event upset are error detection and correction using
codes, removing and reducing the radiation sources, radiation effect mitigation by layout
and circuit design techniques [9]. A variety of techniques can detect and correct errors in
SRAM arrays caused by ionizing particles or resulting from increasing process variations.
This type of radiation mitigation technique adds redundancy to the system, which affects
performance and takes up additional space. It increases the complexity of the circuit.
It results in increasing delays in the circuit operation. Circuit or system redundancy is
the most effective method for compensating for a single event upset. The most efficient
redundancy strategies are also the costliest in terms of area and efficiency. When two or
more similar circuit elements run simultaneously, i.e., same code at same time, this is called
circuit redundancy. When a data mismatch is found in a dual-component system, the system
must be restarted. The disadvantages of circuit redundancy include the additional space,
power, and delay that redundant schemes entail. Moreover, in the approach involving
the removal of radiation sources, single event upset can be minimized by reducing heavy
particles. To minimize the SEU, pure material for the manufacturing and packing of
integrated circuits (ICs) and be utilized. To reduce the SEU formed by particles, the careful
selection of solders, mold and underfill compounds with low emissivity rates is critical.
The BPSG (boron-doped phosphosilicate glass) being removed from the semiconductor
process flow is the most efficient way of minimizing the single-event upset caused by
neutron-induced 10B fission [10].

In recent studies, the soft-error performance of a 6T SRAM cell has been analyzed
with sub-nanometer devices. It was found that the FinFET-based SRAM cell showed better
immunity due to soft error in comparison with its conventional counterpart, the CMOS
SRAM cell [11–13]. Moreover, in the literature, a technique called radiation hardening
by design (RHBD) is used to eliminate the effect of SEU during circuit level implemen-
tation [14–16]. However, with the scaling of CMOS technology, nano-devices experience
various challenges, such as short-channel effects (SCEs) and complex fabrication processes.
Hence, the Tunnel Field-Effect Transistor (TFET) is emerging as a potential candidate for
low-power VLSI technology and has replaced conventional MOSFETs due to its steeper
subthreshold swing and low standby power [17–19]. However, TFETs suffer from a low
ON current due to the use of indirect and large energy band gap material. TFET also
suffers from a lower ION/IOFF ratio. These challenges restrict the aid of TFET for elevated-
speed and extreme low power circuit purposes. In this manuscript, the above-mentioned
problems have been considered. To achieve this, a device model of n-type and p-type
germanium-based dopingless tunnel FET (Ge DLTFET) has been implemented. Due to the
dopingless structure of the device, it offers a reduced minimal thermal cost, and it is also
immune to process variability. In this manuscript, Verilog-A modeling of n-type and p-type
Ge DLTFET has been organized. Compact modeling of the devices is achieved using 2D
lookup tables. The calibrated characteristics of the device and the TCAD display a similar
behavior. With respect to these results, our model has been validated. Then, a comparison
of various performance parameters of Ge DLTFET has been carried out with conventional
TFET. The compared results show that the performance of Ge DLTFET is far better than
conventional TFET in terms of delay and stability parameters.

Moreover, in this manuscript, the presented Ge-DLTFET structure is utilized to analyze
the 6T SRAM cell stability against the soft-error effect or SEU. Due to the use of germa-
nium as source material, the Ge-DLTFET structure shows a low-energy band gap, which
improves the device ON current (ION). The Ge-based DLTFET structure is also immune
from variability issues due to the random dopant fluctuations (RDFs) [20]. Further, the
dopingless (DL) structure simplifies the fabrication processes due to the use of intrinsic Si.

In brief, the paper analyzes the sensitivity of a Ge-DLTFET-based SRAM cell before
and after the radiation effect and its mitigation technique. A radiation-hardening-by-design
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(RHBD) technique has been employed to reduce the effect of SEU in the Ge-DLTFET-based
SRAM cell.

This manuscript is divided into seven different sections. Section 2 explains the device
structure and its parameters, Section 3 describes the impact of soft error on the 6T Ge
DLTFET SRAM cell, Section 4 shows SEU mitigation using the radiation-hardening-by-
design technique, Section 5 explains the delay analysis of 6T Ge DLTFET & TFET SRAM
cells under various conditions, Section 6, a stability analysis using an n-curve has been
performed for 6T Ge DLTFET & TFET SRAM cells, and Section 7 concludes the manuscript.

2. Device Structure and Simulation Parameters of Ge-DLTFET

Figure 1 shows the schematic cross-sectional view of Ge-source n-type DLTFET. The
simulation parameters for both types of DLTFETs have been adapted from [20]. The details
of the simulation parameters are summarized in Table 1 [20,21].
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Table 1. Simulation parameters for Ge DLTFETs.

Parameters Ge DLTFET

Thickness of Si (TSi) 10 nm
Thickness of source dielectric 0.5 nm (HfO2)
Thickness of drain dielectric 3 nm (SiO2)
Channel doping (ND) 1015 cm−3

Source metal work function (Pt) 5.93 eV
Drain metal (Hafnium) 3.90 eV
Gate work function (φM) 4.50 eV
Distance between source (p+) and gate (LGap,S) 3 nm
Distance between drain (n+) and gate (LGap,D) 15 nm
Thickness of gate dielectric (TOX) 3 nm (SiO2)
Length of gate (L) 50 nm

DLTEFTs employ the concept of charge plasma (CP) to create heavily doped source
and drain regions. CP technique simplifies the fabrication of nano-devices in comparison
to ion implantation and the diffusion process. The following two conditions must be
satisfied while employing CP technique: (i) The work function of the source/drain metal
electrodes must be less than that of the intrinsic silicon, i.e., φM = χSi +

(
EG
2q

)
, where χSi is

the electron affinity (χSi = 4.17 eV) and EG is the band gap energy of bulk silicon; (ii) The
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silicon film thickness must be less than the Debye length, i.e., LD =
√

εSiVT/qN, where
εSi is the dielectric constant of silicon, VT is the thermal voltage, N is the concentration
in the body, and q is the elementary charge [22,23]. For the creation of N+ source regions,
platinum metal (Pt), having a work function of 5.39 eV, is used, and for the creation of the
drain region, hafnium metal (Hf) is used.

The details of the simulation parameters for Ge-DLTFETs are included in Table 1.
TCAD simulations for the shown device structures are performed on a Silvaco ATLAS

tool, and their V-I transfer characteristics are shown in Figure 2. Figure 2a depicts the trans-
fer characteristic of n-type Ge DLTFET whereas Figure 2b shows the transfer characteristic
of p-type Ge DLTFET. For the simulation of tunneling current, a nonlocal band-to-band tun-
neling (BTBT) model is used in this study. The potential profile along the entire path linked
by tunnelling determines the inter-band tunneling current in the TFET. To estimate the
tunnelling probability along with the tunneling direction, the Wentzel–Kramer–Brillouin
(WKB) approximation model was used. The leakage current study was carried out using a
drift-diffusion current transport model in which the Poisson’s equation and carrier continu-
ity equation are solved consistently. Additionally, the concentration-dependent Shockley
Read Hall (SRH) generation and recombination model are also included.
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3. Impact of Soft Error on 6T Ge-DLTEFT SRAM Cell

In the analysis of the SRAM cell, the data were extracted from the Silvaco Atlas device
simulation for n-type and p-type devices, such as CGS, CGD, ID vs. VD, in terms of lookup
tables. Verilog codes, for both devices, are written with the help of lookup tables. This
Verilog code describes the behavior of the proposed device in order to perform a circuit
simulation of the SRAM cell using the SPICE tool. These steps are being followed due to
the unavailability of SPICE models for modern devices, such as Tunnel FET, Ge DLTFET,
etc. This device-circuit co-design approach helps analyze the circuit performance made
from modern sub-nm.

In general, complex simulations with a large number of transistors put the constraints
of computational resources, a long simulation period and convergence issues in TCAD
(ATLAS Device Simulation Software 4.2.0.R., 2015) [24]. To mitigate the above-mentioned
issues, the Verilog-A models of p-type and n-type GE DLTFETs have been introduced. The
device for the circuit-level simulation of both Ge DLTFETs has been followed here. The C–V
and I–V characteristics of the above devices are obtained from the TCAD simulation tool by
adjusting the bias conditions throughout a broad range of operating voltages. The lookup
tables are prepared by using the extracted characteristics of both devices, including I–V
and C–V data. For various performance parameters, i.e., drain current (IDS), gate-to-source
capacitance (CGS) and gate-to-drain capacitance (CGD), as functions of (VGS, VDS) over a
broad range of nominal voltage, the DC and small-signal simulations have been performed.
The calibrated characteristics of p-type and n-type GE DLTFETs along with Verilog-A
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models and TCAD simulations results are verified. It has been observed that the developed
Verilog-A models of p-type and n-type GE DLTFETs are favorably matched with the TCAD
simulation results.

The soft-error sensitivity of the SRAM cell of Ge DLTFET is investigated in this section.
The data recovery prevention technique after a heavy ion attack is addressed. The 6T
SRAM cell is designed using Ge DLTFET. The single-event upset problems have been
mitigated by implementing the RC feedback loop. The delay before and after the radiation
has been calculated.

In Figure 3, the impact of soft error on the 6T Ge-DLTEFT SRAM cell has been analyzed.
Here, two cross-coupled inverters utilized n-type and p-type DLTFET. Transistors X1 and
X2 are pull-up devices, whereas transistors X3 and X4 are pull-down devices, forming the
cross-coupled inverters. Transistors X5 and X6 are the access devices. The access transistors
are controlled by the word line (WL). The complementary bit lines BL and BLB are used to
store the desired information to the storing nodes of the SRAM cell. When WL is high, the
transistors X5 and X6 are ON, and data on BL and BLB gets transferred at the nodes Q and
QB, respectively. When WL is LOW, both the transistors X5 and X6 are OFF, and nodes Q
and QB retain their values until WL goes high.
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To investigate the effect of SEU at the circuit level, a heavy ions strike can be modeled
using a transient current pulse, which occurs for a very short period of time, as shown
in Figure 3. This pulse represents the collected charges Qcollected at node Q resulting from
electron-hole pairs generated when heavy ion strikes at the respective node. The double
exponential current model is widely used for determining the effect of SEU on circuit
operations [25,26]. It is given by:

I(t) = I0
{

exp(−t/τα)− exp
(
−t/τβ

)}
,

where I0 = Qcollected
τα−τβ

is the amplitude of the current pulse. τα and τβ are the rising and
falling time constants of the current pulse. For our analysis, I0 is taken to be 5 mA, and
τα and τβ are taken to be 50 ps and 10 ps, respectively. Here, Q node is the impact node, so
the current pulse is connected between node Q and the ground terminal. Let us say Q = 1
and QB = 0 and an ion strikes node Q at t = 0. The changes in the data stored at nodes
Q and QB can be referred to as 1 to 0 upset at Q and 0 to 1 upset at QB. These effects are
depicted in Figure 4. Therefore, SEU may cause a change in the state of an SRAM cell and,
thus, degrades its performance. The transient voltage is observed at the above-described
values of the I0, τα and τβ. For 1 to 0 upset at Q, due to the charge collected by the heavy
ion attack, the voltage at the node of the drain of transistor X3 is discharged to less than
0 V. This effect is shown in Figure 4a. For 0 to 1 upset at QB, the heavy ion strike causes a
voltage shift “1” to “0” at node Q, which switches on transistor X2 and turns off transistor
X4. Hence, the data or value stored at the node changes from “0” to “1”. This effect is
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shown in Figure 4b. It can be concluded from the above figure that after applying an
exponential current source model at the drain of X3, because of the radiation, the values at
the storage node of DLTFET SRAM change. Hence the SRAM functionality is affected due
to the introduction of radiation. The efficient working of the SRAM demands for this effect
to be overcome. In this manuscript, a method has been suggested to mitigate the SEU effect
at the transistor level itself.
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4. SEU Mitigation Using Radiation Hardening by Design Technique

To mitigate the effect of SEU, in the 6T Ge-DLTFET SRAM cell, the radiation-hardening-
by-design technique has been employed. This technique uses two RC feedback paths,
connected between the two cross-coupled inverters. The circuit for the 6T DLTFET SRAM
cell, employing the RHBD technique, is shown in Figure 5. Here, R1 and R2 are chosen
to be 50 Ohms, and C1 and C2 are chosen to be 10 pF. It has been assumed that logic 1 is
stored at node Q, whereas logic 0 is stored at node QB.
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The data recovery mechanism of the radiation-hardened Ge DLTFET SRAM cell is
completed in two steps: (1) Due to the heavy ion strike at node Q, the voltage at node Q
changes temporarily from ‘1’ to ‘0’. Thus, X4 transistor turns OFF for a short period of time.
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The value of node Q deviates from ‘1’ to ‘0’ for a very short amount of time, as because of
having the capacitor in feedback back path, the original value remains as it is. That keeps
transistor X1 always in an ON state. As a result, Q will revert to its original state of Logic 1.
(2) Gain transistor X4 turns back ON by restoring the data at node Q (from ‘0’ to ‘1’). Thus,
the data at node QB has also been recovered. The simulation result of the above circuit
is shown in Figure 6. Figure 6 depicts the use of the RHBD technique on the 6T DLTFET
SRAM cell, and it proves to be efficient enough to recover the data after a heavy ion strike.
Hence, this section presents a method to relieve the SEU issue in Ge DLTFET SRAM cells.
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5. Delay Analysis

The delay analysis of 6T Ge DLTFET has been conducted using the SPICE tool for
various cases, such as before the introduction of radiation, after the introduction of radiation
and when delaying the radiation-hardened cell. The delay obtained for our circuit has been
compared with that in [27] and is shown in Figure 7. It has been found that the delay of the
hardened 6T SRAM cell is higher when compared to a conventional 6T SRAM cell. This is
because of the additional RC feedback path, which increases the delay of the circuit. The
delay in the DLTFET-based SRAM has been decreased by 95.33% and 89% in comparison
with DGTFET-based SRAM. Thus, using DLTEFT improves the delay performance of the
SRAM compared to that of DGTFET [28].
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6. Stability Analysis Using N-Curve

The N-curve for the stability of an SRAM cell is obtained as given in [27]. The static
voltage noise margin (SVNM) and static current noise margin (SINM) provide information
regarding the stability of the SRAM cell during read operation, whereas write trip voltage
(WTV) & write trip current (WTI) express the stability of the SRAM cell during the write
operation [27,29]. The N-curve for conventional silicon TFET and Ge DLTFET-based SRAM
cells is obtained and is recorded in Table 2. SVNM, SINM, WTV and WTI for both SRAM
cells is calculated from their respective N-curves and is also shown in Table 2. There
is an improvement in the SINM, WTV and WTI values of Ge DLTFET-based SRAM in
comparison to a conventional Si TFET SRAM cell, whereas the SVNM value of the Ge
DLTFET SRAM cell is lower.

The static power metrics, obtained from the N-curves of the SRAM cell, are called
static power noise margin (SPNM) and write trip power (WTP) [9,10,30] and depict the
stability of the SRAM cell during the read and write operation, respectively. For both SRAM
cells, SPNM and WTV are calculated as the area covered by the N-curve above and below
the horizontal axis, corresponding to a zero current value, respectively. The calculated
SPNM and WTV values are given in Table 2. It is observed that the static power metric for
the Ge DLTFET SRAM cell is better than that for the conventional Si TFET SRAM cell. Thus,
there is a 305× & 850× improvement in the SPNM and WTP values of the Ge DLTFET
based SRAM cell.

Table 2. Parameters obtained from N-curve for both SRAM cells.

Parameters Conventional Si TFET-Based SRAM Ge DLTFET-Based SRAM

SVNM 460 mV 150 mV

SINM 438.9 nA 434.4 µA

WTV 440 mV 580 mV

WTI 36.91 nA 29.45 µA

SPNM 2.98 µW 910 µW

WTP 347 nW 296 µW

7. Conclusions

In this paper, a radiation-hardened 6T SRAM cell has been implemented using Ge-
DLTFET at a 50 nm technology node. As semiconductor materials are very sensitive to
extreme radiation particles, especially at a lower technology node, due to the strike of high
energy particles, the state of the SRAM cell gets changed. However, the employed RHBD
technique prevents any change in the state of the SRAM cell, due to the SEU problem.
RHBD is used to improve the soft-error performance or sensitivity of the 6T DLTFET SRAM
cell. The implemented method proves effective in mitigating SEU but at the cost of an
additional delay. Additionally, the delay parameter of the proposed SRAM cell using Ge
DLTFET is improved with respect to that of a conventional Si-TFET-based SRAM cell. The
static voltage current and power noise margins, obtained from the N-curves, are superior
for our design, showing a better stability of the SRAM cell during read and write operations.
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