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Abstract: Predicting the amount of natural ventilation by utilizing environmental data such as
differential pressure, wind, temperature, and humidity with IoT sensing is an important issue
for optimal HVAC control to maintain comfortable air quality. Recently, some research has been
conducted using deep learning to provide high accuracy in natural ventilation prediction. Therefore,
high reliability of IoT sensing data is required to achieve predictions successfully. However, it is
practically difficult to predict the accurate NVR in a mismeasurement sensing environment, since
inaccurate IoT sensing data are collected, for example, due to sensor malfunction. Therefore, we need
a way to provide high deep-learning-based NVR prediction accuracy in mismeasurement sensing
environments. In this study, to overcome the degradation of accuracy due to mismeasurement, we
use complementary auxiliary data generated by semi-supervised learning and selected by importance
analysis. That is, the NVR prediction model is reliably trained by generating and selecting auxiliary
data, and then the natural ventilation is predicted with the integration of mismeasurement and
auxiliary by bagging-based ensemble approach. Based on the experimental results, we confirmed that
the proposed method improved the natural ventilation rate prediction accuracy by 25% compared
with the baseline approach. In the context of deep-learning-based natural ventilation prediction using
various IoT sensing data, we address the issue of realistic mismeasurement by generating auxiliary
data that utilize the rapidly changing or slowly changing characteristics of the sensing data, which
can improve the reliability of observation data.

Keywords: sensor data; environmental data; pattern analysis; semi-supervised learning; ensemble
learning; natural ventilation prediction

1. Introduction

The prediction of natural ventilation using environmental data, such as differential
pressure, wind, temperature, and humidity, through IoT sensing, is a crucial aspect for
optimizing Heating, Ventilation, and Air Conditioning (HVAC) control and maintaining a
pleasant indoor air quality. Among the energy consumptions in building operation, the
HVAC system can account for up to 50% of the total energy usage [1]. Therefore, accurate
prediction of natural ventilation is a vital factor in achieving efficient energy use in building
operation. That is, accurate NVR prediction can reduce carbon emissions using efficient
energy by controlling the HVAC system under satisfying occupant thermal comfort. Pre-
diction of accurate NVR can affect not only the improvement of indoor air quality and
occupant thermal comfort but also build an efficient operation strategy to adjust schedul-
ing of mechanical ventilation systems. Thus, it can ultimately increase energy efficiency.
Initially, methods for predicting natural ventilation depended on basic mathematical equa-
tions, analyzing the relationships between natural ventilation and related parameters, such
as differential pressure, wind, temperature, and humidity [2–5]. To reduce prediction
errors, more precise methods have been developed by fine-tuning the atmospheric layer
and conducting empirical observations [6–9]. Ref. [6] analyzed the influence of window
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parameters on natural ventilation, while [7] reproduced and measured the ventilation phe-
nomena inside buildings induced by thermal buoyancy. Ref. [8] investigated the impact of
natural ventilation on indoor air quality and thermal comfort conditions, and [9] conducted
experimental research to evaluate the performance of low-energy cooling systems and
their effects on indoor air quality and thermal comfort. In recent years, computational
fluid dynamics (CFD) has been employed to analyze not only natural ventilation but also
atmospheric flow, aiming for a more accurate prediction of natural ventilation.

Numerical analytical methods for predicting natural ventilation are useful in various
fields, including building environment configuration, design for efficient heating and
cooling, and energy conservation [10–13]. Refs. [10,11] proposed computational fluid
dynamics (CFD) modeling methods for efficient natural ventilation design by analyzing
factors such as temperature and humidity within the space. Ref. [12] conducted CFD
modeling and analyzed mild–cold climates to assess improvements in indoor temperature
and environment. Additionally, ref. [13] explored optimal ventilation design using CFD
by analyzing the internal airflow and thermal characteristics of structures. However, it
is widely recognized that the numerical analysis approach is challenging for analyzing
the dependent relationships among various parameters. To overcome this limitation, a
method utilizing machine learning to design a predictive model considering the complex
relationship between these various parameters has been introduced [14–17]. In particular,
ref. [14] collected insolation, indoor temperature, outdoor temperature, indoor/outdoor
temperature difference, indoor humidity, outdoor humidity, indoor/outdoor humidity
difference, indoor/outdoor differential pressure, wind direction, and wind speed data
based on ten types of IoT sensors. Note that the variable parameters for predicting NVR
are selected based on related works, and they are well-known parameters that affect
NVR [14]. By applying each of the eight machine learning methods and analyzing the
complex interrelationships among the parameters, it has been reported that the amount of
natural ventilation can be predicted with high accuracy [14].

Machine-learning-based natural ventilation prediction models rely heavily on empirical
observation data, as they are designed by analyzing the complex interrelationships among
various environmental parameters. Therefore, to achieve high accuracy in predicting natural
ventilation, it is essential to ensure high-quality data. However, collecting accurate data in
IoT sensing environments for predicting natural ventilation is challenging, as the data change
irregularly depending on time and location. For instance, parameters such as indoor/outdoor
differential pressure, wind direction, and wind speed between indoor and outdoor air change
rapidly, representing many extreme points in a box plot [14]. Therefore, it is crucial to design
natural ventilation prediction models that account for the realistic issue of mismeasurement
of sensing data.

In this study, we address the issue of inaccurate sensing data by proposing a method
for creating auxiliary data and designing a deep learning model that utilizes the generated
auxiliary data. To generate auxiliary data from sensing data, we first employ a DNN (Deep
Neural Network) model to generate rapidly changing features and a time series analysis
model to generate slowly changing features. Specifically, we generate the auxiliary data
by predicting the natural ventilation rate using the observed data and then repredicting
each observation datum using the predicted natural ventilation rate. Also, the prediction
model is designed by incorporating the key characteristics of the observed data, such as
differential pressure, wind direction, and wind speed, which are known to have a relatively
significant impact on the natural ventilation rate. Finally, to enhance the reliability of the
observed data, we employ a bagging-based ensemble approach for effectively combining
the auxiliary data and important data.

This study makes the following contributions:

1. In the context of deep-learning-based natural ventilation prediction using various
IoT sensing data, we address the issue of realistic mismeasurement by generating
auxiliary data that utilize the rapidly changing or slowly changing characteristics of
sensing data, which can improve the reliability of observation data.
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2. After constructing three models to apply the characteristics of the reliable features
that affect the auxiliary data (i.e., predicted and important features), an ensemble
model was designed to improve the generalization performance of the deep learning
model for predicting natural ventilation.

In the experimental setup, the data were collected using each IoT sensor for a period
of 32 days. To establish a mismeasurement environment for sensor data, a single-error
environment was created, and the performance of the predictive model was evaluated using
the collected data. Based on the experimental results, we confirm that the proposed method
improved the prediction accuracy performance from 0.637 up to 0.868 compared with the
deep learning model, using only observation data with a 30% error in the mismeasurement
environment. Also, we extracted Shapley Additive Explanations (SHAP) to verify the
feature contribution of environmental data, auxiliary data using semisupervised learning,
and important data for each scenario model.

2. Background

Predicting the NV (i.e., air quality, airflow, or amount of natural ventilation) by
utilizing environmental data such as differential pressure, wind, temperature, and humidity
through IoT sensing is an important issue for optimal HVAC control while maintaining
comfortable air quality. To predict NV, many studies have been conducted using analytical,
experimental, computational fluid dynamics, and machine learning models. In the studies
in [2–5], air quality and airflow were calculated using simple equations, such as the mass
balance equation for several parameters. The indoor air velocity and ventilation volume
were predicted through modeling of empirical analysis using basic equations, such as
induced airflow velocity and airflow pattern airflow using pressure coefficient. Refs. [6–9]
studied how to satisfy thermal comfort with optimal nature ventilation rate by empirically
analyzing the effect of the ventilation openings size in combination with calculating the
airflow according to the various building scales. It is important to calculate airflow and
natural ventilation to determine the size of ventilation openings and evaluate thermal
comfort in the building scales, since the lack of air circulation in a building affects internal
thermal comfort and is related to energy consumption. Refs. [10–13] studied how to
predict the amount of natural ventilation in indoor airflow based on the CFD model as a
traditional method for analyzing complex sensing data such as air velocity by dividing
the air layer more precisely. They proposed a way to provide fresh air to the building
through the optimal indoor air flow rate according to the effect of outdoor wind speed
based on CFD analysis. Recently, research has been conducted to predict the amount of
natural ventilation based on machine learning for data convergence analysis using various
IoT sensing data that affect indoor and outdoor airflow [14]. In the studies by [14–17], the
amount of natural ventilation was predicted using machine learning, and the predictability
of reducing energy demand and the efficient ventilation of buildings was investigated.
To design the prediction model for the amount of natural ventilation, various machine-
learning-based models were presented through the process of analyzing the correlation
between indoor and outdoor environmental data to compare prediction performance.
However, in machine learning methods, accuracy performance can be degraded if the
data collected through IoT sensing is incorrectly measured or omitted depending on the
different sensors and environment. Therefore, reliable IoT sensing data are required to
accurately predict the amount of natural ventilation in a machine-learning-based analysis
model. In this study, considering the uncertain data environment, we propose a way to
enhance the reliability of features by generating auxiliary data, such as the regular and
irregular features according to environmental variables occurring indoors and outdoors.
Finally, the accuracy of natural ventilation prediction is improved by using the ensemble
technique with the observed, predicted, and important features. Table 1 shows the summary
of related works about natural ventilation prediction. Note that we represent simplistic and
complicated methods which use simple equations, such as the mass balance equation, for
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several parameters and complex equations, such as calculating the airflow according to the
various building scales, respectively.

Table 1. Comparison of Natural Ventilation Prediction Studies.

Year Simplistic/Complicated Characteristic of Methods Major Subject Consideration of Mismeasurement
Sensing Features

2 (2007)
3 (2008)
4 (2013)
5 (2017)

Simplistic Analytical model
through basic equations Airflow No

6 (2017)
7 (2018)
8 (2019)
9 (2020)

Complicated
Combining empirical
models for small and

large scale
Airflow No

10 (2017)
11 (2019)
12 (2020)
13 (2021)

Complicated Analysis simulation based
on CFD for complex data Airflow No

14 (2021)
15 (2021)
16 (2022)
17 (2022)

Complicated Prediction based on
machine learning Ventilation rate No

Proposed Complicated Prediction considering
mismeasurement data Ventilation rate Yes

3. Materials and Methods
3.1. Problem Definition

In this study, we propose a machine learning method to improve the prediction accu-
racy of the NVR by considering the mismeasurement issue in IoT sensing data. The overall
concept of this study is depicted in Figure 1. In IoT sensing environments, mismeasurement
of data can occur due to sensor errors, leading to a decrease in the overall NVR prediction
accuracy. To address this, auxiliary data are generated to enhance the reliability of sensing
data. By training a machine learning model that combines sensing data and auxiliary
data with correlations to NVR, an improved NVR prediction accuracy is obtained, thereby
enhancing the reliability of the sensing data.
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3.2. Experimental Environments

In this study, we predict the NVR using IoT sensing environmental data measured both
indoors and outdoors. The dataset was collected from an office located on the first floor
of a university research building in Daejeon, Korea from 2:00 p.m. to 6:00 p.m., between
1 October and 19 November 2019. The experimental space was restricted to a 98.72 m3

office. In addition, there were usually two occupants entering and leaving the space with
unrestricted access for practical field measurement of all environmental variables. The
experimental space was composed of four façades, and two tilting windows were left open
for measurement of sensor values, while the rest of them were kept closed to maintain
a constant open area. A window-mounted slit was installed to measure the amount of
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natural ventilation, and the indoor and outdoor environment sensors as well as the slit
installation locations are depicted in Figure 2. We installed indoor/outdoor environmental
sensors approximately 2 m away from the tilted windows, as shown in Figure 2, to ensure
that all environmental variables were not affected by each other. Additionally, the height
of each sensor was approximately 1.2 m from the ground, because the targeted space was
an office. To conduct experimental tests, we used Intel(R) Xeon(R) CPU E5-2620 v4, 64GB
RAM, and RTX 3090 GPU. Also, Python 3.8 in Anaconda was used.
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Figure 2. Space floor plan for acquisition environmental data: purple dots and yellow dots represent
indoor and outdoor environmental variable measuring sensors, respectively, blue dots represent sensors
for measuring natural ventilation, and the green square indicates the location of the chamber installation.

In order to construct an NVR prediction model, we exploit the IoT dataset consisting
of indoor and outdoor features such as Sr, Tin, Tout, Td, RHin, RHout, RHd, Pd, Wd, and
Ws (i.e., solar radiation, indoor air temperature, outdoor air temperature, difference of
in/outdoor air temperature, indoor relative humidity, outdoor relative humidity, difference
of in/outdoor relative humidity, pressure difference, wind direction, and wind speed), as
shown in Table 2. Furthermore, Pd, Wd, Ws, and Td are well-known factors that have a
significant impact on NVR. On the other hand, Sr, Tin, Tout, RHin, RHout, and RHd are
relatively less influential factors on NVR. Note that we represent high influence levels,
which are well-known variable parameters related to NVR (i.e., Pd, Wd, Ws, and Td). Also,
other variable parameters are represented as medium level (i.e., Sr, Tin, Tout, RHin, RHout,
and RHd).

To collect the accurate NVR, we exploited two airflow sensors on the open area of the
slit installed in the open tilting window for measuring the airflow velocity. That is, two
airflow sensors measure the amount of natural ventilation flowing into the room, and then
the NVR was calculated by averaging the values of the two sensors to reduce the error of
difference of two individually measured sensors, as shown in Equation (1). In Equation (1),
the amount of natural ventilation and the airflow velocity are represented by Ac and Vs,
respectively, where Ac is each opening area of the chamber, and vs. is each air velocity at
opening area. Note that the sampling interval was 1 min, with a total of 241 data collected
per day from 2:00 p.m. to 6:00 p.m. For the experimental setup, a total of 7712 sample data
were collected in 32 business days.

NVR =
∑n

i=1(Aci ×Vsi )

n
(1)

Although Wd and Ws are factors that greatly affect NVR prediction, it is difficult to
accurately measure Wd and Ws due to their irregular and rapidly changing characteristics.
Therefore, in this study, we quantized Wd and Ws into two and two (i.e., inside and



Electronics 2023, 12, 3294 6 of 23

outside the building) and four (i.e., calm, light air, light breeze, and gentle breeze) levels,
respectively, as shown in Tables 3 and 4. In this study, we only focus on deep-learning-
based NVR prediction in a mismeasurement environment, and Wd and Ws are treated as
IoT features. To accurately prediction model with Wd and Ws, we analyze Wd and Ws,
including the use of quantization methods, the advance approaches of which could make
prediction using artificial intelligence, such as deep learning and fuzzy logic theory [18] in
future work.

Table 2. Indoor-outdoor environmental data.

Type of Variables Variable Feature Symbols Units Range Influence

Input
(Periodic)

Solar radiation Sr Mj/m2 0~0.015 Medium
Indoor air temperature Tin ◦C 15.5~27.7 Medium

Outdoor air temperature Tout ◦C 1.7~28.1 Medium
Difference of in/outdoor

air temperature Td ◦C −2.1~16.4 High

Indoor relative humidity RHin % 16~71 Medium
Outdoor relative humidity RHout % 26~93 Medium
Difference of in/outdoor

relative humidity RHd % −53~12 Medium

Input
(Nonperiodic)

Pressure difference Pd mbar 0~0.36 High

Wind direction Wd
True-north-based

azimuth divided in
16 angles

0~359 High

Wind speed Ws m/s 0~5.31 High
Target Natural ventilation rate NVR m3/m 0~3.96 -

Table 3. Quantization for wind direction (Wd).

Wind Direction

Grade Degree Building Direction

0 271◦~359◦

0◦~89◦ Inside building

1 90◦~270◦ Outside building

Table 4. Quantization for wind speed (Ws).

Wind Speed

Grade m/s Kind of Wind

0 0~0.2 Calm
1 0.3~1.5 Light air
2 1.6~3.3 Light breeze
3 3.4~5.4 Gentle breeze

3.3. Overview of the Proposed Method

In this study, we propose a way to apply a reliable deep learning model for predicting
NVR accurately by using auxiliary data in consideration of the mismeasurement of the
IoT sensing environment. Figure 3 shows the overall application of the deep learning
model. The combined features of observation and auxiliary (i.e., generation and impor-
tance features) are used for reliable training with complementary characteristics, and
then a bagging-based ensemble model to enhance the prediction model of NVR in the
mismeasurement data is designed.
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3.4. Foundational NVR Prediction Model Based on Deep Learning

In this study, the foundational NVR prediction model is designed based on a DNN
(Deep Neural Network) with four hidden layers. Note that refs. [19–22] have reported
that artificial neural networks with two or more hidden layers are commonly referred to
as “deep”, and using two to five hidden layers can provide higher prediction accuracy
than using a large number of hidden layers, if the number of input features is not large.
Furthermore, since the number of features in the input layer is ten for NVR prediction,
the deeper hidden layers are used, and cost-increasing and overfitting problems may
occur. Therefore, based on the pre-experimental test with grid search to find the best set of
hyperparameters, we designed the DNN model for foundational NVR prediction using four
hidden layers. To avoid an overfitting problem, a deep learning model using a small number
of hidden layers may be designed in insufficient knowledge capacity, and thus dropout
methods are applied to design a deep learning model maintaining sufficient knowledge
capacity. To find the optimal number of drop layers, the pre-experiment was conducted
by applying one to three dropout layers, and we confirmed that using three dropout
layers can provide the best prediction performance. In addition, for optimization of model
hyperparameters, grid search was empirically conducted to determine the parameters that
improve model performance. Therefore, in this study, as shown in Figure 4, we designed
the DNN model with four hidden layers and three dropout layers. Each of the four hidden
layers is set to 200, 100, 100, and 50 nodes, respectively, considering the relatively small
number of input features. Additionally, each hidden layer contains 2200, 20,100, 10,100,
and 5050 parameters, respectively. The output layer, comprising a single node, is composed
of 51 parameters. Consequently, the entire model is comprises 37,501 parameters. Finally,
we deduced the optimized model for obtaining maximized model performances among all
possibilities from grid search. In addition, all the dropout rates were set to 0.2, respectively.
The ReLU activation function is used to prevent the gradient vanishing problem, and early
stopping is applied to finish training at an appropriate time in 20 to 200 epochs. Finally,
zero-mean normalization is applied to reduce the difference in scales between each IoT
sensing feature.
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3.5. ReLU (Rectified Linear Unit)

ReLU is the most used activation function in deep learning, primarily for addressing
the gradient vanishing problem. ReLU is well known to provide good performance for
training deep learning [23]. In this study, for predicting NVR, the ReLU activation function
is applied to each hidden layer using Equation (2). ReLU returns the input value as the
output, if the input value is greater than zero. Otherwise, ReLU returns zero as the output
if the input value is less than or equal to zero. These characteristics of ReLU help mitigate
the vanishing gradient problem, which can occur during backpropagation and hinder the
training process.

f (x) = max(0, x) (2)

3.6. Standard Normalization

The standard normalization normalizes the mean and variance of input features to
0 and 1, respectively [24]. For transformation to x’i with reduced scale difference of each
input feature by considering the distribution and scale difference of each IoT sensing data
feature, the standard normalization is applied by dividing the difference between the input
feature xi and the mean xmean of the input features by the standard deviation xstd, as shown
in Equation (3).

x
′
i =

xi − xmean

xstd
(3)

Note that xstd is calculated using Equation (4) for the number N of samples.

xstd =

[
1

N − 1

N

∑
I=1

(Xi − Xmean)
2

] 1
2

(4)

3.7. Auxiliary Data Generation
3.7.1. Periodic and Nonperiodic Sensing Data

Training the input feature data with auxiliary feature data can help improve the NVR
prediction accuracy in uncertain IoT sensing environments. In this study, we exploit two
types of auxiliary feature data considering the generation and importance of IoT sensing
data. To generate the auxiliary feature data, periodic and nonperiodic sensing data are
leveraged using a DNN and LSTM, respectively. We believe that LSTM has the advantage
of good generation accuracy in slightly changing environments. However, to consider
rapidly changing environments, we apply the DNN method instead of LSTM. LSTM is
used based on previous sequential data, while a DNN is used based on other features
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within a same train sample. The choice of the two generation methods for the ten input data
points of the sensing data depends on the presence or absence of periodicity in each feature.
According to the properties of each environmental dataset, we, respectively, leveraged
the generative models consisting of a DNN and LSTM for building auxiliary data with
periodicity and nonperiodicity. These two generation methods are used to enhance the
accuracy of the auxiliary data, and the generated auxiliary data help compensate for the
uncertainty of the sensing data. Among the ten input features, the data with periodicity are
Sr, Tin, Tout, RHin, RHout, RHd, and Td, while the data without periodicity are Pd, Wd,
and Ws.

Figure 5 shows the daily and hourly changes in Sr, Tin, Tout, and Td. Figure 5
separately depicts the daily changes in the sensing data on the left and the hourly changes
on the right. The left graph of Figure 5 shows the changes in the sensing data according to
the day over six days (10/1, 10/2, 10/3, 10/4, 10/5, and 10/7), while the right graph of
Figure 5 shows the changes in the sensing data according to the time of day (from 14:00
to 18:00). Among all the environmental variables, Sr, Tin, Tout, and Td showed gradual
changes in the measured dataset according to both daily and hourly trends. Namely, they
tended to have similar periodicity day by day. In addition, Sr and Tout decreased as time
increased, but Td increased. In the case of Tin, it showed mostly stable and lower tendencies
without rapid changes.
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Figure 6 shows the periodicity of RHin, RHout, and RHd. The left side of Figure 6
shows the daily changes in the sensing data, and the right side of Figure 6 shows the
gradual changes in the sensing data over the course of a day. Relative humidity-related
variables also had similar tendencies as the periodicity of Tin. They did not change much,
showing gradual changes without high increases or decreases. Thus, LSTM was finally
utilized by generating auxiliary data with periodicity, since Sr, Tin, Tout, Td, Rhin, RHout,
and RHd were classified into the features having the periodicity and tendencies of the
sequential dataset.
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On the other hand, Figure 7 shows the Pd, Wd, and Ws daily and hourly changes
according to time, demonstrating a pattern without periodicity. The daily changes in Pd,
Wd, and Ws in Figure 7 fluctuate rapidly regardless of time. Furthermore, the hourly
changes in the sensing data throughout the day show nonperiodicity for the same time
periods changing drastically. Thus, the DNN was used for generation of auxiliary data
without periodicity, because Pd, Wd, and Ws referred to the nonperiodic dataset without
lower changes in periodicity and tendencies. Note that in this study, Wd and Ws change
dynamically, as shown in Figure 7b,c. Wd and Ws are quantized into two and four (i.e.,
calm, light air, light breeze, and gentle breeze) levels.
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3.7.2. Generating Auxiliary Data Based on SSL

• In this study, we propose a method for generating auxiliary data based on SSL (semisu-
pervised learning) to address the issue of mismeasurement in sensing data. SSL is a
type of ML (machine learning) technology that aims to overcome the limitations of both
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supervised and unsupervised learning. Supervised learning requires a large amount
of training data to classify test data, while unsupervised learning does not require
labeled data but struggles to accurately cluster data. To overcome these challenges,
SSL learns and labels data with a small amount of training data [25]. By iteratively
learning and adding predicted features from a deep learning model to the training
data, SSL achieves improved accuracy compared with general ML approaches [26].
Generating auxiliary data based on SSL helps prevent the deterioration of reliability in
mismeasurement data.

• Figure 8 shows the process of generating auxiliary data based on SSL. To generate
SSL-based auxiliary data, a model trained on observation features, which represent
all the features of environmental data, predicts a specific feature, called Prediction
Fi. Subsequently, the predicted feature, Prediction Fi, is added to the training data
to generate more refined auxiliary data. To ensure accurate generation of auxiliary
data, the method distinguishes between data that changes rapidly and gradually
over time. It applies specific auxiliary data generation techniques for each type
of data. Data with gradual changes and identifiable patterns are used to generate
prediction regular features through LSTM-based prediction, while rapidly changing
data generate prediction irregular features through prediction using the FC-DNN
model. By combining these two types of auxiliary data, we ultimately create generated
auxiliary features that complement the mismeasurement data.
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3.7.3. Auxiliary Data with Important Features

• Along with the generation of sensing data, this study selects important features after
analyzing the correlation between the NVR and environmental variables. We finally
use them as auxiliary data. Considering the correlation between target data and input
data in the prediction model is one of the ways to improve the model’s predictive
performance [26]. Therefore, we improve the prediction accuracy by using the main
features that have a relatively greater impact on NVR through prior research results
and correlation analysis as auxiliary data. In prior research on NVR prediction, it
has been reported that the factors affecting NVR are four elements near the building
(Pd, Wd, Ws, and Td) [27]. We use the heatmap method to compare the correlation
of the prior research results with the sensing data and analyze the impact between
each feature, as shown in Figure 9 in the heatmap. The relationship between the
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four important factors highlighted in the previous research and NVR are all positive
correlations, appearing as 0.84, 0.13, 0.36, and 0.38, respectively. Even excluding
these four factors, Tout and Tin are high correlations because they are related to Td.
Based on the results of previous research, we reidentified how much wind-related
variables and pressure differences could be affected to variations in NVR based on
correlation analysis. As shown in the results, in/outdoor temperature differences were
significantly influential to changes in NVR, because they are highly related to making
pressure differences changeable. Therefore, we select Td as the important feature and
exclude Tin and Tout. Also, the environmental data assumptions vary depending on
the building’s measurement conditions (e.g., direction, building scale, and location).
In this study, considering the differences in measurement conditions, we select four
factors as the importance features based on the results of previous research and use
them as auxiliary data.
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3.8. NVR Prediction Model Scenarios

In this study, we designed an ensemble model based on the bagging method using
data generated by semisupervised learning and selected key feature data. Bagging is a
method of creating a strong classifier by combining multiple weak classifiers, generating
multiple bootstrap samples, modeling them, and then combining them to improve the
accuracy of the final prediction model [28]. In this study, we created three sub-DNN models
and improve prediction accuracy through the bagging ensemble model. Table 5 shows
the learning feature data for each scenario, with three submodels and an ensemble model
configured for each scenario. In Table 5, S1 uses all the features of the observed data for
learning. S2 uses the same number of input dimensions as S1 but learns using auxiliary data
that recreate the features of the observed data. S3 learns four important features composed
through the selection process, and S4 learns using all features of S1’s input features and the
auxiliary data of S2 and S3.

Table 5. Features by Learning Scenario.

Scenario Title Features

S1 Observed features X
S2 Auxiliary features PREDX
S3 Important features Pd, Wd, Ws, and Td
S4 Ensemble of S1, S2, and S3 S1 f eatures, S2 f eatures, S3 f eatures

X: Sr, Tin, Tout, Td, RHin, RHout, RHd, Pd, Wd, and Ws
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3.9. Proposal Algorithm

In this study, we propose a method to obtain an improved NVR prediction accuracy
using auxiliary data and a deep learning model, even in environments where mismeasure-
ments can occur. Algorithm 1 represents the proposed method as an algorithm, obtaining
the improved accuracy PREDE through the input of sensing data X and the proposed
method. During the generation of auxiliary data, in Step 1, the predicted value PREDS1 of
DNNS1, which is trained with the sensing data TrainX, is generated for use in the learning
process. In Step 2, depending on the periodicity of the auxiliary data to be generated, either
DNN or LSTM is selected as the model, and train data are formed by excluding one of the
features of the auxiliary data, Xi, and using X and PREDS1. The process is repeated C times,
resulting in 10 auxiliary datasets, PREDX. Additionally, in Step 3, ImportantX is generated
based on its importance to the NVR. The generated auxiliary data are split into TrainPREDx
and TrainImportantx using the train_test_split function, and two DNN models, DNNS2 and
DNNS3, are fitted with each dataset. Finally, In Step 4, an ensemble model, Enet, is created
to fuse the three scenario models, DNNS1, DNNS2, and DNNS3, and the datasets TrainX,
TrainPREDx, and TrainImportantx are set accordingly. Subsequently, outlier data are inserted into
the test dataset to create TestX’, TestPREDx’, and TestImportantx’, and the predicted results PREDE
are obtained using Enet. Through this process, we enhance the reliability of sensing data.

Algorithm 1. Proposed NVR Prediction Methods with Auxiliary Data

Input:
Observation Train Data: TrainX
Observation Test Data: TestX
Observation Data Columns: C

Output:
Natural Ventilation Rate: NVR

Step 1 DNNS1.fit(TrainX)
PREDS1 = DNNS1.predict(X)

Step 2 For i in C:
If Xi ! = Periodicity:

ModelXi = DNN
else:
ModelXi = LSTM
ModelXi.fit(TrainX - TrainXi + PREDS1)
PREDxi = Modelxi.predict(TestX − TestXi)

PREDX + = PREDxi
ImportantX = X[[Important]]

Step 3 TrainPREDx, TestPREDx = train_test_split(PREDX)
TrainImportantx, TestImportantx = train_test_split(ImportantX)
DNNS2.fit(TrainPREDx)
DNNS3.fit(TrainImportantx)

Step 4 Enet = Ensemble_create(DNNS1, DNNS2, DNNS3)
Enet.fit(TrainX, TrainPREDx, TrainImportantx)
TestX’, TestPREDx’, TestImportantx’ = insert_outlier(TestX, TestPREDx, TestImportantx)
PREDE = Enet.predict(TestX’, TestPREDx’, TestImportantx’)
return PREDE

4. Experimental Results
4.1. Evaluation Metrics

In this study, R2score, MMscore, and ACCscore were used to evaluate metrics. The
reason for evaluating and comparing the model’s performance using three evaluation
metrics is to consider the differences in interpretation and disadvantages of each metric.
The R2score and MMscore assess the model’s performance by quantifying the statistical
disparity between the predicted values and the corresponding measurements within the
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prediction model. Conversely, the ACCscore evaluates the performance by determining
the proportion of accurately classified instances within the classification model.

R2score (R-squared score)
The R-squared score is a statistical method that measures how to well explain a model

and predict the outcome of a given dataset [29,30]. The formula for the R2score calculation
is as follows:

R2score = 1− ∑n
i=1(ti − p̂i)

2

∑n
i=1(ti − pi)

2 (5)

The value of R2 ranges from 0 to 1. The closer it is to 1, the better the model perfor-
mance. Here, ti stands for the target value, p̂l stands for the predicted value, and pl stands
for the mean of all target values.

MMscore (Mean MAE score)
MMscore is an evaluation metric created in this study to confirm the difference between

prediction and measurement of the model. It uses MAE (Mean Absolute Error) and Mean
to measure performance. The expression of MMscore is as follows:

MMscore =
(Mean−MAE)

Mean
(6)

In the case of Mean, it means mean for Y data among test data, and MAE means the
average absolute error between prediction and actual measurement. In Equation (6), when
the MAE value approaches 0, the MMscore reaches its maximum value of 1. Conversely,
if the MAE tends towards infinity, the MMscore takes on a negative infinity value. When
the MAE is equal to the Mean, the MMscore becomes 0, which is the same as the model
predicting all values to 0. The calculation of Mean-MAE is performed using Equation (7).

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (7)

where Yî expresses the predicted value, Yi is the observed value, and n is the number of
samples. The MAE scores are linearly increasing with the increase in errors [31,32].

ACCscore (Accuracy score)
To evaluate the accuracy of the numerical data, we applied an allowable error range

based on the distribution of each datum. Equation (8) was used to apply the allowable
error range for each datum.

True = |y− prediction| < 1
n

n

∑
i=1

yi × 0.2 (8)

Accuracy =
1
n

n

∑
i=1

Truei (9)

In Equation (8), if the absolute difference between the actual value y and the predicted
value falls within 20% of the average value of y, it is classified as True. The accuracy is
measured using Equation (9), which calculates the rate of the number of True values to the
total number of y.

4.2. Outlier Dataset

In this study, we considered sensor mismeasurement situations during the data collec-
tion process and evaluated the model’s accuracy by arbitrarily generating outliers in the
test data. For data with periodicity, it changes gradually over time. However, there may
be cases where abrupt outlier data occur due to sensor mismeasurement, deviating from
the periodic pattern. Even for data without periodicity, outliers can occur from unseen
patterns. Therefore, in this study, we defined data with different relationships with various
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observation features due to mismeasurement as outlier data, and we created a portion of
the test data as outlier data to assume outlier occurrence situations.

To generate outlier data, we randomly divided the data into training and test data,
then within the test data, we generated outliers at some proportions to regenerate as the
test set. Note that to generate the value and position within the test data, the random
function provided in Python 3.8 was used. Figure 10 shows the datasets that include outlier
data at each of the 0%, 10%, 20%, and 30% proportions. Once outlier data are generated,
they are replaced within the sample data. For example, if we divide the training/test rate
into 60%/40%, the test data are separated into 3,084 observations out of the total 7712 data.
Note that the dataset with 30% outliers means that 925 outliers are included in the 3084 test
samples, which is 30% of the rate. Also, 0% means that no outlier data were included.
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4.3. Evaluation Metrics of Generated Auxiliary Data

The proposed method generated auxiliary data by learning the NVR, which was
predicted by training the measured sensing data. Therefore, the accuracy of the NVR
prediction tends to depend on the generation of auxiliary data. To validate the accuracy of
the auxiliary data, we used three evaluation metrics (i.e., R2score, MMscore, and ACCscore).
The R2score incorporates the notion of prediction and measurement discrepancies, while
the MMscore utilizes the concept of errors. These two evaluation metrics are primarily
employed for regression problems. However, the binary classifications Wd and Ws were
excluded from consideration due to the challenges associated with their measurement
using R2score and MMscore.

Table 6 shows the evaluation metrics of the generated auxiliary data for each environ-
mental feature data. Based on the ACCscore, the accuracy of Td, RHin, Pd, and RHout
was found to be 0.978, 0.945, 0.917, and 0.912, respectively. Regarding the R2score and
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MMscore, most of the characteristics, except for Wd and Ws, which are challenging to
evaluate, exhibited results of 0.9 or higher.

Table 6. Evaluation metrics of the generated auxiliary data for each environmental feature datum.

Sr Tin Tout Td RHin RHout RHd Pd Wd Ws

R2score 0.933 0.996 0.992 0.986 0.995 0.981 0.974 0.938 - -
MMscore 0.916 0.997 0.987 0.964 0.992 0.981 0.937 0.806 - -
ACCscore 0.891 0.871 0.814 0.978 0.945 0.912 0.728 0.917 0.626 0.615

4.4. Analyzing NVR Prediction Accuracy

NVR prediction model learning was conducted in the following way: From the entire
dataset, five training sets were randomly selected at rates of 0.2, 0.3, 0.4, 0.5, and 0.6, and
the model was trained. The remaining datasets (rates of 0.8, 0.7, 0.6, 0.5, and 0.4) were
used as test data to measure the NVR prediction accuracy relative to the learning data
rate. Figure 11 shows each NVR prediction accuracy with three evaluation metrics of the
foundation model (Scenario 1) according to the learning rate. It was observed that as the
rate of learning data increased, the NVR prediction accuracy also increased across all three
evaluation metrics. However, when the three evaluation metrics were used, there was a
difference in the results, which can be interpreted as follows: When a 0.6 rate of learning
data were trained, the evaluation metrics R2score, MMscore, and ACCscore of Scenario 1
were 0.978, 0.845, and 0.745, respectively. In the case of ACCscore, as shown in Figure 11, it
exhibited an accuracy trend similar to R2 as the rate of the train set increased. The three
accuracy curves for NVR prediction exhibit similar patterns based on the learning rate.
However, the ACCscore consistently appears to be approximately 10% lower than both
the MMscore and R2score. Nevertheless, it is important to note that this discrepancy arises
due to the contrasting calculation methods employed by ACCscore (which assesses the
rate of correct answers) and R2score and MMscore (which measure the disparity between
predictions and actual measurements). Thus, the interpretation of results through all three
performance indicators remains equally plausible.
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Figure 11. Foundational NVR prediction model accuracy based on learning rate using evaluation
metrics (R2score, MMscore, and ACCscore).

In this study, to consider the occurrence of outlier data due to mismeasurement, we
evaluated the accuracy of the model by introducing randomly generated outlier data in
datasets with proportions of 0.0, 0.1, 0.2, and 0.3 in the test data (see Figure 12). Figure 12
shows the NVR prediction accuracy for various training and mismeasurement rates with
different scenarios. The x-axis represents the scenarios, while the y-axis represents the
accuracy. Figure 12a–d shows the ACCscore for each scenario of training data rates of
0.2, 0.4, 0.5, and 0.6 at mismeasurement rates of 0, 0.1, 0.2, and 0.3, respectively. Overall,
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as the training rate increases, the NVR prediction accuracy improves across all scenarios.
Furthermore, we observed a decrease in NVR prediction accuracy with an increase in
the outlier data rate. Specifically, for S2, which only trained on generated auxiliary data,
a lower accuracy was observed compared with S1, which trained on actual observed
data. Additionally, for S3, which had a smaller input dimension due to using only four
main features, a lower accuracy was observed compared with S1. On the other hand,
for S4, the proposed method, which utilized the knowledge of observed data from S1,
auxiliary data from S2, and main data from S3 through a powerful ensemble model with
strong generalization performance, an improvement of approximately 0.2 in accuracy was
observed across all graphs, depending on the outlier data rate and training rate. When
train 0.2 and outlier 0 were considered, S4 showed an improvement of approximately 0.28
compared with S1, and for outlier 0.3, an improvement of approximately 0.29 in accuracy
was observed. Similarly, when train 0.6 and outlier 0 were considered, S4 showed an
improvement of approximately 0.18 compared with S1, and for outlier 0.3, an improvement
of approximately 0.23 in accuracy was observed. Thus, through the proposed approach,
S4, which involves training on observed data, achieved a maximum improvement of
0.29 (outlier 0.3, train 0.2) compared with S1, and an improvement of approximately
0.2 in accuracy was observed across all graphs in Figure 12. Therefore, we confirmed
that the proposed method can provide an accurate NVR prediction performance without
degradation in accuracy in mismeasurement sensing environments.
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0.4, (c) train 0.5, and (d) train 0.6.

Table 7 shows the NVR prediction accuracy according to the training and outlier rates
of S1 and S4 as three evaluation metrics (R2score, MMscore, and ACCscore). When train 0.6,
outlier 0, the R2score, MMscore, and ACCscore of S1 were 0.845, 0.840, and 0.745, and for
S4, they were 0.946, 0.920, and 0.928. The proposed method, S4, improved by an average
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accuracy of 0.12 over S1 in three evaluation metrics. As the training rate increases, the
degree of improvement of S4 compared with S1 gradually decreases, which means that
as the training rate decreases, the degree of accuracy improvement through the proposed
method increases. Given that the ensemble model S4 has acquired knowledge from all
three scenarios, there exists the potential to enhance prediction accuracy by enhancing
the reliability of the NVR observational data, even in cases where the training rate is low.
Consequently, the proposed method yielded an improvement in ACCscore of up to 0.287
(S4 and S1, train rate 0.2, and outlier rate 0.0) at an identical training rate. Moreover,
when employing the training rate adjustment and proposal method, there was a significant
enhancement from 0.580 (S1, train 0.2, outlier 0, and ACCscore) to 0.928 (S1, train 0.6, outlier
0, and ACCscore).

Table 7. Comparison of Scenario 1 and Scenario 4 with training data and outlier rate.

Metrics Train Rates Scenarios
Outlier Rates

0 0.1 0.2 0.3

R2score

0.2
S1 0.684 0.603 0.681 0.628
S4 0.931 0.901 0.898 0.874

0.4
S1 0.794 0.744 0.757 0.724
S4 0.941 0.927 0.914 0.877

0.5
S1 0.830 0.756 0.760 0.736
S4 0.943 0.933 0.914 0.905

0.6
S1 0.845 0.786 0.768 0.743
S4 0.946 0.934 0.922 0.908

MMscore

0.2
S1 0.750 0.744 0.740 0.724
S4 0.860 0.851 0.847 0.842

0.4
S1 0.814 0.808 0.786 0.780
S4 0.918 0.911 0.898 0.871

0.5
S1 0.833 0.802 0.802 0.795
S4 0.922 0.905 0.898 0.890

0.6
S1 0.840 0.805 0.799 0.774
S4 0.920 0.896 0.888 0.870

ACCscore

0.2
S1 0.580 0.567 0.540 0.517
S4 0.867 0.844 0.826 0.807

0.4
S1 0.659 0.632 0.624 0.613
S4 0.886 0.872 0.858 0.845

0.5
S1 0.717 0.654 0.633 0.621
S4 0.901 0.886 0.879 0.854

0.6
S1 0.745 0.656 0.644 0.637
S4 0.928 0.895 0.894 0.868

Furthermore, to account for possible mismeasurement scenarios in the sensing data
environment, we introduced outlier data with rates of 0.0, 0.1, 0.2, and 0.3 in the test dataset
to compare the model performance. As the proportion of outlier data increased, it was
observed that the accuracy of all scenarios decreased. When the train rate was 0.6 and
outlier rates were 0, 0.1, 0.2, and 0.3, the ACCscores of S1 were 0.745, 0.656, 0.644, and 0.637,
respectively. In contrast, the ACCscores of S4 were 0.928, 0.895, 0.894, and 0.868 in the same
train and outlier rates. Also, we confirmed that the other performance metrics R2score and
MMscore also have a similar trend with ACCscore. Therefore, the proposed approach can
be efficiently applied to improve NVR prediction accuracy using a combination of auxiliary
data in a mismeasurement sensing environment through ensemble modeling.

4.5. Analyzing the Impact of Observations and Auxiliary Data on the NVR Prediction Model

In this study, we extracted Shapley Additive Explanations to verify the feature contri-
bution of environmental data, auxiliary data using semisupervised learning, and important
data for each scenario model. We used the SHAP library in Python to extract SHAP values,
and Figure 13 shows the feature contributions for each scenario. Figure 13 shows the impact
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of the features used in the model learning of each scenario on NVR prediction, presenting
the absolute values of the SHAP averages in descending order. In the SHAP value graph for
Scenario 1, Pd, RHd, Td, Tout, and Tin have the most significant impact on NVR prediction.
From the top five features, four features excluding RHd have been previously identified
as important factors affecting NVR in prior prediction studies, reinforcing the significant
impact of correlated features on prediction when utilizing environmental data.
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Also, Scenario 2 places Pd, Td, and RHd, which were pointed out as important features
in Scenario 1, at the top. Among the top five features, Tin and Tout are associated with Td;
so, there is not much difference in ranking from Scenario 1. However, the difference in
feature contribution between the two scenarios is that the features used in Scenario 2 were
generated to assist in the uncertainties that can occur in the data collection environment
of Scenario 1, and thus, the ranking within the features related to the importance features
changed when comparing the difference in feature contribution with Scenario 1. The SHAP
value of Scenario 3 shows that Pd significantly contributes to NVR prediction. Natural
ventilation supplies outdoor air to the indoor space with the movement of air. Since the
movement of air is induced either by a pressure difference or by the buoyancy phenomenon
due to rising warm air, Pd is interpreted to have a greater influence than Td, Ws, or Wd.

Scenario 4 includes all the features of Scenario 1, 2, and 3; hence, in the case of Pd, three
types of features, Pd_pred, Pd_Important, and Pd, rank at the top. Among the three Pd types,
Pd_pred, which was generated as auxiliary data, shows the highest contribution, indicating
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that the accuracy of NVR prediction has improved due to the learning of Pd_pred, which
was generated for reliable learning, rather than the learning of sensing data Pd, which did
not consider the uncertain sensing environment. In addition to Pd, auxiliary data such as Td
and RHd are also among the top in feature contribution out of the total 34 features, similar to
sensing data. Scenario 4, which inherited the knowledge of Scenario 2, can be interpreted as
contributing to the improvement of NVR prediction accuracy by solving the realistic problem of
the mismeasurement of collected data through the knowledge of auxiliary data. In Scenario 3,
despite using the same data as sensing data Pd, the contribution of Pd_Important was higher.
This can be attributed to the influence of Scenario 3, which recognized Pd_Important as a
significant feature correlated with NVR through prior research and feature selection processes.
Therefore, in the feature contribution of Scenario 4, Pd_Important exhibits a higher feature
contribution than Pd.

In this study, we compared the feature contributions for NVR prediction in each
scenario using SHAP and observed that temperature, humidity, and Pd-related features
generally have relatively high contributions across most scenarios. Additionally, the use of
auxiliary data from Scenario 2, which addresses irregularly changing sensing environments,
showed the highest feature contribution in Scenario 4. This finding suggests that employing
auxiliary data improves data reliability, enhances NVR prediction accuracy, and allows for
better generalization performance. Consequently, Scenario 4 enables NVR prediction with
enhanced generalization performance by utilizing sensing data and auxiliary data.

5. Conclusions

In this study, we proposed a way to design a deep learning NVR prediction model
using generated auxiliary data considering the practical issue of the mismeasurement of
data collected in the IoT sensing environment that changes irregularly according to time and
space. The auxiliary data were generated based on semisupervised learning that predicts
the amount of natural ventilation using the observed data and repredicts the observed data
using the predicted amount of natural ventilation by using a DNN and LSTM according
to irregular and regular changes in characteristics, respectively. Finally, to enhance the
model against mismeasurement sensing data, a combination of observation, auxiliary, and
important features (i.e., Pd, Wd, Ws, and Td) were trained to achieve reliable learning.
Based on the experimental results, we compared the degree of improvement in each scenario
by adjusting the training and outlier rates with three performance metrics. When applying
the proposed approach at the same training rate, the NVR prediction accuracy improved by
up to 0.287, and when combining the training rate adjustment with the proposed approach,
the improvement reached up to 0.348. Furthermore, with the mismeasurement data, the
NVR prediction accuracy decreased by up to 20%. In contrast, we confirmed that the
proposed approach (i.e., S4) can provide more NVR prediction accuracy in the training
and outlier rates than the straightforward approach (i.e., S1). Consequently, the proposed
approach achieved a maximum improvement of 57% in reducing the accuracy decrease
caused by outlier data. In this study, we generated generation data and importance data
in addition to observation data, and we improved the accuracy of an NVR prediction
model that considers the mismeasurement environment by training an ensemble model
capable of comprehensively incorporating all knowledge. In future work, for a more
accurate prediction model, we will study advanced deep learning techniques and analyze
the accuracy performances, including accurate prediction of Wd and Ws.
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