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Abstract: The satisfiability problem (SAT) in propositional logic determines if there is an assignment of
values that makes a given propositional formula true. Recently, fast SAT solvers have been developed,
and SAT encoding research has gained attention. This enables various real-world problems to be
transformed into SAT and solved, realizing a solution to the original problems. We propose a new
encoding method, Fractional Encoding, which focuses on the At-Most-K constraints—a bottleneck of
computational complexity—and reduces the scale of logical expressions by dividing target variables.
Furthermore, we confirm that Fractional Encoding outperforms existing methods in terms of the
number of generated clauses and required auxiliary variables. Hence, it enables the efficient solving
of real-world problems like planning and hardware verification.

Keywords: At-Most-K constraints; satisfiability problem; logical expression

1. Introduction

The satisfiability problem (SAT) in propositional logic is the determination of whether
there exists an assignment of values that makes a given propositional formula true. Re-
cently, very fast SAT solvers have been developed, and the study of SAT encoding has
attracted attention. Problems such as planning, hardware verification, software verifica-
tion, and scheduling are transformed into SAT and solved using a SAT solver, realizing a
solution to the original problem [1,2]. In recent years, there has been active research into
SAT encoding for optimal Clifford circuits [3,4], expanding the application range of SAT.

Real-world problems encoded into SAT are composed of various constraints, among
which the At-Most-K constraints often become the bottleneck of computational complex-
ity [2]. Regarding state-of-the-art SAT papers, Timm et al. used SAT for the verification of
multi-agent systems [5]. In this situation, an efficient encoding method is needed, especially
for At-Most-K constraints for large K. To date, various encoding methods for At-Most-K
constraints have been proposed. Frisch et al. proposed Binary Encoding, which performs
efficient encoding by assigning domains to each target variable [6,7]. Sinz et al. introduced
Counter Encoding, which operates efficiently by referring to sequential counting circuits [8].
There is still room for improvement in these methods in terms of suppressing the scale
of logical expressions. Therefore, in this study, we propose a new method, Fractional
Encoding, which suppresses the scale of logical expressions by dividing the target variables.
The performance of the encoding is evaluated by the number of clauses generated and the
number of auxiliary variables required. As a result, it has been confirmed that the proposed
Fractional Encoding performs better than existing methods in terms of the number of
clauses generated and the number of auxiliary variables.

The starting point of this study is the preliminary report [9], in which the idea of
Fractional Encoding is presented. There is also related research [10] that is based on the
same idea and proposed Approximate Encoding of At-Most-K constraints. While Frac-
tional Encoding in this paper has fine-tuning variables to be described later, Approximate
Encoding does not, thus Approximate Encoding cannot cover all possible solutions for
At-Most-K constraints.
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1.1. Satisfiability Problem (SAT)

“Solving SAT” means determining the satisfiability of a propositional logic formula.
In other words, it determines whether there exists an assignment (model) of propositional
variables to the logical formula containing propositional variables such that the formula
becomes true. A program that solves SAT is called a SAT solver, and it determines whether
a given SAT is satisfiable or unsatisfiable. There are various types of SAT solvers, such as
MiniSat [11], which is well-known, and CaDiCaL [12], which has achieved excellent results
in recent competitions. In most SAT solvers, if the SAT is satisfiable, a concrete assignment
is shown; if it is unsatisfiable, the assignment is shown to be non-existent.

The logical expressions encoded in SAT are in conjunction standard form (CNF). CNF
is a form of expressing logical expressions by a sequence of disjunction clauses and is the
target of a SAT solver [13].

1.2. At-Most-K Constraints

SAT is composed of various constraints (logical expressions). The At-Most-K constraint
is the constraint that no more than K variables can be true. As the simplest example,
Pairwise Encoding with at most one true variable and three target variables (x1, x2, x3) is

(¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x3) (1)

Although Pairwise Encoding is a simple implementation, it requires O(n2) clauses for
n target variables, which becomes a huge expression when n is large. Therefore, various
coding methods have been proposed to suppress the number of clauses by introducing
auxiliary variables. Typical coding methods that use auxiliary variables include Binary
Encoding and Counter Encoding. The two methods are described below.

1.3. Binary Encoding

Binary encoding was originally introduced by Frisch et al. [6,7]. The encoding in-
troduces new variables B1, . . . , Bdlog2 ne. It then associates with each xi a unique bit string

si ∈ {1, 0}dlog2 ne. The binary encoding of At-Most-One constraint is

n∧
i=1

dlog2 ne∧
j=1

¬xi ∨ ϕ(i, j) (2)

where ϕ(i, j) denotes Bj if the jth bit of si is 1 and otherwise denotes ¬Bj. The binary
encoding can extend to the At-Most-K constraint. As before, associate with each xi a unique
bit string si ∈ {1, 0}dlog2 ne. The encoding introduces new variables Bi,g (1 ≤ i ≤ K, 1 ≤ g ≤
dlog2 ne), which are essentially K copies of the previous B variables. The binary encoding
of At-Most-K constraint is

n∧
i=1

K∧
g=1

dlog2 ne∧
j=1

¬xi ∨ ϕ(i, g, j)

where ϕ(i, g, j) denotes Bg,j if the jth bit of si is 1 and otherwise denotes ¬Bg,j.

1.4. Counter Encoding

Sinz introduced an encoding that works by encoding a circuit that sequentially counts
the number of xi that are true [8]. For each 1 ≤ i ≤ n there is a register whose value is
constrained to contain the number of x1, . . . , xi that are true. Each register maintains its
count in base one and hence uses K bits to count to K. Thus, the encoding introduces the
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new variables Ri,j, 1 ≤ i ≤ n, 1 ≤ j ≤ K, where each Ri,j represents the ith bit of register j.
The clauses of the encoding are as follows.

n−1∧
i=1

¬xi ∨ Ri,1 (3)

K∧
j=2

¬R1,j (4)

n−1∧
i=2

K∧
j=1

¬Ri−1,j ∨ Ri,j (5)

n−1∧
i=2

K∧
j=2

¬xi ∨ ¬Ri−1,j−1 ∨ Ri,j (6)

n∧
i=2

¬xi ∨ ¬Ri−1,K (7)

Formula (3) states that if xi is true then the first bit of register i must be true. Formula (4)
ensures that in the first register only the first bit can be true. Formulas (5) and (6) together
constrain each register i (1 < i < n) to contain the value of the previous register plus xi.
Finally, (7) asserts that there cannot be an overflow on any register as it would indicate that
more than K variables are true.

The encoding method proposed in this study, “Fractional encoding”, also suppresses
the number of clauses better than pairwise encoding by introducing auxiliary variables. The
remainder of this paper is organized as follows: Section 2 presents the method. Section 3
presents the results. Additionally, Section 4 contains a discussion, and concluding remarks
are provided in Section 5.

2. Methods

In this study, we propose an encoding method with At-Most-K constraints that dis-
tributes the computational complexity by splitting the set of target variables into multiple
parts. The proposed method is called Fractional Encoding because it is based on the concept
that K is the numerator and the number of target variables, n, is the denominator. Hereafter,
when there are at most K variables that are true out of n target variables, it is denoted
as AtMost K/n (a set o f target variables). The overall flow of the research is shown in
Figure 1.

Figure 1. The proposed method solves the reduction of the solution space caused by dividing the
target variables through two stages of additional variables.
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2.1. Splitting Target Variables

By simply splitting the set of target variables into m subsets and applying Pairwise
Encoding to each subset, the number of target variables n can be reduced to 1/m. In the
following example, a set of 8 target variables is split into two subsets.

AtMost 4/8(x1, . . . , x8)
Split in two−−−−−−→ AtMost 2/4(x1, . . . , x4) + AtMost 2/4(x5, . . . , x8) (8)

8C5︸︷︷︸
56 clauses

Split in two−−−−−−→ 4C3 + 4C3︸ ︷︷ ︸
8 clauses

(9)

The number of clauses in Pairwise Encoding is calculated by nCK+1 and can be reduced
from 56 to 8 as shown in (9). However, this example does not lead to assignment =
x1, x2, x3, x5 such that 3 variables in set x1, . . . , x4 and 1 variable in set x5, . . . , x8 are true. As
a result, a simple splitting of the set greatly reduces the number of possible combinations
of variables that can be solved (solution space). Figure 2 illustrates this phenomenon in the
“split target vars” section.

Figure 2. This paper demonstrates the reduction of the solution space at each step considered.
It shows the coverage when simply splitting the target variables, the coverage after introducing
the auxiliary variables, and the coverage after introducing the fine-tuning variables, which will be
discussed later.

2.2. Fractional Encoding

Fractional Encoding realizes At-Most-K constraints by propagating the fraction from
the upper layer to the lower layer, as in the tree structure shown in Figure 3. Propagation
is performed using auxiliary variables (gi,j) to dynamically determine the At-Most-K con-
straints to be applied to the split target variables. This prevents the solution space from
decreasing. As an example, the splitting of target variables for the AtMost 8/16(x1, . . . , x16)
constraint is shown below.

AtMost 8/16(x1, . . . , x16)

Split in f our−−−−−−−→AtMost k1/4(x1, . . . , x4)

+AtMost k2/4(x5, . . . , x8)

+AtMost k3/4(x9, . . . , x12)

+AtMost k4/4(x13, . . . , x16) (10)

In (10), the 16 target variables are split into four subsets of G4 = {x1, . . . x4}, . . . , G7.
k1, . . . , k4 are dynamically determined values whose total value is less than or equal to K,
as shown below.
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k1 + k2 + k3 + k4 = K (11)

The variables belonging to G1, . . . , G3 become auxiliary variables that propagate the
ratio of the number of variables that can be true to the number of target variables as shown
on the right in Figure 3 to realize (10) and (11). In addition, since the number of variables
that become true at the bottom layer is controlled by propagating the ratio set at the top
layer to the bottom layer, there is a fraction (Top layer K/n) that serves as the base. When
2/4 is used as the base, only 2× 2m/4× 2m patterns can be generated, such as At-Most-2/4,
At-Most-4/8, and At-Most-8/16. The encoding procedure based on 2/4 is shown below.

Figure 3. This figure shows the tree structure for generating AtMost 8/16(x1, . . . , x16) using Frac-
tional Encoding. The bottom layer serves as the target variables, and the other layers play the role
of auxiliary variables. Each layer has a group Gi containing four variables, the number of which
depends on the number of layers. The number of layers is log2 K, and the number of groups Gi

is calculated as 1/2K log2 K. In addition, each group is assigned a fine-tuning variable Fi (to be
explained below) to determine its state.

1. Ratio setting at the top layer: In the formula below, the At-Most-2/4 constraint is
applied to the top layer to set the base 2/4 ratio (at most half of the target variables
are true).

AtMost2(G1) (12)

2. Introduction of fine-tuning variables: The fine-tuning variable Fi = { fi.1, fi.2} is a
variable to increase or decrease the number of variables that can be true among
groups Gi of the same layer. Each group has three states plus, minus, const and is
uniquely encoded using two fine-tuning variables. Depending on the state of each set,
the variables that can be true are increased or decreased as shown in Figure 4.

plus(i) : fi.1 ∧ fi.2 (13)

minus(i) : ¬ fi.1 ∧ ¬ fi.2 (14)

const(i) : fi.1 ⊕ fi.2 (15)
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Figure 4. As shown in this figure, if the state is plus, the number of variables that can be true in the
group is +1, and if minus, it is −1.

3. Added logical expressions to propagate ratio to lower layer: The following equation
adds a constraint that propagates the ratio from the upper to the lower layer. In addi-
tion, p(p = 1/2k log2 k− 1) indicates the number of Local-Propagations, which will
be discussed later. The Exactly-K constraint (to be explained below) in the upper layer
counts the auxiliary variables that become true, and the At-Most-2K+z constraint
(z = −1, 0, 1) is added in the lower layer.

p∧
i=1

1∧
j=0

Exactly0(gi.j) ∧ const(2i + j)

⇒ AtMost0(G2i+j) (16)

p∧
i=1

1∧
j=0

(Exactly0(gi.j) ∧ plus(2i + j))∨

(Exactly1(gi.j) ∧minus(2i + j))

⇒ AtMost1(G2i+j) (17)

p∧
i=1

1∧
j=0

Exactly1(gi.j) ∧ const(2i + j)

⇒ AtMost2(G2i+j) (18)

p∧
i=1

1∧
j=0

(Exactly1(gi.j) ∧ plus(2i + j))∨

(Exactly2(gi.j) ∧minus(2i + j))

⇒ AtMost3(G2i+j) (19)

The Exactly-K constraint is a constraint that counts exactly K variables to be true. It is
expressed by the At-Most-K constraint and the At-Least-K constraint that indicates
that there are at least K variables that are true, as shown below.

ExactrlyK ⇔ AtMostK ∧ AtLeastK (20)

The leaf variables (target variables) generated by (16), (17), (18), and (19) propagate the
proportions set at the top layer. Also, when Exactly-0(gi.j), the number of possible true
values in group G2i+j cannot be further reduced, and when Exactly-2(gi.j), the number
of possible true values in group G2i+j cannot be further increased, so we add the
following equation.

Exactly0(gi.j)⇒ ¬minus(2i + j) (21)

Exactly2(gi.j)⇒ ¬plus(2i + j) (22)
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4. Add constraints for plus/minus offsetting at each layer: By applying At-Most-2m to
the fine-tuning variables in each layer, the pluses and minuses in the same layer must
be balanced out. This allows increasing or decreasing the number of variables that
can be true among the groups G in the same layer. In the equation below, p represents
the number of layers and is calculated as in q = number o f layers.

q∧
m=1

AtMost2m( f2m .1 . . . f2m+1−1.2) (23)

2.3. Pattern Extension by Fixing Variables

Since Fractional Encoding generates At-Most-K constraints based on the base frac-
tion, it is difficult to handle an arbitrary number of target variables. For example, if you
want to create At-Most-3/5, there is no suitable fraction (top layer K/n). Therefore, we
extend the patterns that can be generated by fixing values of a part of the target variables.
Fixing true/false means adding clauses that make certain target variables true or false,
as shown below.

Fix xi as true : xi (24)

Fix xi as f alse : ¬xi (25)

As shown below, when the number c of target variables are fixed as true, K and n
decrease by c, and when they are fixed as false, only n decrease by c. Figure 5 shows an
example of three variables fixed.

Fix c true : AtMost
K− c
n− c

(26)

Fix c f alse : AtMost
K

n− c
(27)

Figure 5. In the example, by fixing three variables, we transformed At-Most-4/8 to At-Most-3/5.
By extending the possible patterns that can be generated in this way, more real-world problems can
be solved.

2.4. Analysis

We discuss the number of clauses of the At-Most-K constraint generated by Fractional
Encoding. Hereafter, the propagation from gi.j to G2i+j as shown in Figure 6, which is
important in the clauses number calculation, will be called Local-Propagation.

Figure 6. The number of clauses required when each equation required for Local-Propagation is
converted to CNF. The total of these is the number of clauses required per Local-Propagation, which
is 47.
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The number of clauses of At-Most-K/n constraints encoded by Fractional Encoding
can be transformed as follows.

clauses(AtMostK/n) =

clauses(AtMost
K
21 /

n
21 ) + clauses(AtMost

K
22 /

n
22 )

. . . + clauses(AtMost2/4) + clauses(Local-Propagations) (28)

By recursively transforming, the number of clauses in the At-Most-K/n constraint
can be expressed as the number of Local-Propagations required to generate the At-Most-
K/n constraint × 47. The number of Local-Propagations depends on the number of lay-
ers (r = log2 K) and is calculated to be O(K log2 K) as follows. The number of Local-
Propagations depends on the number of layers; the first term is clauses (Local-Propagation)
in (28); the second term shows the clauses (Local-Propagation) that are added when (28) is
calculated recursively.

(2r − 2) +
r−3

∑
x=0

2x × ((2r−1−x − 2))

= r× 2r−1 − 2r−1

=
1
2

K(log2 K− 1)

(29)

clauses : 47× 1
2

K(log2 K− 1) (30)

There are two types of auxiliary variables that are required for Fractional Encoding:
The first is the variables that propagate the ratio to the bottom variable (the target variable),
which contains four auxiliary variables in each group G. The second is a fine-tuning variable
for each group G, two for each group G. The calculation of the number of auxiliary variables
is shown below: 6(2 + 4) auxiliary variables are needed for each group G, as shown in
the first term. In addition, since the fine-tuning variables are not needed for the top-layer
group GT , they are subtracted as shown in the second term. In addition, variables in the
lowest group GB are target variables and are subtracted in the third term.

6G− 2GT − 4GB (31)

Since G, GT , and Gb can be computed with 1/2K log2 K, 1/2K, and 1/4K(log2 K + 1),
respectively, the number of auxiliary variables becomes D, as shown below.

3K log2 K− K− (log2 K + 1)

= 2K(log2 K− 1)
(32)

Table 1 shows a comparison with conventional methods regarding the order computa-
tional complexity of the number of clauses and auxiliary variables.

Table 1. Comparison of the number of clauses and auxiliary variables.

Method Origin Clauses Auxiliary Vars

Pairwise folklore nCk+1 0
Binary Frisch [6,7] O(Kn log2 n) O(Kn)

Counter Sinz [8] O(Kn) O(Kn)
Fractional this paper O(K log2 K) O(K log2 K)
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3. Results
3.1. Justification of the Proposed Method

In order to verify the validity of the proposed method, two verifications are conducted.
The first is to verify that the At-Most-K constraint is realized by the proposed method.
The At-Most-K constraint is a constraint where the number of variables that can be true is
limited to K at most. Therefore, if the proposed method becomes unsatisfiable only when
more than K target variables are fixed to be true, it can be shown that the proposed method
is correct. To the generated At-Most-K constraints, clauses that fix more than K target
variables to be true were added and targeted to the SAT solver. As a result, the proposed
method is correct because it is unsatisfiable only when more than K target variables are
fixed as true.

Second, the solution space of the generated At-Most-K constraints was verified: Frac-
tional Encoding has a solution that does not occur when the target variables are split and
Pairwise is applied, as described in the “Splitting target variables” section. Therefore, the
proposed method can prevent the solution space from decreasing.

3.2. Comparison with Conventional Methods

In order to compare 2/4-based Fractional Encoding with conventional methods, we
examined the number of clauses (Figure 7), the number of auxiliary variables (Figure 8),
and the total number of literals (Figure 9). These figures can be said to directly represent
the differences in the order calculation tables of each method shown in Table 1.

Figure 7. This graph shows the number of clauses in relation to the target variables. The two
conventional methods show a significant increase in the number of clauses when the number of target
variables exceeds 60. In contrast, Fractional Encoding succeeds in suppressing the number of clauses
with a gradual increase.

Figure 8. This graph shows the number of auxiliary variables for the target variables. Fractional
Encoding also increases gradually and succeeds in suppressing the number of auxiliary variables
compared to the conventional methods.
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Figure 9. This graph shows the total number of literals for target variables. Fractional Encoding
becomes superior to Binary Encoding when the number of target variables exceeds 70, and superior
to Counter Encoding when the number of target variables exceeds 120.

4. Discussion

In comparison with the conventional method, it was found that the size of the logical
formula can be reduced as the number of target variables increases. This is considered to
be because when the number of target variables is small, the number of logical formulas
required for Local-Propagation accounts for a large proportion of the total logical formu-
las. When the number of target variables is large, the number of logical expressions in
Local-Propagation becomes negligible, and the size of logical expressions can be reduced
compared to conventional methods. However, Fractional Encoding is inferior to conven-
tional methods in terms of generating flexible At-Most-K constraints. Fractional encoding
requires searching for the base fraction (the top layer K/n of the At-Most-K constraints)
as described in the section “Fractional Encoding”, and if it cannot be found, the modifica-
tions described in the section “Pattern Extension with Variable Fixation” must be made.
Regarding the correction ability of Fractional Encoding, no verification has been performed
yet, and it is necessary to verify the possibility of demonstrating superior performance
even when overhead occurs due to “Pattern Extension with Variable Fixation” compared to
existing methods.

In the near future, in an effort to generalize Fractional Encoding, we plan to examine
methods for finding base fractions and verify the correction ability of Fractional Encoding.

5. Conclusions

In this study, the Fractional Encoding method is proposed as a means of reducing the
size of the logical expression of the At-Most-K constraint. Fractional Encoding reduces
the size of logical expressions by splitting the set of target variables and using Pairwise
Encoding dynamically for each set. However, since simply splitting the set significantly
reduces the number of possible variable combinations, we dynamically determined the
At-Most-K constraints for the split set using auxiliary variables.

Comparison with conventional methods shows that the size of the logic expression
can be reduced when the number of target variables increases. However, when the number
of target variables is small or when it is difficult to find the base fraction (Top Layer K/n)
necessary for the propagation of the At-Most-K constraints to be generated, the scale of the
generated logic formulas is significantly inferior to that of conventional methods.
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manuscript.
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