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Abstract: Detecting multi-scale objects in complex backgrounds is a crucial challenge in remote
sensing. The main challenge is that the localization and identification of objects in complex back-
grounds can be inaccurate. To address this issue, a decoupled semantic–detail learning network
(DSDL-Net) was proposed. Our proposed approach comprises two components. Firstly, we introduce
a multi-receptive field feature fusion and detail mining (MRF-DM) module, which learns higher
semantic-level representations by fusing multi-scale receptive fields. Subsequently, it uses multi-scale
pooling to preserve detail texture information at different scales. Secondly, we present an adaptive
cross-level semantic–detail fusion (CSDF) network that leverages a feature pyramid with fusion
between detailed features extracted from the backbone network and high-level semantic features
obtained from the topmost layer of the pyramid. The fusion is accomplished through two rounds of
parallel global–local contextual feature extraction, with shared learning for global context information
between the two rounds. Furthermore, to effectively enhance fine-grained texture features conducive
to object localization and features conducive to object semantic recognition, we adopt and improve
two enhancement modules with attention mechanisms, making them simpler and more lightweight.
Our experimental results demonstrate that our approach outperforms 12 benchmark models on
three publicly available remote sensing datasets (DIOR, HRRSD, and RSOD) regarding average
precision (AP) at small, medium, and large scales. On the DIOR dataset, our model achieved a 2.19%
improvement in mAP@0.5 compared to the baseline model, with a parameter reduction of 14.07%.

Keywords: detailed feature; feature fusion; multi-scale receptive fields; remote sensing datasets;
semantic–detail learning

1. Introduction

Object detection in remote sensing, including the detection of aerial and satellite
images, has significant practical applications in various fields, such as urban planning,
land use, natural resource management, and disaster response [1–4]. In the early stages of
remote sensing object detection, traditional methods based on handcrafted features were
used, but their performance was limited. With the emergence of deep learning, these meth-
ods have gradually been replaced by deep learning-based algorithms in remote sensing
object detection, which can generally be categorized into three types: one-stage, two-stage,
and anchor-free methods. One-stage methods, such as the YOLO series [5,6], directly
predict both the object and its bounding box after scanning an image once. These types of
models use anchor boxes to regress the object’s coordinate position and adopt multi-scale
feature fusion to alleviate the problem of insufficient feature learning. This allows the
network to learn higher semantic levels, resulting in improved accuracy. Such networks
are known for their fast inference time and are widely used in industry. However, due to
the simplicity of their prediction method and their smaller model size, their accuracy is
lower compared to other types of object detection algorithms. Two-stage methods, such
as the R-CNN series [7–10], divide the detection task into two stages. In the first stage, a
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region proposal network is employed to generate high-quality candidate regions, similar
to a simple pre-prediction process. This significantly improves the quality of positive
samples compared to one-stage models using preset anchor boxes. In the second stage,
the model classifies and predicts the refined bounding box for the generated candidate
regions. These types of models are larger and generally slower than one-stage models
due to the two-stage prediction process. Nevertheless, they exhibit higher robustness and
accuracy. Finally, anchor-free methods, such as RepPoints [11], predict both the object and
its bounding box directly without using anchor boxes. This is typically achieved by dense
sampling or similar convolution-like operations to predict the object’s position and size.
This enables them to better adapt to objects with different shapes and sizes. Research has
shown that deep learning-based remote sensing object detection is highly effective in a
variety of applications. Despite significant progress in remote sensing object detection,
accurately detecting and localizing objects in complex background scenes with little differ-
ence between the object and its surroundings remains a challenge [12]. Overcoming this
challenge is crucial for advancing modern high-tech applications, including but not limited
to unmanned aerial vehicles, precision agriculture, rescue operations, and environmental
survey tasks [13–16]. However, the existing algorithms tackling this problem face three
limitations: (1) an insufficient semantic hierarchy of extracted features leading to detection
errors, (2) the coupling interaction between details and semantics during feature extraction
leads to the loss of detailed features, and (3) the inability to fully utilize high-level semantic
features in conjunction with fine-grained details for accurate object localization. To address
these limitations, a decoupled semantic–detail learning network (DSDL-Net) was proposed
to tackle this problem. The main contributions of this paper are as follows.

1. For the issues of insufficient semantic hierarchy and detail loss in detection networks,
we propose an MRF-DM module that maintains detailed information while producing
higher-level semantic features.

2. For the issues of ineffective integration between detail texture information and high-
level semantic features, we propose an adaptive cross-level semantic–detail fusion
(CSDF) network that effectively integrates almost lossless detail information without
compromising learned semantic features.

3. Multiple experiments, including ablation experiments on three remote sensing object
detection datasets (DIOR, HRRSD, and RSOD) and comparative experiments on the
DIOR dataset, were conducted to validate the performance of the model.

2. Related Work

Detecting objects against complex backgrounds remains a persistent challenge in the
field, and there has been extensive research exploring various approaches to tackle this
problem. In this section, we will review the representative related work on feature fusion,
collaborative learning of semantics and details, and attention mechanisms.

2.1. Feature Fusion

In cases where the semantic hierarchy is insufficient to distinguish between objects
and backgrounds, or where the lack of detail information hinders the network’s ability to
accurately locate objects, feature fusion is a widely adopted solution. By employing a variety
of techniques to increase the semantic hierarchy and enrich detail information, feature
fusion enhances the expressive power of features, thereby improving object detection and
localization. The feature pyramid network (FPN), originally designed by Lin et al. [17],
adopts a top–down architecture with lateral connections to effectively fuse multi-scale
features, combining high-level semantic features with lower-level features to increase the
contextual information for object recognition and enhance the representation of semantic
features. Mei et al. [18] proposed the path aggregation network (PANet), which further
enhances the semantic level of features by adding a bottom-to-up feature fusion path to the
FPN. Subsequently, more complex and refined feature fusion methods have been proposed,
such as Tan et al.’s [19] EfficientDet network which uses a feature fusion method called
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Bi-FPN, which employs weighted sum and residual connections to adjust the contribution
of each scale feature map. This enhances feature representation while reducing network
complexity by removing the fusion of single inputs without affecting performance. While
most mainstream object detection methods previously relied on multi-level feature fusion
achieved through methods such as multi-scale feature joint, Liu et al. [20] proposed an
adaptive learning spatial weight method named adaptively spatial feature fusion (ASFF) to
fuse multi-scale feature maps. Later, Zha et al. [21] proposed a feature fusion method based
on the BA block, which combines the Bi-FPN and ASFF methods to significantly improve
network robustness.

2.2. Collaborative Learning of Semantic and Detailed Information

Semantic features provide high-level information about the object’s class and attributes,
while detail features provide low-level information about the object’s shape, texture, and
other visual characteristics. Both types of features are crucial for accurately recognizing
objects in images. However, the interaction between details and semantics during the
learning process in convolutional neural networks (CNNs) can lead to a loss of detailed
information as the semantic hierarchy ascends during network feature extraction. Addi-
tionally, because remote sensing images are usually large, multiple pooling operations
can result in a significant loss of object details. These challenges have made it difficult
to effectively facilitate collaborative learning between semantics and details. To address
this, several studies have been conducted. Zha et al. [22] proposed a four-scale residual
feature fusion network to obtain detailed features, which are then effectively fused with
high semantic output features from the feature pyramid. Jiang et al. [23] proposed a spatial
semantic joint context method to fuse detail and semantic information by utilizing detailed
spatial cues contained in a multi-scale local context and generalized semantic information
encoded in a global context, enhancing the feature expression of objects. Liang et al. [24]
proposed a parallel decoupling learning approach to separately extract high semantic
and rich detail features, allowing for the effective fusion of both types of information to
improve the accuracy of saliency detection. Zhou et al. [25] proposed a full-scale feature
fusion siamese network (F3SNet) that enhances the spatial localization of deep features by
densely connecting raw image features from shallow to deep layers and complements the
changing semantics of shallow features by densely connecting the concatenated feature
maps from deep to shallow layers. Yu et al. [26] introduced boundary information to
perform salient object detection in optical remote sensing images (RSIs) by combining the
encoder’s low-level and high-level features via a feature-interaction operation, yielding
boundary information, and then introducing the boundary cues into each decoder block to
focus more on the boundary details and objects simultaneously.

2.3. Attention Mechanism

Attention mechanisms can be incorporated into convolutional neural networks (CNNs)
as a flexible module for feature learning. They enable the network to selectively attend to
important features while suppressing irrelevant ones. Additionally, attention mechanisms
can effectively learn or emphasize global semantic and local detail features and can be
positioned at various points within the network to enhance learning. For example, Squeeze-
and-Excitation Networks (SE-Net), first introduced by Hu et al. [27], learn attention weights
to capture global semantic information from each channel of the feature. This can improve
the network’s recognition ability in complex background scenes. SimAM, introduced by
Hu et al. [28], generates 3D weights for each feature without using any parameters. This
allows the adjustment of both global semantic information and local detail features within
the feature layer simultaneously. This attention mechanism can effectively coordinate the
learning of semantics and details. Additionally, Pan et al.’s [29] ACMix attention module
unifies convolutional and self-attention paradigms, endowing the convolution with self-
attention mechanism characteristics, which can effectively mine intrinsic detail information
in feature maps during convolution. Moreover, Pan et al. [30] proposed a multi-scale
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channel attention module (MS-CAM) that relearns global and detail features from the
features and integrates them together to reapply to the input feature map as attention
weights, adjusting the semantics in global features and hidden detail information in local
features simultaneously. They also proposed an attentional feature fusion (AFF) module
that takes two feature maps of the same size as input. The module extracts global and local
feature information through the MS-CAM module and effectively embeds and integrates
the two feature maps using information from both aspects.

3. The Proposed Method

In this chapter, we provide a detailed description of the structure of our proposed
model. In Section 3.1, we introduce the structure of our proposed model, which consists
of two crucial components: the backbone network and the feature fusion network. Subse-
quently, in Section 3.2, we provide a detailed description of the backbone network structure,
including the architecture and specific details of key modules within the network. Finally,
in Section 3.3, we present an effective method for fusing semantic and detail features.
This includes a detailed description of the fusion process, as well as the structure and
implementation details of important modules used in the process.

3.1. Overall Architecture of DSDL-Net

DSDL-Net not only addresses issues of limited semantic understanding and difficult
retention of detailed features in remote sensing object detection within complex background
scenes but also proposes a novel approach to effectively fuse detailed features with high-
level semantic features, enabling the network to fully leverage both for learning. Within
the network, we propose two crucial components. The first is the adaptive high semantic
learning and detail preservation (ASDP) network, which serves as the backbone. The
second is an adaptive cross-level semantic–detail fusion (CSDF) network for feature fusion.
The overall architecture of DSDL-Net is illustrated in Figure 1.
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Figure 1. The overall structure of DSDL-Net.

The decoupling of semantics and fine-grained details collaboration learning in DSDL-
Net is achieved through a two-step process. Firstly, the multi-receptive field feature fusion
and detail mining (MRF-DM) module within the ASDP network is utilized to learn higher-
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level semantic information during feature extraction while capturing rich, fine details and
minimizing the loss of detail features. Secondly, the semantic–detail fusion (SDF) module
in the CSDF network directly fuses these rich detail features with the feature map learned
from the uppermost layer of the CSDF. As a result, the feature fusion network produces
high-level semantic features that are rich in detail.

3.2. ASDP Network

In this section, we will introduce the structure of the backbone network ASDP in detail,
including the important modules used and the details of various implementations of the
network. The flowchart of the backbone network has been drawn in Figure 1.

The ASDP network accepts an input image of size 640 with 3 channels. The network
begins with a stem block that reduces the image size by half twice. This finally produces
feature maps {p1} with spatial dimensions at 1/4 of the original image and channel counts
of 128. After the stem block, the backbone network stacks MRF-DM modules to produce
feature maps {p2, p3, p4, p5} with spatial dimensions{1/4, 1/8, 1/16, 1/32} of the original
image and channel counts of {128, 256, 512, 1024}, respectively.

MRF-DM Module

In the field of remote sensing, target detection models often struggle to effectively
distinguish between objects and the background in images when dealing with scenarios
with complex backgrounds. This is due to the insufficient semantic hierarchy learned
by the model, resulting in false positives or missed detections. Additionally, the remote
sensing images present a challenge for general backbone networks, as they often lose a
significant amount of detail information during the feature extraction process, particularly
for high-resolution images. To address these issues, we propose a novel multi-receptive
field feature fusion and detail mining (MRF-DM) module, the overall structure of which is
illustrated in Figure 2.
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Figure 2. The overall structure of multi-receptive field feature fusion and detail mining (MRF-DM)
module.

Firstly, the module employs a multi-receptive field feature fusion (MRF) structure.
This structure utilizes an OSA [31] module to form multi-scale receptive field features
{ri,1, ri,2, ri,3, ri,4}, achieving an equivalent effect to convolutional kernels of sizes {3, 5, 7, 9}.
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The architecture of the OSA module is shown in Figure 3. By fusing multi-scale receptive
field features, the MRF structure is able to obtain more contextual information and produce
higher-level semantic information. The formula for calculating the generation of multi-scale
receptive field features is presented in the following equation. The CBM convolutional
layer consists of convolution, batch normalization, and a Mish activation function.

ri,j =

{
CBMk=3,s=1

(
Di,j
)
, if j = 1

CBMk=3,s=1
(
ri,j−1

)
, if j = 2, 3, 4

(1)

In addition, our approach differs from the original OSA module in several ways.
Firstly, we expand the structure’s branches {Di,1, Di,2, Di,3} for incorporating low-level
feature information into all feature fusion processes within the structure. This provides
additional detail from low-level features, for example, {Di,2, Di,3} are added to the fusion
process of {ri,1, ri,2, ri,3, ri,4}, and {Di,3} is added to the final concatenate. Secondly, we
design a residual connection between the high-level semantic output feature obtained
by SimAM [28] and the initial branch. This serves to further emphasize the low-level
features of the input data and ensure that the model can more accurately capture its details.
Considering that SimAM’s output is a multi-scale receptive field perspective of {Di,3},
we choose branch {Di,2} as the object of residual connection to avoid feature redundancy.
Finally, we employ the SimAM attention mechanism. As low-level detail features are mixed
with high-level semantics, this attention mechanism can generate 3D weights for individual
features without the need for additional parameters. This enables effective integration
of semantic and detail features within the feature layer. The MRF structure is calculated
as follows:

Ri = concat([ri,1, ri,2, ri,3, ri,4, Di,2, Di,3]) (2)

Si = SimAM(CBMk=1,s=1(Ri)) + Di,2 (3)

Di+1 = CBMk=1,s=1(concat([Si, Di,1])) (4)

The MRF structure has three advantages over the original OSA module: (1) the
process of semantic learning and the enhancement of features using attention mechanisms
both take into account the retention of as much low-level detail information as possible;
(2) through the SimAM attention mechanism, all features are globally adjusted, effectively
tuning and enhancing detail and semantic information; and (3) it does not bring many
additional parameters, where the attention mechanism is parameter-free, and only two
additional convolutions with a kernel size of 1 are added.

In conventional backbone networks, a learnable convolutional operation is typically
used for pooling. However, traditional pooling processes often result in a loss of detailed
features to some extent as the resolution of the feature maps decreases. To address this
issue, we propose the simple structure of detail mining (DM) with reference to the SPP [32]
module, which utilizes max pooling to generate three features { fi,1, fi,2, fi,3} that have the
same size as the original feature map. These features are concatenated and compressed
using a 1 × 1 convolutional kernel to generate the feature map {d fi}. By doing so, the
network can capture detailed texture features from multiple scale features before pooling,
reduce the loss of details during the pooling process, and compress the captured features
to reduce the parameters. The specific equations for this process are shown below.

d fi = CBMk=1,s=1

(
concat

([
Di, MaxPoolk=3,p=1(Di), MaxPoolk=5,p=2(Di)

]))
(5)

Subsequently, we employ a dual-path pooling approach using max pooling and
adaptive convolution with a kernel size of 3 and a stride of 2 to downsample the feature map
{d fi}, reducing its size by half. This downsampling operation retains a more comprehensive
range of detailed features, thereby significantly reducing the loss of detail information
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caused by decreased resolution during the pooling process. The computation formula for
generating these features is as follows:

Di+1 = concat([CBMk=3,s=2(d fi), MaxPoolk=2,s=2(d fi)]) (6)

In summary, the ASDP network is used as a backbone network for object detection,
specifically for feature extraction. Unlike traditional feature extraction networks, this
network uses stacked OSA modules to extract and combine feature maps with varying
receptive field sizes, enhancing the semantic levels of the features within the network. To
preserve detailed features, we approach this from two angles. Firstly, we enhance the OSA
module, resulting in the MRF structure. In this structure, low-level detailed features are
integrated during each instance of multi-scale receptive field feature fusion, highlighting
the importance of detailed features within the original feature map as part of the semantic
learning process. Secondly, to prevent the loss of high-resolution detailed features due to
feature pooling, we employ a DM structure for multi-scale pooling of detailed features.
This mitigates the insufficiency of detailed features caused by single pooling. Then, a
convolution with a kernel size of 1 is used to decrease the number of channels, compressing
the captured detailed features and reducing the number of parameters. Thus, by using
the MRF-DM structure, the network can enhance the semantic levels of features while
preserving more detailed features during the learning process of the backbone network,
and compress detailed features to reduce network parameters.

Conv3×3

Conv3×3

Conv3×3

Conv3×3

Conv1×1

Attention 

  module

Attention weight

[C,H,W]

[n×C, H, W]

[C*, H, W]

[C*, H, W]

Input

Output

Figure 3. The overall structure of one-shot aggregation (OSA) convolutional.

3.3. CSDF Network

Many existing methods of integrating semantic and detailed features in learning may
lead to overlearning, which can damage the quality of detailed features, and may also
neglect the importance of maintaining high-quality semantic features during fusion. To
address the above challenges, we propose the adaptive cross-level semantic–detail fusion
(CSDF) network with reference to the PAN of Liu et al. [18]. The overall network structure
is shown in Figure 4.
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Figure 4. The structure of the adaptive cross-level semantic–detail fusion (CSDF) module includes
the A-SPPCSP, A-Conv, and SDF modules, which are described in Sections 3.3.1, 3.3.2, and 3.3.3,
respectively.

In the CSDF feature fusion network, to enhance and capture the detailed features
in multi-scale feature maps, the output feature layer {P5} of the backbone network is
first passed through the attentional SPPCSP (A-SPPCSP) module. Meanwhile, the feature
maps {P3, P4} are effectively enhanced with both global semantic and local detail texture
information through the use of a lightweight attentional convolutional layer (A-Conv). As a
result, the network obtains enhanced feature maps {P′3, P′4, P′5}. Subsequently, the network
employs two multi-scale feature fusion paths, top-to-bottom and bottom-to-top, to enrich
contextual information. In the top–down path, the high-level features are upsampled and
concatenated with the low-level feature maps enhanced by the A-Conv module from the left
side. The concatenated features are then further learned by the OSA module. In the bottom–
up pathway, high-level features are subjected to adaptive learnable pooling operations
via convolution. Subsequently, the pooled feature maps are concatenated with low-level
feature maps originating from the left side. Ultimately, the OSA module is employed once
more to further learn these concatenated features. By doing so, the CSDF network obtains
the highest semantic feature maps {A3, A4, A5}. Subsequently, to effectively learn both
the high-level semantic features and the detailed information present within the image,
the CSDF network directly takes in the enhanced detailed feature maps {P′3, P′4 P′5} from
the backbone network and adaptively fuses them with the highest semantic feature maps
{A3, A4, A5} through the employment of the SDF module. The fusion module ensures
that the rich detail features are embedded without incurring any loss of fine details due
to excessive semantic learning. Additionally, before and after achieving joint learning
of both semantic and detail features, this module ensures the consistency of semantics,
preserves the original high-quality semantic features, and results in the generation of the
final prediction feature layer {P∗3 , P∗4 , P∗5 }.

In our proposed CSDF network, we have incorporated two feature enhancement
structures that have been proven to be effective. In the following Sections 3.3.1 and 3.3.2,
we will introduce these structures in detail. We have redesigned and optimized these
structures to better integrate them into our model. While these two structures may not
be overly complex or represent groundbreaking innovation, they effectively enhance the
key high-level semantic and fine-grained detail features within the network through a
straightforward approach. Finally, in Section 3.3.3, we will discuss our approach to decou-
pling the fusion of semantic–detail information. In addition, a detailed introduction to the
semantic–detail fusion (SDF) module used in the fusion process, as well as an overview of
the module’s process and implementation details, will be provided.
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3.3.1. Attentional SPPCSP Module

The ACMix [29] module can effectively enhance the detail information in feature maps
because it combines the strengths of both convolution and self-attention mechanisms. Con-
volution is effective in capturing local spatial relationships and patterns within the feature
maps, while self-attention is effective in capturing long-range dependencies and relation-
ships between different parts of the feature maps. By integrating these two mechanisms,
ACMix can effectively capture both local and non-local information within the feature
maps, resulting in a more comprehensive and detailed representation of the features.

For example, He et al. [33] introduced the use of ACMix to refine the complex back-
ground features in UAV aerial images. By incorporating ACMix after the backbone network,
their experiments demonstrated that ACMix can effectively enhance and refine important
features in complex background scenes by capturing both local spatial relationships and
long-range dependencies within the feature maps. Similarly, Xue et al. [34] inserted ACMix
after the backbone network and conducted object detection experiments on datasets con-
taining very small objects. The results showed that ACMix can effectively help the network
focus on small objects by capturing both local and non-local information within the feature
maps, improving its ability to detect them. However, they also pointed out that ACMix
has a large number of parameters, so in order to maintain the real-time performance of the
model, ACMix cannot be added to the model in large quantities.

To enhance the representation of feature maps, we incorporated the ACMix attention
module after the backbone network. We referred to the state-of-the-art SPPCSP [5] module
and inserted the ACMix module after the first convolutional layer in the SPPCSP module,
which reduces the number of input feature map channels by half. This reduction in input
channels effectively reduces the number of parameters required for ACMix inference,
allowing us to maintain real-time performance of the model while introducing a self-
attention mechanism to the SPPCSP module. The overall structure of the attentional
SPPCSP is illustrated in Figure 5.
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Figure 5. The entire structure of the attentional SPPCSP (A-SPPCSP) module.

The A-SPPCSP module takes an input {P5} and first applies a convolutional layer
with a 1 × 1 kernel size to reduce the number of input channels by half. Then, the ACMix
attention mechanism is utilized to focus on salient features. Subsequently, spatial pyramid
pooling (SPP) is applied, which consists of a set of max-pooling layers with varying kernel
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sizes, resulting in multi-scale max-pooled features. These features are then concatenated
with the output of the ACMix layer and passed through a convolutional layer with a 1 × 1
kernel size to generate an enhanced final feature representation. The equation for the exact
calculation of the above process is as follows.

t1 = CBMk=3,s=1(ACMix(CBMk=1,s=1(P5))) (7)

t2 = CBMk=1,s=1(concat([t1, MPk=5(t1), MPk=9(t1), MPk=13(t1)])) (8)

Finally, the high-level features are passed through a convolutional layer with a 3× 3
kernel size and then concatenated with the output of the first convolutional layer applied
on the input tensor {P5}, and then passed through a final convolutional layer to generate
the output tensor P′5. The final formula for calculating the flow of the network module is
as follows.

P′5 = CBMk=3,s=2(concat([CBMk=3,s=1(t2), P5])) (9)

3.3.2. Attentional Convolutional Layers

First of all, A-Conv is not a new module but rather a lightweight structure designed
to enhance the feature layers {P3, P4}. It is simple to understand, yet highly effective. The
reason for its effectiveness lies in the fact that the semantic features in {P3, P4} require
further learning within the CSDF network to enhance their semantics. Additionally, these
layers also serve as rich sources of detail features that are transmitted to the SDF module
for the final fusion of semantic and detail features. Our approach efficiently enhances both
global and local features through lightweight learning. The overall structure of the A-Conv
module is shown in Figure 6.

Sigmoid

AdaptiveMaxPool

AdaptiveAvgPool

concat Conv
 3×3 BN

Conv
 1×1 SiLUBN

[C,H,W]

[C/2,H,W]Pi Pi’

[C, H, W] [C/2, H, W]

[C/2, H, W]

[C/2,H,W]

Figure 6. The overall structure of attentional convolutional layers (E-Conv).

We refer to Shen et al. [35], who proposed a multi-scale convolution attention mod-
ule. This module uses averaging and maximum pooling to generate attention scores and
performs these steps twice in series to further enhance important global and local features
within the feature map. Finally, they also used the parameter-free 3D attention mechanism
SimAM, introduced in the MRF-DM module, to simultaneously harmonize global seman-
tics and layout detail information. Their experiments have demonstrated that this approach
to forming attention can effectively balance global and local information within remote
sensing datasets. By adjusting resource allocation based on the importance of the target, the
neural network can focus more on important pixel areas while ignoring irrelevant regions.

In order to maintain the real-time and lightweight nature of the model, we simplified
the steps of their module. Because we have already incorporated the SimAM attention
mechanism into the MRF-DM module to control the coexistence between semantics and
details, we designed a lightweight process that uses averaging and maximum pooling in a
single inference step to generate attention weights for feature enhancement. This design
effectively connects the features from the backbone network. This lightweight approach
enhances important pixel areas within feature layers {P3, P4}, allowing fine details such as
texture to be preserved for subsequent fusion with high-level semantic information. At the
same time, feature maps {P3, P4} can maintain a high level of semantics for transmission to
CSDF for further learning at the semantic level.
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The module first generates features {E1} by halving the number of channels through a
convolutional layer. Then, the global and local contextual features {E2} are generated using
adaptive averaging pooling and adaptive maximum pooling, respectively. Subsequently,
the concatenation of the two features is passed through a convolutional layer to reduce the
number of channels by half. Finally, the Sigmoid function is applied to the feature with half
the number of channels just obtained to yield the attention weights {E3}. These weights
are then applied to {E1}, resulting in the final output of the A-Conv module. The A-Conv
feature enhancement module is calculated as follows.

E1 = CBSk=1,s=1(Pi) (10)

E2 = concat([AdaptiveAvgPool(E1), AdaptiveMaxPool(E1)]) (11)

E3 = Sigmoidk=1,s=1(CBk=3,s=1(E2)) (12)

P′i = E1 · E3 (13)

The CBM convolutional layer, used in Section 3.3.1, consists of convolution, batch
normalization, and a Mish activation function. In CBS, the activation function is replaced
with SiLU, while in CB the Mish activation function is removed from the CBM convolu-
tional layer.

3.3.3. Semantic–Detail Fusion (SDF) Module

The SDF module is designed to effectively fuse high-level semantic information with
detailed information and represents the final and most crucial step in achieving semantic–
detail learning. Figure 4 illustrates how the SDF module is utilized within the CSDF
network to fuse the feature layers {P′3, P′4, P′5}, generated from the features {P3, P4, P5} in
the backbone network after the feature enhancement module, with the highest semantic-
level feature layers {A3, A4, A5}. The overall architecture of the SDF module is shown in
Figure 7, where the calculation formula of the local contextual (LC) and global contextual
(GC) feature extraction process is as follows. Where CBR refers to the combination of
convolution, batch normalization, and ReLU activation function, AAP stands for adaptive
average pooling, which downsamples the feature map to a size of 1× 1.
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Figure 7. The overall structure of semantic–detail fusion (SDF) module.
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G′ = GC(G) = CBk=1,s=1(CBRk=1,s=1(AAP(G))) (14)

L′ = LC(L) = CBk=1,s=1(CBRk=1,s=1(L)) (15)

We refer to the iAFF [30] module, which performs two parallel rounds of global–local
context feature extraction (GC and LC). However, in our improved design, the learning of
global context information is shared between the two rounds. This approach maintains the
universality of global information and mitigates semantic inconsistency before and after
fusion, ultimately achieving the mutual embedding of semantic and detail information.
After fusion, with the addition of detailed information, the network can effectively utilize
the extra detailed information to enhance its discriminative ability in local regions. Our
subsequent experiments provide ample evidence of the effectiveness and robustness of
our approach, successfully enhancing the network’s overall capability to semantically
recognize objects and accurately locate details within large-scale remote sensing images
with complex backgrounds.

The SDF module takes in two input parameters, X and Y, adds them together, and
passes the result to the global–local context feature extraction (GC and LC1) module for
learning global and local features. After the first round of learning, the outputs from the
GC and LC1 structures are added and passed through a Sigmoid function to generate an
attention weight, {x1}. This weight is then applied to X and Y in the form of {x1, 1− x1}
and the result is added together to produce the first learning output, {x2}. The second
round of learning follows a similar process, with {x2} being passed to the global–local
context feature extraction (GC and LC2) module. Notably, the global context learning
module used in this round is identical to that used in the first round, allowing for shared
global information between both rounds of learning. Ultimately, an attention score of {x3}
and a final output of P∗i are generated by the SDF module.

x1 = Sigmoid(GC(X + Y) + LC1(X + Y)) (16)

x2 = x1 · X + (1− x1) ·Y (17)

x3 = Sigmoid(GC(x2) + LC2(x2)) (18)

P∗i = x3 · X + (1− x3) ·Y (19)

The following describes how the final features {P∗3 , P∗4 , P∗5 } used for object detection
are generated by the SDF module. The network applies the feature enhancement module
to generate features {P′3, P′4, P′5} from the initial features {P3, P4, P5}. These features are
then fused with the highest semantic-level features {A3, A4, A5} using the SDF module to
obtain the final features {P∗3 , P∗4 , P∗5 }. Feature maps {C3, C4, C5} are generated through a
top–down path, while features {A3, A4, A5} are produced via a bottom–up feature fusion
path. The formula for this process is as follows:

P∗i = SDF(P′i , Ai) i = 3, 4, 5 (20)

Overall, we use an appropriate and improved method with proven effectiveness for
attention-enhanced features in the CSDF module. Then, we use a novel approach to fuse
semantic and detail features. The overall contribution can be divided into the following
two points:

1. We adapted the iAFF module to fuse detail and semantic information. Unlike the
original, we did not treat both equally during fusion. Instead, we proposed a method
that learns local details twice with global semantic sharing. This embeds detail without
compromising learned semantics, effectively fusing both types of information.

2. We deviated from the common practice of fusing various features within the pyramid
structure. Instead, we directly obtained feature maps rich in detail information
from the backbone network and fused them with the highest semantic-level feature
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layers {P∗3 , P∗4 , P∗5 }. This approach reduces the loss of detail information and further
diminishes the coupling relationship between details and semantics.

4. Experiments

In this section, we first introduce the datasets used in our experiments and the metrics
used for validation. We conducted extensive ablation experiments on multiple datasets
to demonstrate the robustness and effectiveness of our model. In addition, we conducted
comparative experiments, comparing our proposed DSDL-Net with various popular base-
line models in the field. Finally, we analyzed our experimental results in detail, including a
visual analysis of our model’s detection results and an analysis of detection accuracy for
specific categories in complex background remote sensing images.

4.1. The Dataset and Evaluation Metrics
4.1.1. Experimental Datasets

To thoroughly demonstrate the strength of our model and the success of our approach,
we conducted ablation experiments on three publicly available remote sensing datasets:
DIOR [36], TGRS-HRRSD [37], and RSOD [38]. Specifically, in order to compare our
proposed DSDL-Net with other models in a fair manner, we chose the largest DIOR remote
sensing dataset for the comparative experiment.

The DIOR dataset is a large-scale optical remote sensing image object detection dataset
and is currently the largest in its field. It contains 23,463 images with 192,472 instances
across 20 object categories. The dataset is already divided into training (5862 images),
validation (5863 images), and testing (11,738 images) sets. We conducted all our experiments
using this official division.

The TGRS-HRRSD dataset, designed for high-resolution remote sensing image object
detection, contains 21,761 images across 13 categories. It has been pre-divided into training
(5401 images), validation (5417 images), and testing (10,943 images) sets. We used this
official division for all our experiments.

The RSOD dataset is an open remote sensing image object detection dataset with
four categories: airplanes (446 images with 4993 instances), oil tanks (165 images with
1586 instances), playgrounds (189 images with 191 instances), and overpasses (176 images
with 180 instances). The annotations are in the PASCAL VOC format. Because there is no
official division, we divided the dataset into training (747 images), validation (94 images),
and testing (95 images) sets in an 8:1:1 ratio. We divided each category of images randomly
according to this ratio to ensure that all sets contained a proportional representation of
each category.

4.1.2. Ablation Experiment Metrics

In the ablation experiment, we refer to the Pascal VOC2012 standard to calculate
average precision (AP), and its calculation formula is as follows.

AP =
∫ 1

0
p(r)dr (21)

In object detection, average precision (AP) is calculated by integrating the area under
the precision–recall curve. Here, p(r) represents the precision value at a recall rate of
r. The range of integration is from 0 to 1, covering all possible values of recall. The
precision–recall curve describes the relationship between precision and recall at different
confidence thresholds. AP is calculated by integrating the area under this curve, providing a
comprehensive measure of the model’s performance across different confidence thresholds.

In our ablation experiments, we used a variety of metrics to evaluate the performance
of our model. These included mean average precision (mAP) for all classes at 0.50 IoU
thresholds, precision, recall, F1-score, the number of parameters (Params), and GFLOPs.
The formulas for calculating some of these evaluation metrics are shown below.
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Precision =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

F1-score =
2 · Precision · Recall
Precision + Recall

(24)

mAP =
1
N

N

∑
1

APi (25)

When computing mAP, the variable N represents the number of categories detected
by the model and APi denotes the average precision of the i-th category. For precision and
recall calculations, TP refers to instances where the model correctly predicts a positive class
for a given sample. In contrast, FN indicates cases where the model incorrectly predicts
a negative class for a positive sample. Finally, FP represents instances where the model
incorrectly predicts a positive class for a negative sample.

4.1.3. Comparative Experiment Metrics

In our comparative experiment, we followed the standards of the MS COCO dataset
and used the official Pycocotools tool to evaluate the performance of our model on the
test set. We utilized several evaluation metrics calculated by the tool, including average
precision at 0.50 IoU threshold (AP50), APsmall for instances with an area smaller than
322 pixels, APmedium for instances with an area between 322 and 962 pixels, and APlarge for
instances with an area larger than 962 pixels. These metrics fully assess the performance
of different models in detecting instances of different scales and achieving a 0.50 IoU
threshold over all classes. Additionally, we also used the number of parameters (Params)
and GFLOPs as evaluation metrics in our comparative experiment.

4.2. Implementation Details

For all ablation experiments, we conducted training and testing on a machine equipped
with an Intel Core i5-12600KF CPU, 16GB of memory, and an NVIDIA TRX 3080 GPU
with CUDA 11.7 support. Our models were implemented using PyTorch 1.13.1. All of
our ablation experiments used a batch size of 8. We did not use pre-trained models or
the warmup training strategy in our experiments. During the initial training phase, we
initialized the learning rate to 1× 10−2 and used the cosine annealing learning rate for
training. The learning rate was decayed every 1000 steps, with a final learning rate of
0.1 times the initial learning rate and an IoU training threshold of 0.2. We applied data
augmentation techniques such as random left–right flipping with a probability of 0.5,
mosaic data augmentation with a probability of 1, and mix-up data augmentation with
a probability of 0.15. The input image size was set to 640 × 640 for the DIOR and TGRS-
HRRSD datasets, and these models were trained for 500 epochs. For the RSOD dataset, the
input image size was set to 416 × 416 and the model was trained for 600 epochs.

Most of the comparative experiments were conducted on a machine equipped with
an NVIDIA TRX 3090 GPU, CUDA 11.6, mmcv 1.6.1 and mmdetection 2.25.1, using the
DIOR dataset for training and testing. The experiments were trained for 500 epochs, with a
batch size of 8 and an initial learning rate of 1× 10−2. The remaining configurations used
the default settings of the baseline models in the framework. Some experiments employed
mosaic and mix-up data augmentation techniques, which are indicated by an asterisk (*) in
the table.

In our loss function, we used a weighted target detection loss that includes the lo-
calization loss (Lbox), object loss (Lobj), and classification loss (Lcls). For the localization
loss, we used the well-known CIoU to evaluate the positional relationship between the
predicted and ground-truth bounding boxes. While IoU is commonly used to measure the
error of bounding box regression, it suffers from slow convergence and inaccurate regres-
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sion when detecting small objects. To address these issues, Zheng et al. [39] introduced
the CIoU loss, which takes into account the overlap size of bounding boxes, the distance
between their center points, and their aspect ratio. The definition of IoU is shown in the
following equation:

IoU =
A ∩ B
A ∪ B

(26)

where A and B are the ground-truth box and predicted box, respectively. The penalty term
can be represented as

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(27)

where wgt and hgt are the width and height of the ground-truth box, and w and h denote
the width and height of the predicted box. α is a positive trade-off parameter, as seen in
Equation (14):

α =
v

(1− IoU) + v
(28)

The localization loss function can be defined as

Lbox = 1− IoU +
ρ2(b, bgt)

c2 + αv (29)

In this center point-based approach to object detection, we use the symbols b and bgt
to represent the center points of the predicted and ground-truth frames, respectively. The
Euclidean distance between these two center points is denoted by ρ2, while c refers to the
diagonal length of the smallest closed area that contains both frames.

To calculate the loss associated with confidence and classification, we use the cross-
entropy loss function as a standard measure of the mismatch between the predicted output
and true labels. The formula for this loss function is as follows:

BCELoss = Lobj = Lcls = −(y · log(ŷ) + (1− y) · log(1− ŷ)) (30)

where y denotes the ground-truth label, ŷ denotes the predicted label, and BCELoss denotes
the loss between the model output and the ground-truth label. The overall loss function is
represented by the following equation:

Loss = W1 · Lbox + W2 · Lcls + W3 · Lobj (31)

In this paper, we assign weights to three types of losses, namely, the localization
loss W1, classification loss W2, and object confidence loss W3, denoted as {0.05,0.3,0.7},
respectively.

4.3. Ablation Experiments

In this section, we perform a comparative analysis of our experimental results from the
ablation experiments we conducted. We conducted ablation experiments on three datasets,
each consisting of four experiments: a baseline model, followed by two performance testing
experiments that, respectively, added the MRF-DM network and the CSDF network, in
order to compare the effects of the two methods alone compared to the baseline. Finally,
we tested the performance of our proposed model by combining both networks with the
baseline, which allowed us to visually compare the results of this experiment with the
previous three.

Tables 1–3 show the results of our ablation experiments, where we evaluated the
MRF-DM and CSDF networks with YOLOv4-CSP as a baseline model on three remote
sensing datasets. Taking Table 1 as an example, applying the MRF-DM module alone
reduced the model’s parameters and GFLOPs by 4.2 M and 4.82 G, respectively, while
improving the mAP@0.5, precision, recall, and f 1-score by 1.63%, 1.86%, 0.42%, and 0.96%,
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respectively. Similarly, the CSDF network alone reduced the model’s parameters and
GFLOPs by 3.2 M and 5.36 G, respectively, while improving the mAP@0.5, precision, recall,
and f 1-score by 1.58%, 1.38%, 0.55%, and 0.79%, respectively. Combining both networks
further reduced the model’s parameters and GFLOPs by 7.4 M and 10.18 G, respectively,
while improving the mAP@0.5, precision, recall, and f 1-score by 2.19%, 1.22%, 1.85%, and
1.50%, respectively. These results demonstrate the effectiveness of the proposed networks
in enhancing the model’s performance and stability. Compared to the baseline model, our
model’s mAP@0.5 reached 79.74%, representing a 2.19% improvement, with a parameter
reduction of approximately 14%.

Table 1. Experimental Results of Each Module on the DIOR Dataset (VOC Format).

Baseline MRF-DM CSDF mAP@0.5(%) Precision (%) Recall (%) F1 (%) Params (M) GFLOPs

X 77.55 84.85 72.51 77.84 52.57 119.21
X X 79.18 (+1.63) 86.70 (+1.86) 72.94 (+0.42) 78.80 (+0.96) 48.36 (−4.20) 114.39 (−4.82)
X X 79.13 (+1.58) 86.23 (+1.38) 73.06 (+0.55) 78.63 (+0.79) 49.37 (−3.20) 113.85 (−5.36)
X X X 79.74 (+2.19) 86.07 (+1.22) 74.36 (+1.85) 79.34 (+1.50) 45.17 (−7.40) 109.03 (−10.18)

Table 2. Experimental Results of Each Module on the TGRS-HRRSD Dataset (VOC Format).

Baseline MRF-DM CSDF mAP@0.5(%) Precision (%) Recall (%) F1 (%) Params (M) GFLOPs

X 92.70 90.05 88.95 89.36 52.53 119.09
X X 94.52 (+1.82) 92.78 (+2.73) 91.17 (+2.22) 91.89 (+2.52) 48.32 (−4.21) 114.27 (−4.82)
X X 93.12 (+0.42) 91.34 (+1.29) 89.36 (+0.41) 90.26 (+0.90) 49.33 (−3.20) 113.73 (−5.36)
X X X 94.66 (+1.96) 92.70 (+2.65) 91.51 (+2.56) 92.03 (+2.67) 45.13 (−7.40) 108.91 (−10.18)

Table 3. Experimental Results of Each Module on the RSOD Dataset (VOC Format).

Baseline MRF-DM CSDF mAP@0.5(%) Precision (%) Recall (%) F1 (%) Params (M) GFLOPs

X 92.60 93.10 87.28 90.06 52.48 118.93
X X 93.31 (+0.71) 93.82 (+0.72) 91.87 (+4.59) 92.73 (+2.67) 48.28 (−4.20) 114.11 (−4.82)
X X 94.57 (+1.97) 93.46 (+0.36) 90.44 (+3.16) 91.86 (+1.80) 49.28 (−3.20) 113.57 (−5.36)
X X X 95.56 (+2.96) 91.67 (−1.43) 95.91 (+8.63) 93.69 (+3.63) 45.08 (−7.40) 108.75 (−10.18)

Overall, the results of the three ablation experiments indicate that both the MRF-DM
and CSDF networks have a positive effect on improving the baseline performance in terms
of the mAP@0.5, demonstrating the effectiveness of the two proposed methods. It can
be observed from the data of the three experiments that using the MRF-DM network can
significantly improve the precision of the network, proving that the MRF-DM backbone
network can effectively solve the problem of false negatives caused by an insufficient
semantic level in complex background object detection. Regarding the impact of the
CSDF structure on the overall network, when used alone, it results in an increase in the
mAP@0.5, precision, and recall compared to the baseline. However, its enhancement of
network precision is not as pronounced as that of the MRF-DM module, which is capable
of improving the network’s semantic recognition ability. Nonetheless, when both the
MRF-DM and CSDF modules are applied to the baseline, the model achieves an optimal
mAP@0.5 and F1-Score, demonstrating their complementary nature. It should be noted,
however, that the precision achieved when both modules are applied is still lower than
when only the MRF-DM module is used. This suggests that the final fusion of detailed
features in the network does have a somewhat detrimental effect on the originally perfect
semantic features, reducing the network’s semantic recognition ability and decreasing the
model’s detection precision. Despite this, the overall performance of the network remains
optimal. Additionally, the experimental data also revealed that the combination of the
two networks exceeded the effect of either network acting alone on the baseline network,
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which indirectly verifies the correctness of our method. Firstly, our method effectively
improves the semantic level that the backbone network can learn from through the MRF-
DM network, while retaining rich and detailed features. Secondly, the CSDF network
reasonably integrates the preserved fine details with the further learned semantic features,
enabling the network to achieve joint learning of semantics and details.

4.4. Comparative Experiment

The DIOR remote sensing dataset, which is publicly available, was used in the compar-
ative experiment. The data results for each experiment were obtained by testing the model
on the test set, training it on the training set, and selecting the final fully converged model
using the validation set. The test dataset contains a total of 11,738 images and 124,443 target
instances. In addition to the comparative experiments, we conducted further experiments
on this dataset, and in Section 4.5, we provide a visual analysis. We will introduce this
dataset in greater detail below. As shown in Figure 8, we counted the number of instances
for each category in the dataset and presented the results in a bar chart. From this chart,
it can be seen that categories such as ship, storage tank, tennis court, and vehicle have a
relatively large number of instances, while other categories generally have no more than
10,000 instances. Additionally, in Figure 9, we plotted the number of small, medium, and
large object instances in the official division of training, validation, and test sets. In the
bar charts for the “validation set” and “training set”, the number of instances for all three
types of objects is roughly equal. However, in the bar chart for the “test set”, there are more
instances of large and small objects and fewer instances of medium-sized objects.

We compare our proposed DSDL network with various baseline models of object
detection, and we analyze the experimental results of the comparative experiments. The
models involved in the comparative experiments are classified into three categories: anchor-
free, one-stage, and two-stage models. The results of the comparative experiment are shown
in Table 4.

Figure 8. Number of instances for each category in the DIOR dataset.
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Figure 9. Number of small, medium, and large object instances in the DIOR dataset.

Table 4. Comparison of two-stage, anchor-free, and anchor-based detection algorithms on DIOR
(COCO format). An asterisk (*) indicates the use of mosaic and mix-up data augmentation techniques
in the experiments.

Method Backbone AP50 (%) APsmall (%) APmdeium (%) APlarge (%) Params (M) GFLOPs (G)

FSAF [40] ResNet-101-FPN 58.2 6.3 26.5 55.8 55.1 279.4
ATSS [41] ResNet-101-FPN 59.8 5.9 28.1 58.6 50.9 278.4

RepPoints [11] ResNet-101-FPN 63.2 5.8 29.7 61.7 55.6 266.0
YOLOX-L * [42] CSPDarknet-53 73.2 16.2 40.7 68.1 54.2 194.3

Faster R-CNN [7] ResNet-50-FPN 59.1 5.7 27.0 56.0 41.2 206.8
Cascade R-CNN [8] ResNet-50-FPN 59.5 6.0 28.8 60.7 69.0 234.5

Gride R-CNN [9] ResNet-50-FPN 60.7 7.0 30.1 62.0 64.3 320.2
Libra R-CNN [10] ResNet-50-FPN 59.5 5.9 28.1 56.9 41.5 207.8

VarifocalNet [43] ResNet-101-FPN 61.3 7.3 30.2 61.8 51.5 266.0
Guided-Anchoring [44] ResNet-101-FPN 64.4 7.5 30.9 59.7 56.1 273.5

YOLOv4-CSP * [5] CSPDarknet-53 76.6 16.1 42.8 72.1 52.6 119.2
YOLOR-CSP * [6] CSPDarknet-53 77.6 16.3 44.3 74.0 52.6 119.2

DSDL-Net ASDP 66.7 11.6 33.8 62.6 45.2 109.0
DSDL-Net * ASDP 78.7 17.5 44.8 75.3 45.2 109.0

In this experiment, by using mosaic and mix-up data augmentation techniques, our
model outperformed some of the most popular models on the AP50 metric. For example, in
the anchor-free model, our model exceeded the AP50 of YOLOX-L by 5.5%. In the one-stage
model, it exceeded YOLOR-CSP by 1.1% and YOLOv4-CSP by 2.1%. Even without strong
data augmentation, our model performed better than all the compared baseline models.
For instance, in the two-stage model, our model improved the AP50 metric by 7.6%, 7.2%,
and 6% compared to Faster R-CNN, Cascade R-CNN, and Grid R-CNN, respectively. For
the anchor-free models FSAF, ATSS, and RepPoints, it improved by 8.5%, 6.9%, and 3.5%,
respectively. In the one-stage models, our model also outperformed Varifocal-Net and
Guided-Anchoring, with improvements of 5.4% and 2.3%, respectively.

In general, based on the results of our comparative experiments, our proposed DSDL
network model outperforms current mainstream YOLO series models such as YOLOv4-CSP,
YOLOX, and YOLOR-CSP when using strong data augmentations like mix-up and mosaic.
Furthermore, even under the same conditions without these augmentations, our model
still surpasses all the compared baseline models, demonstrating the superior performance
of our proposed model. Additionally, our model has fewer parameters and computational
complexity than most of the models involved in the comparison, and our experimental
results confirm the effectiveness of our proposed method in the domain of remote sensing
object detection, especially in complex background scenarios.

4.5. Visualization of Detection Results

In this section, initially, in the object detection task using the DIOR dataset, we compute
precision–recall (PR) curves for each category and calculate the mean average precision
metric (mAP@0.5) with an IoU threshold of 0.5. Following this, we also plot F1-Score curves
to show the changes in the F1-Score for each category at different confidence levels and the
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confidence levels corresponding to the highest F1-Score for all categories. Finally, we also
visualize and compare the detection performance of the same category detection algorithm
in a real-world detection scenario.

4.5.1. Visualization of Precision–Recall (PR) and F1-Score Curve

As shown in Figures 10 and 11, our experimental results indicate a significant perfor-
mance disparity among different categories. However, overall, our model exhibits strong
performance in handling complex backgrounds. This can be attributed to the effective
design of our model, which enables collaborative learning of image semantics and detailed
information, allowing for accurate object detection in various complex scenarios.

Figure 10. Precision–recall curves for individual categories on the DIOR dataset: different colors
represent different categories, with the thickest blue curve representing the average precision–recall
curve for all categories, and each category followed by its average precision (AP) value, which is the
area under its precision–recall curve.

Through our experimentation, we discovered that the F1-Score of the model achieved
its peak value of 0.7934 on the entire dataset when the confidence threshold was established
at 0.2833. In addition, it is noteworthy that our model demonstrates high accuracy in de-
tecting targets, such as airplanes (mAP@0.5 = 0.955), basketball courts (mAP@0.5 = 0.916),
ships (mAP@0.5 = 0.921), and tennis courts (mAP@0.5 = 0.909). These categories are
often present in complex remote sensing image backgrounds, such as urban buildings,
water areas, and sports venues. The model’s ability to successfully identify targets in these
complex backgrounds signifies its robustness and generalization capabilities.

Nonetheless, there is still room for improvement in detection performance for certain
categories, such as bridges, harbor, overpasses, railway stations, and vehicles. These perfor-
mance gaps may be associated with the unique attributes of these categories in remote sens-
ing images. For instance, overpasses (mAP@0.5 = 0.652) and bridges (mAP@0.5 = 0.534)
in remote sensing images are generally characterized by multi-layer intersecting road struc-
tures, resulting in high spatial complexity. This may hinder the object detection algorithm
from fully capturing the spatial structural information of overpasses and bridges, leading
to reduced detection performance. Additionally, the railway station (mAP@0.5 = 0.701)
category contains numerous linear features, such as tracks and platforms, which may
be confused with other similar structures in remote sensing images, thus increasing the
detection difficulty. For the harbor (mAP@0.5 = 0.679), although the scene is a simple back-
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ground of sea surface remote sensing images, the high-density ships in the port cause some
structures of the port to be obscured, disrupting the semantic recognition and positioning of
the port. For vehicle detection (mAP@0.5 = 0.632), it is generally caused by extremely small
targets. For high-resolution remote sensing images, extremely small target detection is
very challenging for model robustness, which requires the model to meet the requirements
of remote sensing target detection while being able to cope with small target detection.
In view of the above problems, challenging remote sensing target detection categories
usually have complex spatial objects, unusual shapes, high-density occlusion detection,
small target detection, and other issues. Improving the detection capabilities of specific
difficult-to-detect categories such as bridges, harbor, overpasses, railway stations, and
vehicles will have a positive impact on traffic safety, maritime detection and management,
transportation efficiency, and urban planning.

Despite these challenges, our model achieved an overall mAP@0.5 performance of
0.7974, proving its effectiveness in remote sensing image object detection tasks within com-
plex backgrounds. To further substantiate this, we will conduct comparative experiments
in subsequent sections.

Figure 11. F1-Score curves for individual categories on the DIOR dataset.

4.5.2. Comparison of Detection Performance Visualization in Real Scenarios

As illustrated in Figure 12, our analysis of the images reveals that the DSDL network
exhibits enhanced capabilities in terms of semantic recognition and localization. In the
complex background scenario of urban remote sensing images, the DSDL network displays
superior performance in semantic recognition and localization. For instance, in complex ur-
ban backgrounds, the DSDL network demonstrates robust semantic recognition capabilities
for small and medium-sized objects, effectively reducing the occurrence of false positives.

In simple background scenarios, such as the seawater background of harbors and the
uncluttered background of airports, our model exhibits strong robustness. Although the
seawater background of the harbor is relatively simple, it presents challenges related to
high-density object detection. For example, in a simple scenario with multiple harbors
and a large number of ships, the DSDL network outperforms both the baseline model and
the YOLOR-CSP model in terms of harbor recognition accuracy. Additionally, amidst the
interference of ships, only our proposed network accurately locates the boundary position
of the harbor. Similarly, in airport scenes, while all comparison models correctly detect all
airplanes, only our model detects all vehicles. Vehicles appear in the image with very few
pixels, further demonstrating the robustness of our model.

In summary, our model exhibits superior recognition and localization capabilities
in complex backgrounds while maintaining strong robustness when facing simple back-
grounds. It can effectively cope with more complex and changeable scenes and has excellent
detection capabilities for multiple targets and small targets.
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(a) Original image (b) YOLOV4-CSP (c) YOLOR-CSP (d) Ours

Figure 12. Comparison diagram of the actual detection of different algorithms.

4.6. Computational Requirements and Training Time of the DSDL-Net

In this section, we present a detailed analysis of the training process of our model
on the large-scale DIOR remote sensing dataset. We discuss the convergence behavior of
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the network, the time required for training and validation per epoch, and the memory
requirements during training.

Figure 13 shows the training log of our model, where the blue line represents the
validation mean average precision (mAP) at an intersection over union (IoU) threshold of
0.5 for each epoch, and the purple line represents the validation mAP at an IoU threshold
ranging from 0.5 to 0.95. As can be seen from the figure, our model approaches convergence
at around 350 epochs, after which there is no significant improvement or fluctuation in
its performance.

Figure 13. Training and validation mAP of the DSDL-Net on the DIOR dataset.

Table 5 presents the time required for training and validation per epoch, measured
in minutes, as well as the GPU VRAM consumption during the process. The training set
consists of 5862 images with a total of 32,591 instances, while the validation set consists of
5863 images with a total of 35,437 instances.

Table 5. Training and validation time and GPU VRAM usage for one epoch.

Attribute Value

Training Time (minute) 2.87
Validation Time (minute) 1.1
GPU VRAM Usage (GB) 8.5

5. Conclusions

To address the challenges of inaccurate localization and identification in remote sensing
object detection, we propose a novel detection network named DSDL. Our network design
enables the learning of rich detail information while preserving high-quality semantic
features, effectively decoupling the learning of semantics and details within the network.
Firstly, we introduce an MRF-DM structure for use within the backbone, capable of retaining
and compressing detail features while simultaneously learning high-quality semantic
information. Additionally, we propose a CSDF structure for the seamless integration of
semantic and detail information at the final stage. It concurrently executes two adaptive
learning processes under shared global attention conditions: global and local attention.

Our experimental results demonstrate that the DSDL network exhibits robustness and
generalization capabilities when handling remote sensing object detection tasks in complex
backgrounds. Its mAP@0.5 on the DIOR dataset reached 79.74%, representing a 2.19%
improvement over the baseline model, with a parameter reduction of approximately 14%.
The network exhibits high precision when detecting categories such as airplanes, basketball
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courts, ships, and tennis courts, which commonly appear in complex remote sensing image
backgrounds, including urban buildings, bodies of water, and sports venues. However,
there remains room for improvement in detecting certain categories, such as bridges, ports,
overpasses, train stations, and vehicles. These performance discrepancies may be attributed
to the unique characteristics of these categories within remote sensing images.

In summary, our proposed DSDL network effectively enhances localization and identi-
fication accuracy in remote sensing object detection within complex background scenarios.
This is achieved by introducing MRF-DM and CSDF structures to enable the preservation
and fusion of semantic and detail information, allowing for collaborative learning between
semantics and details.
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