
Citation: Petrellis, N.; Keramidas, G.;

Antonopoulos, C.P.; Voros, N. Fish

Monitoring from Low-Contrast

Underwater Images. Electronics 2023,

12, 3338. https://doi.org/10.3390/

electronics12153338

Academic Editor: Byung Cheol

Song

Received: 10 June 2023

Revised: 25 July 2023

Accepted: 2 August 2023

Published: 4 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Fish Monitoring from Low-Contrast Underwater Images
Nikos Petrellis 1,* , Georgios Keramidas 2, Christos P. Antonopoulos 1 and Nikolaos Voros 1

1 Electrical and Computer Engineering, University of Peloponnese, 263 34 Patras, Greece;
ch.antonop@uop.gr (C.P.A.); voros@uop.gr (N.V.)

2 Computer Science, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; gkeramidas@csd.auth.gr
* Correspondence: npetrellis@uop.gr; Tel.: +30-2610-369-215

Abstract: A toolset supporting fish detection, orientation, tracking and especially morphological
feature estimation with high speed and accuracy, is presented in this paper. It can be exploited in
fish farms to automate everyday procedures including size measurement and optimal harvest time
estimation, fish health assessment, quantification of feeding needs, etc. It can also be used in an open
sea environment to monitor fish size, behavior and the population of various species. An efficient
deep learning technique for fish detection is employed and adapted, while methods for fish tracking
are also proposed. The fish orientation is classified in order to apply a shape alignment technique
that is based on the Ensemble of Regression Trees machine learning method. Shape alignment
allows the estimation of fish dimensions (length, height) and the localization of fish body parts of
particular interest such as the eyes and gills. The proposed method can estimate the position of
18 landmarks with an accuracy of about 95% from low-contrast underwater images where the fish
can be hardly distinguished from its background. Hardware and software acceleration techniques
have been applied at the shape alignment process reducing the frame processing latency to less than
0.5 us on a general purpose computer and less than 16 ms on an embedded platform. As a case study,
the developed system has been trained and tested with several Mediterranean fish species in the
category of seabream. A large public dataset with low-resolution underwater videos and images has
also been developed to test the proposed system under worst case conditions.

Keywords: fish monitoring; shape alignment; machine learning; ensemble of regression trees; shape
orientation; morphological feature extraction; hardware acceleration

1. Introduction

Measuring fish morphological features and observing their behavior, are important
tasks that have to be carried out daily in fish farms. The purpose of these tasks is to
assess the growing conditions and the welfare of the fish, their health and feeding needs
as well as to decide the optimal time for harvest. Morphological feature measurement
includes the estimation of body dimensions and mass. Indicators of fish health include
eye diameter and color, gill color as well as malformations in the shape. The prompt
diagnosis of fish disease infections is necessary for lower cost treatment that will prevent
the spread of a disease to the whole population of the aquaculture. The trajectory, speed,
sudden changes in the orientation, etc., can be indicators of fish behavior. For example,
sluggish or indolent fish movements may indicate that a fish is sick or simply not hungry
while hyperactive fish that are afraid to reach food, may indicate that they are stressed,
or feel threatened. Until recently, the measurement of fish dimensions, weight, etc., was
performed manually and invasively, by taking sample fish out of the water. This is a
manual, time-consuming, high-cost, inaccurate and harmful procedure for the fish. Fish
tracking is almost impossible with the naked eye without infrastructure to capture and
analyze underwater videos of adequate duration. Tasks like fish tracking and classification,
morphological feature estimation and behavior monitoring are also important in observing
the population of various species in rivers or the open sea. For example, the population of

Electronics 2023, 12, 3338. https://doi.org/10.3390/electronics12153338 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153338
https://doi.org/10.3390/electronics12153338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3578-8494
https://orcid.org/0000-0003-0942-8022
https://doi.org/10.3390/electronics12153338
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153338?type=check_update&version=1

Electronics 2023, 12, 3338 2 of 29

a fish species can be estimated from the density of the detected fish in an image frame. A
fish species variety can be identified from its shape and skin texture or color. Fish tracking
can provide information about the behavior and potential stress of the fish in their natural
environment. Estimating fish dimensions may also be useful in an open water environment
for the assessment of a fish population condition. The morphological feature measurement
is based on fish shape or contour alignment in order to measure the dimensions, detect
malformations and locate parts of the fish that are of particular interest such as the eyes and
the gills. Moreover, morphological feature measurement methods can also be exploited
in fish product processing laboratories to estimate fish sizes, freshness, recognize species
variations, etc.

A review of smart aquaculture systems is presented in [1] where several processes
are described for breeding, nursery to grow out stages of cultured species, preparation of
cultured water resource, management of water quality, feed preparation, counting, washing
the cultured systems, etc. Another review of computer vision applications for aquaculture
is presented in [2]. These applications include fish and egg counting, size measurement,
mass estimation, gender detection, quality inspection, species and stock identification,
monitoring of welfare and behavior. The trends in the application of imaging technologies
for the inspection of fish products are examined in [3]. The reviewed image-processing
approaches are classified by the position of the light source (reflectance, transillumination,
transflectance, etc.). The applications examined include rigor mortis, tissue and skin color
as well as morphology to determine fat, firmness, shape, wounds, blood detection, etc.

The approaches for morphological feature measurement that have been proposed
in the literature, are often based on the contour of a fish or on the localization of specific
landmarks. Both image processing and deep learning approaches have been proposed
that can either achieve a high frame processing speed or a high accuracy. The applications
that achieve high accuracy in the estimation of morphological features are often tested on
datasets with high-quality images where the fish are clearly visible. In these datasets, fish
are captured either in a controlled laboratory environment or underwater with expensive
cameras and good environmental conditions (minimal reflections, calm sea, no murky
waters, etc.). Moreover, the size of the fish in these datasets is reasonably large to dis-
criminate the details of their bodies. The motivation for this work was to adapt a popular
human face shape alignment Machine Learning (ML) technique for fish shape alignment
with hardware acceleration support in order to achieve both high speed and accuracy.
Additional software modules and applications have been developed that either support
the proposed morphological feature extraction method (e.g., orientation classification, land-
mark editor) or offer additional services such as fish tracking. Moreover, we also developed
a dataset with low-contrast underwater images and videos, displaying relatively small
fish in murky waters, with intense reflections and refraction, limited visibility, turbulent
waters, etc. Thus, testing our framework with this dataset provided experimental results
under worst case conditions.

In the system described in this paper, a three-stage approach is followed to detect fish
in low-quality image frames where fish cannot be easily discriminated from the background.
The input image frame is segmented to extract the bounding boxes of the detected fish as
separate image patches. In the second stage, each patch is classified to a draft orientation
in order to select the corresponding pre-trained ML model that can align a number of
landmarks on the fish body. In the third stage, the shape (and potential malformations) of
the fish can be recognized from the located landmarks, in order to measure fish dimensions,
to classify fish and to map fish body parts of special interest (eyes, gills, etc.).

The first stage of the proposed system is based on the open source, fish detection,
deep learning method presented in [4]. Although detailed instructions are given in [4] on
how to train a customized fish detection model, the available pre-trained one performed
very well even with the low-resolution images of our dataset. Therefore, the pre-trained
model was stored on the target platform and was called from an appropriate Python script
that has been developed for image segmentation. The output of this script is a number

Electronics 2023, 12, 3338 3 of 29

of image patches and each one of these patches contains a single fish. The coordinates of
these patches in the original input frame are also extracted. Each one of the image patches
is classified in a draft fish orientation category, following high-speed methods that are
based on OpenCV [5] services. The coordinates of the patches can be used to track the
movement of the fish in successive frames. The short history of fish positions that have
been detected in the first stage can be used to estimate extended bounding boxes for the
intermediate positions through interpolation in order to bypass the time-consuming fish
detection process in some frames.

The extracted patches from each image frame are used as inputs to the last stage of
the developed system that performs shape alignment. Aligning a number of landmarks
is based on the ML approach called Ensemble of Regression Trees (ERT) presented by
Kazemi and Sullivan in [6] and is exploited in popular image-processing libraries such as
DLIB [7] and Deformable Shape Tracking (DEST) [8]. The DEST library was exploited in our
previous work [9] for driver drowsiness applications. The source code of the DEST library
was ported to Ubuntu and Xilinx Vitis environments to support hardware acceleration of
the shape alignment process on embedded targets. In the context of the present work, the
DEST library has also been ported to Microsoft® Visual Studio 2019 environment for fish
shape alignment.

Previous work on fish morphological feature measurement has also been presented by
one of the authors in [10] but it concerned different fish species and employed different
approaches for image segmentation, pattern matching and contour recognition. The fish
contour detection method followed in [10] was not based on shape alignment and ERT.
Specifically, three methods were proposed in [10] for fish contour recognition: (a) Pattern
Matching (PM), (b) Mask R-CNN applied on a Binary Mask Annotation (BMA) or on (c) a
Segmented Color Image Annotation (SCIA). An absolute fish dimension estimation based
on stereo vision was presented in [10] that is also applicable in the framework presented
here. The approaches (BMA, SCIA) presented in [10] exhibited in most cases, a much higher
error in the estimation of fish dimensions, than the present solution. All the alternative
methods (PM, BMA, SCIA) presented in [10] required a much higher frame-processing
latency (in the order of seconds) than the current approach thus, they could not be exploited
for real-time applications.

In the present approach, the accelerated shape alignment method required for the
morphological feature extraction showed a latency of a few ms on an FPGA platform or
less than 0.5 µs on an Intel i5, 3 GHz processor. The error in landmark position estimation
is in the order of 5% owed mainly to the low-contrast and quality of the images in our
dataset. Advanced histogram equalization techniques for contrast enhancement can be
found in [11]. Since no clear reference photographs are available in our case, contrast
enhancement could be achieved with No Reference methods like the one presented in [12].
In [12], information maximization is attempted by removing predicted regions (sky, sea)
and estimating the entropy of particular unpredicted areas via visual saliency. From a global
perspective, the image histogram is compared with the uniformly distributed histogram of
maximum information to find the quality score of the applied contrast mechanism. Contrast
enhancement methods will be employed in our future work to reduce the landmark position
estimation error. In the present work however, we use the developed dataset with low-
quality images without any enhancement to test the efficiency of our shape alignment
method under worst case conditions.

The contribution of the present work can be summarized as follows: (a) shape align-
ment based on ERT models is adapted to fish shapes, for high-precision morphological
feature estimation, (b) ERT models with different parameters are trained to find a tradeoff
between speed and accuracy, (c) a different ERT model can be trained for each fish orienta-
tion, (d) a fish detection method efficient for low-contrast images is employed and adapted
for local execution in the proposed framework, (e) fish tracking is supported exploiting
interpolation and orientation classification results, (f) hardware and software acceleration
techniques are implemented for shape alignment and others are also applicable for fish

Electronics 2023, 12, 3338 4 of 29

detection in order to support real-time video processing, (g) a new landmark editor has
been developed to easily prepare the training set and ground truth data, and (h) a new
public dataset with realistic photographs and videos has been developed.

This paper is organized as follows. The related work is presented in Section 2. The
materials and methods used are described in Section 3. More specifically, the dataset,
tools and target environment are presented in Section 3.1. The general architecture of the
proposed system is described in Section 3.2. The employed fish detection and the fish
orientation methods are described in Sections 3.3 and 3.4, respectively. The methodology
for implementing fish tracking is described in Section 3.5. The ERT background and
the customized DEST package used for fish shape alignment and morphological feature
extraction are described in Sections 3.6 and 3.7, respectively. The experimental results are
presented in Section 4. A discussion on the experimental results follows in Section 5 and
the conclusions are presented in Section 6. All abbreviations used throughout this paper
are defined in Abbreviations.

2. Related Work

Several approaches have been proposed concerning the estimation of fish freshness
in a controlled laboratory environment, based either on sensors or image processing.
In [13], various sensors that have been used in the literature for freshness estimation are
reviewed. These sensors include biosensors, electric nose or tongue, colorimetric sensor
array, dielectric and various sensor for spectroscopy (nuclear magnetic resonance, Raman,
optical, near infrared, fluorescence, etc.). Quality management systems have also been
proposed for freshness, safety, traceability of products, adopted processes, diseases and
authenticity [14]. In [15], the freshness of Scomber japonicus (mackerel) stored at a low
temperature is assessed from the correlations between the light reflection intensity of
mackerel eyes and the volatile basic nitrogen content. The assessment of fish freshness
from the color of the eyes is also examined in [16]. In this approach, a handheld Raspberry
PI device is used to classify the freshness of a fish into three categories (extremely fresh,
fresh, spoiled) based on pixel counting.

Fish classification and counting from underwater images and videos is another major
category where several approaches have been proposed in the literature. In [17], fish appear-
ing in underwater images are classified in 12 classes based on Fast Regional-Convolutional
Neural Networks (Fast R-CNNs). Similarly, in [18], You-Only-Look-Once (YOLO) [19] and
Gaussian Mixture Models (GMM) [20] are compared for the classification of 15 species with
an accuracy between 40% and 100% (>80% in most cases). Lekunberri et al. [21], count and
classify various tuna fish species transferred on conveyor belt with 70% accuracy. Their ap-
proach is based on various types of neural networks (Mask R-CNN [22], ResNet50V2 [23])
while the size of tuna fish, ranging from 23cm to 62cm, is also measured. Underwater fish
recognition is performed in [24] with an accuracy of 98.64%. Similarly, fish recognition
from low-resolution images is performed in [25] with 78% precision.

Morphological feature estimation is often based on active and passive 3D reconstruc-
tion techniques. The active techniques are more accurate but require expensive equipment
such as Lidars, while passive techniques employ lower cost cameras. Challenges of passive
3D reconstruction include the accurate depth estimation from two images that have been
retrieved concurrently, occlusions, patterns and saturate areas that may cause confusion.
In [26], a system based on stereo camera is described for accurate fish length estimation and
fish tracking. A monocular 3D fish reconstruction is presented in [27], where successive
images are used from fish carried on a conveyor belt in order to measure their size. CNNs
implemented on Graphical Processing Units (GPUs) are used for foreground segmentation
and stereo matching. A median accuracy of less than 5mm can be achieved using an
equivalent baseline of 62 mm.

In [28], Facebook’s Detectron2 machine learning (ML) library has been employed for
object detection and image preprocessing to generate 22 metadata properties including
morphological features of the examined specimens with error rates as low as 1.1%. Otsu

Electronics 2023, 12, 3338 5 of 29

threshold is used for segmentation of relatively simple images and pattern matching to
locate the eye. If the fish is detected without an eye the images are up-scaled.

Fish tracking (and classification) can be performed with both optical and sonar imag-
ing as described in [29]. Using sonar imaging is the only way to monitor fish at night time.
In this approach, the Norfair [30] tracking algorithm in combination with YOLOv4 [31] are
used to track and count fish. The employed sonar equipment is dual-frequency identifica-
tion sonar (DIDSON) that exploits higher frequencies and more sub-beams than common
hydroacoustic tools. The use of DIDSON has also been described in [32] for the detection
of fish morphology and swimming behavior. In this approach, fish must be large enough
and within an adequate distance thus, it is not appropriate for counting small fish. Fish
length should preferably be around 68 cm, otherwise an estimation error ranging from
2–8% was measured for different size fish (40–90 cm). In [33], optical and sonar images are
also employed for fish monitoring.

3. Materials and Methods
3.1. Dataset, Tools and Target Environment

The image datasets used in similar fish monitoring applications usually consist either
of images that have been captured in a laboratory environment under controlled light
exposure, or high-resolution underwater images where the fish are clearly visible. The
images and videos used in the context of this paper have been retrieved using a low-cost
camera (TurboX Act201), their image resolution is 4608 × 3456 and the resolution of the
video frames is 3840 × 2160, with a frame rate equal to 30 frames per second (fps). The
photographs and videos of the developed dataset have been captured in two regions in
Greece (Lampiri, Achaia and Gavathas, Lesvos island) and display Mediterranean fish
species mostly seabream variations such as diplodous sargus annularis (white seabream),
diplodus annularis seabream (spawn), oblada melanura (saddled seabream), pagrus pagrus
(common seabream), etc. The dataset we developed is called Underwater Videos and
Images with Mediterranean Fish Species in Shallow Waters (UVIMEF) and its first version
is made publicly available in [34]. An example photograph and a video frame with the
corresponding fish patches extracted, are shown in Figure 1.

The trained ERT models align L = 18 landmarks on the fish body and can also be used
with other species that have similar shape and color such as sithognathus mormyrus, sparus
aurata, dicentrarchus labrax, etc. New ERT models can be easily retrained for different
number of landmarks and fish shapes. The images/videos of the developed dataset have
been captured both during sunny and cloudy days with calm or stormy seas at a depth
between 0.5 and 3 m.

From the 60 videos and 720 photographs of UVIMEF, 400 image frames have been
used to generate 322 single fish image patches. The training of our ERT models has been
performed using 270 of these image patches and the rest of them have been used for testing.
The fish species appearing in these image patches are listed in Table 1. The number of
images per species is not balanced because all of the fish species are similar in shape as far
as the position of the landmarks is concerned. Thus, the training of the ERT model is not
significantly affected by the number of fish per species listed in Table 1. The dataset should
be balanced however, if fish species with radically different body shape had to be supported.
The last row of Table 1 lists fish that do belong to the categories listed above but still have
similar body shape such as Sarpa salpa, or Dentex dentex or fish that cannot be recognized
due to extremely low contrast. These species are not listed in separate rows because their
population is too small. The fish in these patches have a specific orientation e.g., horizontal
body-facing left, or with tilt facing up-right, etc. As can be seen from Figure 1, the fish in
these image frames are hardly distinguishable from their background. Consequently, the
fish detection, monitoring and morphological feature extraction methods presented in this
paper are applied in worst case conditions.

Electronics 2023, 12, 3338 6 of 29Electronics 2023, 12, x FOR PEER REVIEW 6 of 29

(a)

(b)

Figure 1. Fish patches extracted from a 4608 × 3456 resolution photograph (a) and from a 3840 × 2160
resolution video frame (b).

From the 60 videos and 720 photographs of UVIMEF, 400 image frames have been
used to generate 322 single fish image patches. The training of our ERT models has been
performed using 270 of these image patches and the rest of them have been used for test-
ing. The fish species appearing in these image patches are listed in Table 1. The number of
images per species is not balanced because all of the fish species are similar in shape as far
as the position of the landmarks is concerned. Thus, the training of the ERT model is not
significantly affected by the number of fish per species listed in Table 1. The dataset should
be balanced however, if fish species with radically different body shape had to be sup-
ported. The last row of Table 1 lists fish that do belong to the categories listed above but
still have similar body shape such as Sarpa salpa, or Dentex dentex or fish that cannot be
recognized due to extremely low contrast. These species are not listed in separate rows
because their population is too small. The fish in these patches have a specific orientation
e.g., horizontal body-facing left, or with tilt facing up-right, etc. As can be seen from Figure

Figure 1. Fish patches extracted from a 4608× 3456 resolution photograph (a) and from a 3840 × 2160
resolution video frame (b).

Table 1. Fish species in the dataset used.

Fish Species Number of Image Patches

Diplodus Sargus 105
Lithognathus mormyrus 61

Diplodus annularis 62
Oblada Melanura 60

Other 34

The host computer used in the experiments is an ordinary Dell laptop with Intel(R)
Core(TM) i5-1035G1 CPU @ 1.00 GHz and 16GB RAM. The artificial intelligence (AI)
inference for fish detection, the orientation classification script, the landmark annotation
editor (LAE) and the training/testing of the ERT model for shape alignment were installed
on this computer. As will be discussed in Section 3.7, the target board can be an embedded
platform such as a Xilinx ZCU102 with ZynqMP Ultrascale+ field programmable gate array
(FPGA) in order to support hardware acceleration. Concerning the programming languages

Electronics 2023, 12, 3338 7 of 29

used for the development of the system presented in this paper, the fish detection and
orientation scripts are implemented in Python while the shape alignment is implemented
in C++ (Visual Studio 2019 environment). The new landmark annotation editor (LAE) has
also been developed in Visual Studio 2019, in C# as a Universal Windows Program (UWP)
and is presented in Section 3.7.

3.2. General Architecture of the Proposed System

The architecture of the proposed fish monitoring and morphological feature estimation
system is shown in Figure 2. The input of the system is either a single photograph or a
frame from an input video stream. A customized Python script based on the open source
code and the pre-trained fish detection model presented in [4], analyzes the input image
frame and detects the bounding boxes of the fish. The coordinates of these bounding
boxes are used to crop patches displaying a single fish. These patches are used as input
to the next stage that detects fish orientation. The orientation of the fish is necessary
in order to select the appropriate pre-trained ERT model for shape alignment. The ERT
ML method employed for shape alignment is based on the correction of a mean shape
stored in the pre-trained model. This correction procedure cannot support a rotation in
the mean shape by more than ±20◦. For this reason, different ERT models are trained for
each direction and the appropriate model is selected based on the orientation classification
results for the shape alignment process. The output of shape alignment stage is the set of
18 landmark coordinates that determine the location of fish body parts of particular interest
such as the mouth, the eyes, the caudal fin, etc. From the distance of these landmarks,
fish morphological features such as the relative fish length/height and its shape can be
extracted. The shape alignment process has been accelerated both in hardware and software
level, based on the principles described in [9].

The AI inference of the model used for fish detection can also be accelerated in
hardware since it is a time-consuming process. However, an alternative way based on
interpolation can be followed to accelerate the fish detection process without special
hardware support. Its aim is to define extended bounding boxes in frames where fish
detection is not applied to save time. If the shape alignment performed in one of the
interpolated bounding boxes fails then, the results based on the extended bounding box
approximation are invalidated. A small image frame buffering (e.g., of 10 image frames) is
necessary to guarantee that all the processing results are correct. The successive positions
of a fish are registered to track its movement in order to study its behavior.

3.3. Employed Fish Detection Approach

The fish detection method employed in this paper is based on the tools presented
in [4]. With this repository, the developer has the option either to use a pre-trained model
or customize a new model, following the instructions given. The training process can be
performed in an Ubuntu environment using a docker and consists in short of the following
steps: (a) a tensor flow object detection GitHub repository is cloned, (b) the training dataset
has to be prepared in tfrecord format, (c) a new label map should be created, (d) an existing
model like Faster RCNN has to be downloaded, (e) a copy of an appropriate configuration
has to be created and customized, (f) the model should be trained using an available Python
script, (g) the validation results can be observed, (h) a graph in pb format has to be extracted
and used as inference, (i) the inference can be called within Jupyter notebook or Collab
environment. The creator of the repository in [4] also offers a pre-trained pb model as
the one that can be generated in step (h). This model proved extremely sensitive for our
dataset and even fish that were hardly recognized with the naked eye have been detected
by this model.

Electronics 2023, 12, 3338 8 of 29

Electronics 2023, 12, x FOR PEER REVIEW 8 of 29

guarantee that all the processing results are correct. The successive positions of a fish are
registered to track its movement in order to study its behavior.

Figure 2. The architecture of the developed system for fish monitoring and morphological feature
extraction.

3.3. Employed Fish Detection Approach
The fish detection method employed in this paper is based on the tools presented in

[4]. With this repository, the developer has the option either to use a pre-trained model or
customize a new model, following the instructions given. The training process can be per-
formed in an Ubuntu environment using a docker and consists in short of the following
steps: (a) a tensor flow object detection GitHub repository is cloned, (b) the training da-
taset has to be prepared in tfrecord format, (c) a new label map should be created, (d) an

Figure 2. The architecture of the developed system for fish monitoring and morphological feature
extraction.

Certain Python scripts offered in [4], have to be executed when the fishes in a new
image frame have to be recognized. The modification of these Python scripts was necessary
in order to run the inference locally, i.e., outside a Jupyter environment and integrate the
fish detection process in our flow. We extract the coordinates of the bounding box of a
detected fish, in order to crop the initial image and generate a patch that will be used in
the orientation detection and the shape alignment stages of the developed system. The
bounding box coordinates are also passed to the fish tracking stage. Figure 1a shows the
detection of three fish from an input photograph and Figure 1b, the detection of two fish
from a video frame.

Electronics 2023, 12, 3338 9 of 29

The drawback of this fish detection approach is the high latency required for the
analysis of a single image. After loading the inference model, the Python script that
performs the inference needs about 1.6 s to analyze each video frame, on an Intel i5, 1 GHz
processor and about Lfd = 1 s on an Intel Core i5-9500 CPU @3.00 GHz, 6 core processor
with 16 GB RAM. Video processing in real time would not be possible if fish detection had
to be applied to all the input frames. One approach would be to accelerate the inference
on a GPU or an embedded hardware platform. Lightweight or pruned NN models can
also be trained following the procedure described in [4] to achieve higher speed with a
slightly lower accuracy. Another lower cost approach is to buffer the video frames, apply
fish detection in regular time intervals and interpolate the position of the fish between
successive fish detections. This method will be examined in more detail and will be called
henceforth: Fish Position Interpolation (FPI).

In FPI, it will be assumed that fish detection takes place every Tfd seconds. In modern
multi-core processors Tfd can be as low as Lfd, since one thread can run the inference and
another parallel thread can run the FPI between successive fish detections that took place
with a time distance of Tfd. The fish orientation between successive fish detections does not
necessarily have to remain the same, since the orientation detection may also be applied
to the interpolated bounding boxes. However, if fish is found to have the same draft
orientation between successive fish detections, the orientation detection procedure does
not need to be repeated in the interpolated positions to speed up the whole process. For
example, as can be seen in Figure 3, a fish is moving in the same direction (denoted by the
orange arrow) for 2 s.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 29

existing model like Faster RCNN has to be downloaded, (e) a copy of an appropriate con-
figuration has to be created and customized, (f) the model should be trained using an
available Python script, (g) the validation results can be observed, (h) a graph in pb format
has to be extracted and used as inference, (i) the inference can be called within Jupyter
notebook or Collab environment. The creator of the repository in [4] also offers a pre-
trained pb model as the one that can be generated in step (h). This model proved extremely
sensitive for our dataset and even fish that were hardly recognized with the naked eye
have been detected by this model.

Certain Python scripts offered in [4], have to be executed when the fishes in a new
image frame have to be recognized. The modification of these Python scripts was neces-
sary in order to run the inference locally, i.e., outside a Jupyter environment and integrate
the fish detection process in our flow. We extract the coordinates of the bounding box of
a detected fish, in order to crop the initial image and generate a patch that will be used in
the orientation detection and the shape alignment stages of the developed system. The
bounding box coordinates are also passed to the fish tracking stage. Figure 1a shows the
detection of three fish from an input photograph and Figure 1b, the detection of two fish
from a video frame.

The drawback of this fish detection approach is the high latency required for the anal-
ysis of a single image. After loading the inference model, the Python script that performs
the inference needs about 1.6 s to analyze each video frame, on an Intel i5, 1 GHz processor
and about Lfd =1 s on an Intel Core i5-9500 CPU @3.00 GHz, 6 core processor with 16 GB
RAM. Video processing in real time would not be possible if fish detection had to be ap-
plied to all the input frames. One approach would be to accelerate the inference on a GPU
or an embedded hardware platform. Lightweight or pruned NN models can also be
trained following the procedure described in [4] to achieve higher speed with a slightly
lower accuracy. Another lower cost approach is to buffer the video frames, apply fish de-
tection in regular time intervals and interpolate the position of the fish between successive
fish detections. This method will be examined in more detail and will be called henceforth:
Fish Position Interpolation (FPI).

In FPI, it will be assumed that fish detection takes place every Tfd seconds. In modern
multi-core processors Tfd can be as low as Lfd, since one thread can run the inference and
another parallel thread can run the FPI between successive fish detections that took place
with a time distance of Tfd. The fish orientation between successive fish detections does
not necessarily have to remain the same, since the orientation detection may also be ap-
plied to the interpolated bounding boxes. However, if fish is found to have the same draft
orientation between successive fish detections, the orientation detection procedure does
not need to be repeated in the interpolated positions to speed up the whole process. For
example, as can be seen in Figure 3, a fish is moving in the same direction (denoted by the
orange arrow) for 2 s.

Figure 3. Fish movement in video frames with time distance of 2 s. Figure 3. Fish movement in video frames with time distance of 2 s.

The FPI procedure is described in more detail in Figure 4. If the input stream has a
standard frame-processing speed of 24 fps, it is assumed that shape alignment is adequate
to be applied every six frames, i.e., every 0.25 s. More intermediate shape alignments may
be applied in shorter intervals but they are not expected to give more information about
the track, the behavior and the morphological features of a fish. Thus, if a fish detection
takes place every Tfd = 1 s, at frame No. 0 (F0) then, the bounding boxes of the fish in
frames No. 5 (F5), 11 (F11) and 17 (F17) have to be interpolated. For this purpose, the
center of the 1st bounding box (F0) and the center of the bounding box generated from the
next fish detection are located. The straight line connecting these bounding box centers
is split according to the number of interpolations If that will be performed. As shown
in Figure 4, the distance between two successive fish detections is split into four equal
segments in order to define the center of the If interpolated frames (F5, F11 and F17). The
size of the interpolated bounding boxes is incremented by a fraction z. The value of z
was experimentally selected between 10% and 20%. Obviously, if z = 20% is selected, the
dimensions of F17 will be 172.8% larger than the original bounding box F0. If the size of the
bounding box becomes too large compared to the fish dimensions displayed in this box, the
shape alignment accuracy will be degraded. On the other hand, if z = 10%, F17 dimensions

Electronics 2023, 12, 3338 10 of 29

will be only 133.1% larger than the F0 bounding box. The shape alignment accuracy in this
case would be higher but there is also a higher risk of obtaining an interpolated bounding
box where parts of the fish will be excluded, or even a bounding box that does not display
a fish at all.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 29

The FPI procedure is described in more detail in Figure 4. If the input stream has a
standard frame-processing speed of 24 fps, it is assumed that shape alignment is adequate
to be applied every six frames, i.e., every 0.25 s. More intermediate shape alignments may
be applied in shorter intervals but they are not expected to give more information about
the track, the behavior and the morphological features of a fish. Thus, if a fish detection
takes place every Tfd = 1 s, at frame No. 0 (F0) then, the bounding boxes of the fish in frames
No. 5 (F5), 11 (F11) and 17 (F17) have to be interpolated. For this purpose, the center of the
1st bounding box (F0) and the center of the bounding box generated from the next fish
detection are located. The straight line connecting these bounding box centers is split ac-
cording to the number of interpolations If that will be performed. As shown in Figure 4,
the distance between two successive fish detections is split into four equal segments in
order to define the center of the If interpolated frames (F5, F11 and F17). The size of the
interpolated bounding boxes is incremented by a fraction z. The value of z was experimen-
tally selected between 10% and 20%. Obviously, if z = 20% is selected, the dimensions of
F17 will be 172.8% larger than the original bounding box F0. If the size of the bounding
box becomes too large compared to the fish dimensions displayed in this box, the shape
alignment accuracy will be degraded. On the other hand, if z = 10%, F17 dimensions will
be only 133.1% larger than the F0 bounding box. The shape alignment accuracy in this
case would be higher but there is also a higher risk of obtaining an interpolated bounding
box where parts of the fish will be excluded, or even a bounding box that does not display
a fish at all.

Figure 4. Fish Detection Interpolation (FPI).

The general formal definition of the interpolation between two successive fish detec-
tion bounding boxes with centers (xa, ya) and (xb, yb) follows. If If interpolation bounding
boxes are defined, the center (xa,k, ya,k) of the k-th (0 < k ≤ If) interpolation bounding box is
defined as: 𝑥 , , 𝑦 , = (𝑥 + 𝑘 𝑥 − 𝑥𝐼 + 1 , 𝑦 + 𝑘 𝑦 − 𝑦𝐼 + 1) (1)

If the width and the height of the original bounding box is wbb and hbb, respectively,
then, the corresponding dimensions wbb,k and hbb,k are defined as: 𝑤 , , ℎ , = (𝑤 ∙ 𝑧 , ℎ ∙ 𝑧) (2)

3.4. Orientation Classification Method

Figure 4. Fish Detection Interpolation (FPI).

The general formal definition of the interpolation between two successive fish detec-
tion bounding boxes with centers (xa, ya) and (xb, yb) follows. If If interpolation bounding
boxes are defined, the center (xa,k, ya,k) of the k-th (0 < k ≤ If) interpolation bounding box is
defined as: (

xa,j, ya,j
)
= (xa + k

xb − xa

I f + 1
, ya + k

yb − ya

I f + 1
) (1)

If the width and the height of the original bounding box is wbb and hbb, respectively,
then, the corresponding dimensions wbb,k and hbb,k are defined as:

(wbb,k, hbb,k) = (wbb·zk, hbb·zk) (2)

3.4. Orientation Classification Method

The ERT model [6] that will be used for the shape alignment and consequently for the
measurement of the morphological features of the fish has to be trained on fish that have
similar orientation. The human face shape alignment approach presented in [6] and widely
used in popular libraries like DLIB [7], defines the facial shape with 68 landmarks and is
more tolerant on the tilt of the head due to the symmetry of the shape. The face shape is
symmetrical since every landmark has a horizontal mirror landmark. This fact is actually
exploited when training an ERT model, since the dataset is augmented with the mirror
images. The 2D shape as determined by the side view of the fish is the most important
aspect, since special Regions of Interest (ROIs) can also be located on the body, besides the
estimation of fish length and height. Such ROIs are the eyes and the gills since the health of
the fish can be assessed from the color of these regions. Moreover, fish shape malformations
can be detected from the side view. The employed ERT ML method for shape alignment is
tolerant to a tilt in the shape of about 20◦.

Electronics 2023, 12, 3338 11 of 29

An option would be to detect the 1D orientation of the fish on the image plane and
rotate or mirror it before performing shape alignment. Horizontal mirroring is actually an
applicable operation that does not affect the achieved accuracy, i.e., a model trained with
fish facing left are expected to have the same accuracy as a model trained with fish facing
right. However, in the general case, a fish with tilt higher than 20◦, may not have exactly
the same shape as a fish captured horizontally, as shown in Figure 5 (depending also on the
camera angle of view). For this reason, different ERT models may have to be trained for
a small number of distinct orientations in order to achieve an accurate shape alignment.
Even if we are interested only in images with fish in horizontal position, it is necessary to
detect the draft orientation in order to reject images where the fish is not horizontal or use
them merely for fish tracking and not morphological feature extraction.

Concerning the approaches presented in the literature for object orientation, 1D orien-
tation of vehicles is achieved in [35] based on a YOLO network architecture with a modified
output fully connected layer (enriched with additional orientation parameters). Deep
CNNs (DCNNs) are used in [36] for a continuous object orientation estimation between 0
and 360 degrees. Three continuous orientation prediction approaches based on DCNNs
are described in [36]. In the first two, the orientation is represented as a point on a unit
circle and either L2 loss or angular difference loss is minimized. In the third more efficient
method, the continuous orientation estimation task is transformed into a set of discrete
orientation estimations (as also required in our case) and then, the discrete orientation is
converted to a continuous one with a mean-shift algorithm.

Principal Component Analysis (PCA) has also been proposed for feature extraction of
a dataset. PCA accepts as input all the features of a dataset, but only considers a subset of
features that are important to detect correlations between the selected features, resulting
in a reduced dimensionality of the dataset [37]. The eigenvectors presented in the PCA
process determine the directions along which, the data have the highest variance [38].
In [39], OpenCV services are used to determine the direction of objects in images that are
well discriminated.

A brief introduction to the PCA process follows. Let us suppose we have a matrix
Xrxn = [X1 X2 . . . Xn] with measurements. Xi is a sub-vector of r elements sj, which is
necessary for the calculation of principal components. The covariance matrix with each Xi
needs to be calculated for the measurement of the variability or spread in the dataset.

(R)r×r =
r

∑
i=1

XiXT
i (3)

The singular value decomposition (SVD) of (R)rxr, is defined as follows:

(R)r×r = USdVT (4)

Sd is a diagonal matrix with the singular values of R on its diagonal, while V is a
matrix having the right singular vectors of R as columns. U = [U1 U2 . . . Un] is a feature
vector (matrix of vectors). The columns of U are the left singular vectors of R.

The first m sub-vectors from the vector U are preserved while the rest are discarded.
In other words, the first m eigenvectors (ordered by magnitude) are used in order to create
(Ureduced)nxm =[U1 U2 . . . Um], m < n. Those elements correspond to the principal components
that can be used as a compressed version of the original input. More specifically, the
transpose of the vector (Ureduced)nxm can be multiplied with the original data set:

(Yi)m×1 = (UT
reduced)m×n(Xi)n×1 (5)

The original data can be restored with the following equation:

(Xreceived
i)n×1 = (Ureduced)n×m(Yi)m×1 (6)

Electronics 2023, 12, 3338 12 of 29

Electronics 2023, 12, x FOR PEER REVIEW 12 of 29

Sd is a diagonal matrix with the singular values of R on its diagonal, while V is a
matrix having the right singular vectors of R as columns. U = [U1 U2 … Un] is a feature
vector (matrix of vectors). The columns of U are the left singular vectors of R.

The first m sub-vectors from the vector U are preserved while the rest are discarded.
In other words, the first m eigenvectors (ordered by magnitude) are used in order to create
(Ureduced)nxm =[U1 U2 … Um], m < n. Those elements correspond to the principal components
that can be used as a compressed version of the original input. More specifically, the trans-
pose of the vector (Ureduced)nxm can be multiplied with the original data set: (𝑌) × = (𝑈) × (𝑋) × (5)

The original data can be restored with the following equation: (𝑋) × = (𝑈) × (𝑌) × (6)

(a) (b)

Figure 5. The Segmentation of the image using OpenCV Otsu threshold and applying PCA with m
= 2 to obtain the angles of the eigenvectors with the higher magnitude (black and white line). In both
images the tilt denoted by the black line is recognized successfully but the direction in (a) is correct
while in (b) is incorrect.

The detection of the draft fish orientation in our approach has to be performed with
high speed and thus, DL methods are not appropriate due to their high latency. OpenCV
PCA and image segmentation methods can offer an alternative faster solution with good
accuracy. More specifically, the PCA method described in [39] has been adapted in our
framework. In 95% of the cases the tilt of the fish is detected accurately in the patches
extracted by the fish detection stage. However, only in 45% of the cases, the detected di-
rection that the fish is facing at, was correct. The employed PCA method, converts the
input image patch in grayscale and resizes it. All resized patches are 320 pixels in height.

The image patch is inverted if the fish color is darker than its background. In order
to detect the brightness of the fish, the average gray level of the internal part of the image
is compared to that of the image border zone, separated by the red squares in Figure 5.
The border zone is defined with a thickness of B = 20 pixels. Having in mind that the image
patches are actually bounding boxes of the detected fish, it is expected that most of the
fish body is mainly displayed in the internal region while the background in the border
zone. If the average gray color of the internal region (fish) is darker than that of the border
zone (background) then, the image color is inverted as is the case in both images of Figure
5. The image is then segmented using Otsu’s threshold [40] and the contour surrounding
the largest area is used as input to the OpenCV PCA method.

The output is an accurate estimation of the fish tilt axis but the direction is not de-
tected accurately. Therefore, additional segmentation methods are deployed to determine
the direction the fish is facing. Having in mind that the ERT model can detect shapes with

Figure 5. The Segmentation of the image using OpenCV Otsu threshold and applying PCA with
m = 2 to obtain the angles of the eigenvectors with the higher magnitude (black and white line). In
both images the tilt denoted by the black line is recognized successfully but the direction in (a) is
correct while in (b) is incorrect.

The detection of the draft fish orientation in our approach has to be performed with
high speed and thus, DL methods are not appropriate due to their high latency. OpenCV
PCA and image segmentation methods can offer an alternative faster solution with good
accuracy. More specifically, the PCA method described in [39] has been adapted in our
framework. In 95% of the cases the tilt of the fish is detected accurately in the patches
extracted by the fish detection stage. However, only in 45% of the cases, the detected
direction that the fish is facing at, was correct. The employed PCA method, converts the
input image patch in grayscale and resizes it. All resized patches are 320 pixels in height.

The image patch is inverted if the fish color is darker than its background. In order to
detect the brightness of the fish, the average gray level of the internal part of the image is
compared to that of the image border zone, separated by the red squares in Figure 5. The
border zone is defined with a thickness of B = 20 pixels. Having in mind that the image
patches are actually bounding boxes of the detected fish, it is expected that most of the fish
body is mainly displayed in the internal region while the background in the border zone. If
the average gray color of the internal region (fish) is darker than that of the border zone
(background) then, the image color is inverted as is the case in both images of Figure 5.
The image is then segmented using Otsu’s threshold [40] and the contour surrounding the
largest area is used as input to the OpenCV PCA method.

The output is an accurate estimation of the fish tilt axis but the direction is not detected
accurately. Therefore, additional segmentation methods are deployed to determine the
direction the fish is facing. Having in mind that the ERT model can detect shapes with
a±20◦ tilt, it is sufficient to classify fish captured from the side view in 4 different orientation
categories: fish facing up-left (Q0), up-right (Q1), down-left (Q2) and down-right (Q3). We
assume that fish cannot be captured in a 90◦ vertical tilt since it is not natural for a fish to
swim in this direction. Using the anatomy of the fish it is expected that if most of the fish
body is found in the left half of the image patch, the fish is facing left (Q0 or Q2), otherwise
it is facing right (Q1 or Q3). This simple method is called hereafter Coarse Orientation
Detection (COD). It is implemented by comparing the area of the fish body in the left and
right areas of the image, i.e., Q0 + Q2 is compared to Q1 + Q3. Symbols Q0, Q1, Q2 and
Q3 are used to represent the number of pixels mapped to fish body in the corresponding
quadrants. Extending this principle to the individual Q0, Q1, Q2, Q3 quadrants, a Fine
Orientation Detection (FOD) takes place. If for example, the COD decides the fish is facing
left then the fish is facing up-left if Q0 > Q2 (i.e., the area of the fish in Q0 is higher than the
area in Q2), otherwise it is facing down-left. The COD and FOD processes are demonstrated
in Figure 6.

Electronics 2023, 12, 3338 13 of 29

Electronics 2023, 12, x FOR PEER REVIEW 13 of 29

a ±20° tilt, it is sufficient to classify fish captured from the side view in 4 different orienta-
tion categories: fish facing up-left (Q0), up-right (Q1), down-left (Q2) and down-right
(Q3). We assume that fish cannot be captured in a 90° vertical tilt since it is not natural for
a fish to swim in this direction. Using the anatomy of the fish it is expected that if most of
the fish body is found in the left half of the image patch, the fish is facing left (Q0 or Q2),
otherwise it is facing right (Q1 or Q3). This simple method is called hereafter Coarse Ori-
entation Detection (COD). It is implemented by comparing the area of the fish body in the
left and right areas of the image, i.e., Q0 + Q2 is compared to Q1 + Q3. Symbols Q0, Q1,
Q2 and Q3 are used to represent the number of pixels mapped to fish body in the corre-
sponding quadrants. Extending this principle to the individual Q0, Q1, Q2, Q3 quadrants,
a Fine Orientation Detection (FOD) takes place. If for example, the COD decides the fish
is facing left then the fish is facing up-left if Q0 > Q2 (i.e., the area of the fish in Q0 is higher
than the area in Q2), otherwise it is facing down-left. The COD and FOD processes are
demonstrated in Figure 6.

(a) (b)

Figure 6. COD and FOD methods. (a) Q0 + Q2 > Q1 + Q3 (COD: fish facing left), Q0 > Q2 (FOD: fish
facing Up-Left. (b) Q1 + Q3 > Q0 + Q2 (COD: fish facing right), Q3 > Q1 (FOD: fish facing Down-
Right).

A fourth orientation detection method employed is based on template matching.
More specifically, a template of the fish eye is used to locate the position of the eye and
consequently the orientation of the fish. Based on the resizing of the image patches de-
scribed earlier and the fact that the fish have similar dimensions after resizing, a 30 × 30
pixel template of the eye is used. The OpenCV template matching procedure is repeated
for resized eye templates of 28 × 28 and 32 × 32 pixels. The direction shown by the majority
of the three template matching procedures is used as output of this orientation detection
method. Figure 7 shows examples of successful and unsuccessful eye template matches.
In some low-contrast images the fish eye is not visible at all, while the eye template can
easily match background objects or even other body parts such as the caudal fin of the
diplodus annularis as shown in Figure 7d.

To improve the orientation classification accuracy of the 4 orientation detection meth-
ods described above, combinations of these methods can be examined as will be described
in Section 4.

(a) (b) (c) (d) (e)

Figure 7. Fish eye template (a), successful matching in (b,c), caudal fin confused with fish eye in (d)
and background object confused with fish eye in (e).

3.5. Fish Tracking

Q0
Q1

Q3
Q2

Q0
Q1

Q3 Q2

Figure 6. COD and FOD methods. (a) Q0 + Q2 > Q1 + Q3 (COD: fish facing left), Q0 > Q2 (FOD:
fish facing Up-Left. (b) Q1 + Q3 > Q0 + Q2 (COD: fish facing right), Q3 > Q1 (FOD: fish facing
Down-Right).

A fourth orientation detection method employed is based on template matching. More
specifically, a template of the fish eye is used to locate the position of the eye and conse-
quently the orientation of the fish. Based on the resizing of the image patches described
earlier and the fact that the fish have similar dimensions after resizing, a 30 × 30 pixel
template of the eye is used. The OpenCV template matching procedure is repeated for
resized eye templates of 28 × 28 and 32 × 32 pixels. The direction shown by the majority
of the three template matching procedures is used as output of this orientation detection
method. Figure 7 shows examples of successful and unsuccessful eye template matches. In
some low-contrast images the fish eye is not visible at all, while the eye template can easily
match background objects or even other body parts such as the caudal fin of the diplodus
annularis as shown in Figure 7d.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 29

a ±20° tilt, it is sufficient to classify fish captured from the side view in 4 different orienta-
tion categories: fish facing up-left (Q0), up-right (Q1), down-left (Q2) and down-right
(Q3). We assume that fish cannot be captured in a 90° vertical tilt since it is not natural for
a fish to swim in this direction. Using the anatomy of the fish it is expected that if most of
the fish body is found in the left half of the image patch, the fish is facing left (Q0 or Q2),
otherwise it is facing right (Q1 or Q3). This simple method is called hereafter Coarse Ori-
entation Detection (COD). It is implemented by comparing the area of the fish body in the
left and right areas of the image, i.e., Q0 + Q2 is compared to Q1 + Q3. Symbols Q0, Q1,
Q2 and Q3 are used to represent the number of pixels mapped to fish body in the corre-
sponding quadrants. Extending this principle to the individual Q0, Q1, Q2, Q3 quadrants,
a Fine Orientation Detection (FOD) takes place. If for example, the COD decides the fish
is facing left then the fish is facing up-left if Q0 > Q2 (i.e., the area of the fish in Q0 is higher
than the area in Q2), otherwise it is facing down-left. The COD and FOD processes are
demonstrated in Figure 6.

(a) (b)

Figure 6. COD and FOD methods. (a) Q0 + Q2 > Q1 + Q3 (COD: fish facing left), Q0 > Q2 (FOD: fish
facing Up-Left. (b) Q1 + Q3 > Q0 + Q2 (COD: fish facing right), Q3 > Q1 (FOD: fish facing Down-
Right).

A fourth orientation detection method employed is based on template matching.
More specifically, a template of the fish eye is used to locate the position of the eye and
consequently the orientation of the fish. Based on the resizing of the image patches de-
scribed earlier and the fact that the fish have similar dimensions after resizing, a 30 × 30
pixel template of the eye is used. The OpenCV template matching procedure is repeated
for resized eye templates of 28 × 28 and 32 × 32 pixels. The direction shown by the majority
of the three template matching procedures is used as output of this orientation detection
method. Figure 7 shows examples of successful and unsuccessful eye template matches.
In some low-contrast images the fish eye is not visible at all, while the eye template can
easily match background objects or even other body parts such as the caudal fin of the
diplodus annularis as shown in Figure 7d.

To improve the orientation classification accuracy of the 4 orientation detection meth-
ods described above, combinations of these methods can be examined as will be described
in Section 4.

(a) (b) (c) (d) (e)

Figure 7. Fish eye template (a), successful matching in (b,c), caudal fin confused with fish eye in (d)
and background object confused with fish eye in (e).

3.5. Fish Tracking

Q0
Q1

Q3
Q2

Q0
Q1

Q3 Q2

Figure 7. Fish eye template (a), successful matching in (b,c), caudal fin confused with fish eye
in (d) and background object confused with fish eye in (e).

To improve the orientation classification accuracy of the 4 orientation detection meth-
ods described above, combinations of these methods can be examined as will be described
in Section 4.

3.5. Fish Tracking

The fish tracking supported in the framework of this work registers the coordinates of
the bounding boxes and the orientations of the fish found in successive frames. The target
is to determine the track of an individual fish and avoid confusion with tracks of other
fish swimming in the neighborhood. To understand the concept of the adopted approach,
the successive frames shown in Figure 8 can be considered. These frames have a time
distance of 1 sec which is rather large and are captured from a camera that was not stable
as required for the case of fish track monitoring. However, they contain a number of fish all
facing towards the same direction (bottom-right) making the explanation of the tracking
algorithm easier. Let ct

i be the coordinate pairs of the top left corner of the bounding box i
in frame t. It is assumed that the bounding box j corresponding to the same fish in the next
frame t + 1 is the one that satisfies Equation (7), provided that the frames t and t + 1 have a
relatively short time distance, e.g., less than 1 s.

i = argmin‖ct+1
j − ct

i‖2 (7)

Electronics 2023, 12, 3338 14 of 29

Electronics 2023, 12, x FOR PEER REVIEW 15 of 29

Figure 8. Monitoring fish in 3 successive frames. The recognized fishes are named F0–F7.

3.6. ERT Background
The face alignment method presented in [6] is based on an ML method called Ensem-

ble of Regression Trees (ERT) and was originally used to align landmarks on human faces.
We use this method to find the shape of a fish based on a set of L = 18 landmarks. When
ERT is applied to a new image, the mean position of the landmarks stored in the trained
model is gradually corrected in Tc cascade stages. In each cascade stage, Nt regression trees
are visited. Each binary regression tree has 2Td − 1 nodes and in each node the gray level
of a pair of pixels from a sparse representation of the input frame is compared. The left or
right node of the regression tree that has to be visited in the next level is selected according

Figure 8. Monitoring fish in 3 successive frames. The recognized fishes are named F0–F7.

If the time distance between these two frames is too long, the correspondence of
bounding boxes with fish in the next frame may not be accurate since: (a) the reference
fish may have moved away and another one is now closer to the previous position of the
reference fish and (b) the reference fish may have changed direction, or orientation, etc. In
the top frame of Figure 8, seven fish are detected (F0–F8). The new position of these fish is
monitored in the next two frames of Figure 8.

The fish names in the middle and bottom frames of Figure 8 were assigned based on
the Euclidean distances estimated in Table 2. In each frame, the coordinates of the top-left
bounding box corners are listed for the fish detected in these frames. In the first frame, the
bounding boxes are assigned to names F0 to F7. In Frame No 2, the top-left coordinates of
each bounding box are used in Equation (7) to estimate its Euclidean distance from each one

Electronics 2023, 12, 3338 15 of 29

of the bounding boxes found in Frame 1. The shorter distance is used to assign fish names
in the second frame as shown in the 4th column of Table 2. Each fish name is followed
by its distance (in pixels) from the bounding box of the fish that it has been assigned to.
Fish F7 was not recognized in Frame 2. Similarly, in Frame 3 the new bounding boxes are
associated to the fish detected in Frame 2 using the shorter distances.

Table 2. Association of the coordinates of the bounding boxes detected in Frames 2 and 3 with the
fish detected in Frame 1 of Figure 8.

Fish
Frame 1

Frame
1 Y

Frame
1 X

Fish
Frame 2

Frame
2 Y

Frame
2 X

Fish
Frame 3

Frame
3 Y

Frame
3 X

F0 186 164 F0 (12) 197 165 F3 (12) 206 250
F1 190 63 F3 (52) 207 238 F0 (11) 197 176
F2 231 409 F1 (14) 203 69 F1 (8) 211 71
F3 190 242 F2 (14) 242 418 F2 (23) 243 441
F4 246 353 F4 (13) 259 355 F6 (10) 276 474
F5 230 285 F6 (12) 280 464 F1 (104) 117 10
F6 269 459 F5 (21) 249 295 F4 (10) 265 364
F7 231 254

In Frame 3, fish F5 has not been recognized while a new fish appeared at the left side
of the image and was associated to F1 since this fish is closer. For this reason, there are
two bounding boxes associated with F1 and the system has to decide which one actually
corresponds to F1. The fish orientation is used to solve this issue. Since all the fish in
the three frames are heading bottom-right the new fish that appeared from the left is not
associated with the fish that appeared in Frames 1 and 2 and is assumed to be a new fish.
The exploitation of the orientation features in fish tracking is triggered when a bounding
box in the current frame is assigned to more than one fish detected in the next frame.
Among the bounding boxes assigned to the same fish name, the one with the smaller
distance and in the right direction is selected. Of course, if there is no ambiguity, the fish
can change orientation in the current frame and its association with a fish in the previous
frame is only determined by the Euclidean distance. On the other hand, the confirmed
direction that the fish is following in the last frames, can also be exploited in the orientation
classification and consequently in the morphological feature extraction stage to obtain more
accurate results.

More features can also be taken into consideration for accurate track monitoring:
(a) the bounding boxes associated with fish from the previous frame should belong to fish
of the same species, (b) the size of the associated fish in successive frames should match,
(c) the position of the new bounding box should agree with the speed of the fish measured
from previous frames. The study of how these features can be incorporated in our fish
tracking procedure as well as its evaluation is part of our future work.

3.6. ERT Background

The face alignment method presented in [6] is based on an ML method called Ensemble
of Regression Trees (ERT) and was originally used to align landmarks on human faces. We
use this method to find the shape of a fish based on a set of L = 18 landmarks. When ERT is
applied to a new image, the mean position of the landmarks stored in the trained model
is gradually corrected in Tc cascade stages. In each cascade stage, Nt regression trees are
visited. Each binary regression tree has 2Td − 1 nodes and in each node the gray level of a
pair of pixels from a sparse representation of the input frame is compared. The left or right
node of the regression tree that has to be visited in the next level is selected according to
the comparison results. A correction factor is found in the leaves of each regression tree
and this factor is used to correct the current landmark positions.

Electronics 2023, 12, 3338 16 of 29

Let S be the shape of the fish i.e., the set of the L = 18 pairs of Cartesian coordinates,
and Ŝt, the estimated shape at the cascade stage t (0 ≤ t < Tc). In the next cascade stage
t + 1, the shape estimation Ŝt+1 is updated from Ŝt with a correction factor rt:

Ŝ(t+1) = Ŝ(t) + rt (8)

The correction factor rt is determined by the residuals between the current estimation
and the trained shapes as well as the correction factors retrieved from the regression tree
leaves. At the beginning of each cascade stage, the sparse image represented by Nr reference
pixels is warped to match the shape of the fish within a process called Similarity Transform
(ST). If q is a reference pixel and its neighboring landmark has index kq, their distance δxq
is represented as:

δxq = ‖q− xkq‖2 (9)

The pixel q’ in the sparse image representation that corresponds to q in the mean shape,
is estimated as:

q′ = xi,kq +
1
si

RT
i δxq (10)

The parameters si and Ri are scale and rotation factors, respectively, employed in the
ST process to warp the fish shape. For more information, please see [6].

3.7. Shape Alignment for Fish Morphological Feature Extraction

The ERT method described in the previous paragraph and its implementation in DEST [8]
has been employed and adapted for fish shape alignment based on the L = 18 landmarks
as shown in Figure 9. Landmark No. 1 marks the position of the fish mouth, landmarks
2–5, the upper part of the fish contour, landmarks 6–10, the perimeter of the caudal fin,
landmarks 11–14, the lower part of the contour, landmarks 14–16, the position of the gill
and finally landmarks 17–18, the position of the eye. These landmarks allow the esti-
mation of relative fish dimensions and the location of regions of interest (ROIs) of the
fish body, that are critical for the assessment of the fish health such as the eyes or the
gills. The relative length of the fish can be determined as the distance (expressed in pix-
els) between landmarks No 1 and 8, while the relative height as the distance between
landmarks No. 3 and 13. Absolute dimensions can be estimated if stereo vision is em-
ployed with a pair of cameras instead of a single one. More details on how this can be
achieved may be found in our previous work [10]. The fish shape malformations can
also reveal information about the health of the fish, the specific species variation of the
fish, its growing conditions, etc. The malformations can be indicated by the position of
certain landmarks like those in the upper and lower part of the fish contour. A denser
shape representation with more landmarks may be necessary to detect malformations or
variations in the species. The developed framework can be trained to align fish shapes with
any number of landmarks without any modification. The process that has to be followed is
depicted in Figure 10.

The training on the target fish species requires a number of images, each one displaying
a single fish. These images can be the patches generated by the fish detection phase
in Figure 2, from underwater images. Each one of these single fish images should be
accompanied by an annotation text file in order to perform the training procedure. A new
Landmark Annotation Editor (LAE) has been developed that can be easily used to create or
edit annotations of any number of landmarks. The format of the annotations created by the
LAE editor is compatible with the one required by the suite of the DEST tools [8]. The main
window of the LAE tool is shown in Figure 9. An image can be loaded in this editor and a
new annotation can start or a stored one can be edited. Landmarks can be easily moved
with a single mouse click. The annotation can be stored in one of the supported formats.
The LAE tool offers a number of data augmentation functions (image crop and mirroring)
that can be useful in the development of new training datasets. The dataset consisting
of {fish image, annotation files} pairs are used for the training of an ERT model using the

Electronics 2023, 12, 3338 17 of 29

dest_train application of the DEST suite of tools. Several parameters (Tc, Nt, Nr, tree depth,
learning factors, etc.) of the ERT model can be defined in the dest_train application. In
this way, various ERT models can be trained on the same dataset, with different tradeoffs
between speed and accuracy as the ones that will be defined in Section 4.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 29

found in our previous work [10]. The fish shape malformations can also reveal infor-
mation about the health of the fish, the specific species variation of the fish, its growing
conditions, etc. The malformations can be indicated by the position of certain landmarks
like those in the upper and lower part of the fish contour. A denser shape representation
with more landmarks may be necessary to detect malformations or variations in the spe-
cies. The developed framework can be trained to align fish shapes with any number of
landmarks without any modification. The process that has to be followed is depicted in
Figure 10.

Figure 9. Fish shape alignment based on L = 18 landmarks and the developed LAE landmark anno-
tator.

Figure 10. Fish shape alignment and training procedure.

The training on the target fish species requires a number of images, each one display-
ing a single fish. These images can be the patches generated by the fish detection phase in
Figure 2, from underwater images. Each one of these single fish images should be accom-
panied by an annotation text file in order to perform the training procedure. A new Land-
mark Annotation Editor (LAE) has been developed that can be easily used to create or edit
annotations of any number of landmarks. The format of the annotations created by the
LAE editor is compatible with the one required by the suite of the DEST tools [8]. The
main window of the LAE tool is shown in Figure 9. An image can be loaded in this editor
and a new annotation can start or a stored one can be edited. Landmarks can be easily
moved with a single mouse click. The annotation can be stored in one of the supported
formats. The LAE tool offers a number of data augmentation functions (image crop and
mirroring) that can be useful in the development of new training datasets. The dataset
consisting of {fish image, annotation files} pairs are used for the training of an ERT model

Figure 9. Fish shape alignment based on L = 18 landmarks and the developed LAE landmark annotator.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 29

found in our previous work [10]. The fish shape malformations can also reveal infor-
mation about the health of the fish, the specific species variation of the fish, its growing
conditions, etc. The malformations can be indicated by the position of certain landmarks
like those in the upper and lower part of the fish contour. A denser shape representation
with more landmarks may be necessary to detect malformations or variations in the spe-
cies. The developed framework can be trained to align fish shapes with any number of
landmarks without any modification. The process that has to be followed is depicted in
Figure 10.

Figure 9. Fish shape alignment based on L = 18 landmarks and the developed LAE landmark anno-
tator.

Figure 10. Fish shape alignment and training procedure.

The training on the target fish species requires a number of images, each one display-
ing a single fish. These images can be the patches generated by the fish detection phase in
Figure 2, from underwater images. Each one of these single fish images should be accom-
panied by an annotation text file in order to perform the training procedure. A new Land-
mark Annotation Editor (LAE) has been developed that can be easily used to create or edit
annotations of any number of landmarks. The format of the annotations created by the
LAE editor is compatible with the one required by the suite of the DEST tools [8]. The
main window of the LAE tool is shown in Figure 9. An image can be loaded in this editor
and a new annotation can start or a stored one can be edited. Landmarks can be easily
moved with a single mouse click. The annotation can be stored in one of the supported
formats. The LAE tool offers a number of data augmentation functions (image crop and
mirroring) that can be useful in the development of new training datasets. The dataset
consisting of {fish image, annotation files} pairs are used for the training of an ERT model

Figure 10. Fish shape alignment and training procedure.

The original DEST suite of applications [8] is written in C++ and has been ported in
our previous work [9], in Ubuntu environment. The DEST application for video tracking
has then been ported to a target Xilinx Vitis environment for hardware acceleration support
in order to achieve a higher frame-processing speed. Although the porting to the Ubuntu
and Xilinx Vitis environment has been performed for human face alignment in the context
of a driver drowsiness application, the tools already developed were adapted with minor
modifications for the alignment of fish shapes. For more convenience, the DEST suite
of applications has also been ported to Windows environment using Microsoft Visual
Studio 2019.

The resulting ERT model that has been trained, can be used with other DEST ap-
plications like the one that aligns shapes in single photographs (dest_align) or the one
that aligns shapes in video frames (dest_video_tracking). In the process of porting the
DEST applications’ source code to both Ubuntu and Windows environments, a software

Electronics 2023, 12, 3338 18 of 29

restructuring took place that allowed an acceleration in the frame-processing speed by
more than 240 times: a 1920 × 1080 pixel frame processing latency was reduced from
116 ms to 475 µs on an Intel 6-Core i5-9500 CPU running at 3.00 GHz [8]. This significant
acceleration in software was achieved by replacing time-consuming calls to the Eigen
math library [41] with optimized C code. The original DEST source code called Eigen
template library functions for matrix/vector operations, Jacobi rotations, Singular Value
Decomposition (SVD), etc. Using Eigen library and well-defined C++ classes, ensures
the integrity of the data values in any application and allows the operations to be de-
scribed in a compact and portable way. However, excessive integrity checks and data
type conversions were responsible for a high-latency overhead. Moreover, the Eigen and
C++ classes and data types used in DEST were not appropriate for hardware synthe-
sis and implementation on reconfigurable hardware using state-of-the-art tools such as
Xilinx Vitis.

If even higher frame-processing speed is needed, the shape alignment latency can
be further reduced by more than 50% if it is implemented on an embedded platform
like a Xilinx ZCU102 development board with ZynqMP Ultrascale+ FPGA. Porting an ML
method like ERT in hardware is not a typical hardware acceleration problem since a number
of large arguments have to be passed to the kernel. Moreover, there are not many repetitive
operations to be performed on these data. For this reason, the acceleration techniques have
been focused on the reduction of the latency of bulk data transfers from the software (ARM
processor) to the hardware kernel (FPGA).

In the present work, the tasks of the landmark prediction process that were imple-
mented in reconfigurable hardware concern the traversing of the Nt regression trees of a
cascade stage. Each one of these regression trees has depth Td and 2Td − 1 nodes. Therefore,
the hardware kernel requires five arguments: (a) the indices of the pair of reference pixels
that will be compared in each tree node (arguments: split1, split2), (b) the thresholds Th
in the difference between the gray level of the reference pixels that are compared at each
tree node, in order to decide the next (left or right) node will be visited, (c) the correction
factors rt that will be added to the 18 pairs of landmark coordinates (only the correction
factors at the 2Td−1 regression tree leaves are needed) and (d) the Nr coordinate pairs of the
reference pixels. The sizes of these arguments are listed in Table 3.

Table 3. Size of the arguments passed in the hardware kernel.

Argument Number of Elements Type

Split1/2 2Nt
(
2Td − 1

)
Short integer

Threshold Th Nt
(
2Td − 1

)
Floating point

Corr. Factors rt 2LNt2(Td−1) Floating point
Reference pixel Nr Integer

The employed hardware acceleration techniques employed in Xilinx Vitis environment
were the following: (a) the Split1/2 and Threshold arguments are passed to the kernel
through separate wide buses (ports), (b) double wide ports are used for each one of Split1/2
and Threshold arguments in order to pass half of the argument values from each wide
port in parallel, (c) the Split1/2, Threshold argument values are stored in local pairs
of Block RAMs (BRAMs), (d) the loop that traverses the regression trees was split into
two independent loops operating on different BRAMs of each pair, (e) pipeline and loop
unrolling techniques are employed to the hardware kernel loops. The techniques (a)–(d)
are shown in Figure 11.

Electronics 2023, 12, 3338 19 of 29

Electronics 2023, 12, x FOR PEER REVIEW 19 of 29

independent loops operating on different BRAMs of each pair, (e) pipeline and loop un-
rolling techniques are employed to the hardware kernel loops. The techniques (a)–(d) are
shown in Figure 11.

Table 3. Size of the arguments passed in the hardware kernel.

Argument Number of Elements Type
Split1/2 2𝑁 (2 − 1) Short integer

Threshold Th 𝑁 (2 − 1) Floating point
Corr. Factors rt 2𝐿𝑁 2() Floating point
Reference pixel Nr Integer

Figure 11. Hardware acceleration techniques employed for landmark prediction at ERT cascade
stage level.

4. Experimental Results
In total, four ERT models have been trained using the training set of 270 images de-

scribed in Section 3.1. These models differ in the number of cascade stages (Tc) and the
number of regression trees (Nt) in each cascade stage, as described in Table 4. The specific
Tc, Nt parameter values were selected to quantify the accuracy degradation if the number
of cascade stages or regression trees is reduced compared to the default model M1 that is
expected to achieve the maximum precision.

Table 4. ERT models trained.

Model Cascade Stages Tc Regression Trees Nt
M1 (default) 10 500

M2 10 400
M3 8 500
M4 8 400

The test set of P = 100 fish photographs has been derived from the 52 test photographs
of the initial 322 image dataset, using LAE augmentation services. The error in the position
of the landmarks is estimated from the comparison with the annotation defined as ground
truth in the LAE editor. The relative error εri between the estimated landmark 𝑘 position

Figure 11. Hardware acceleration techniques employed for landmark prediction at ERT cascade
stage level.

4. Experimental Results

In total, four ERT models have been trained using the training set of 270 images
described in Section 3.1. These models differ in the number of cascade stages (Tc) and the
number of regression trees (Nt) in each cascade stage, as described in Table 4. The specific
Tc, Nt parameter values were selected to quantify the accuracy degradation if the number
of cascade stages or regression trees is reduced compared to the default model M1 that is
expected to achieve the maximum precision.

Table 4. ERT models trained.

Model Cascade Stages Tc Regression Trees Nt

M1 (default) 10 500
M2 10 400
M3 8 500
M4 8 400

The test set of P = 100 fish photographs has been derived from the 52 test photographs
of the initial 322 image dataset, using LAE augmentation services. The error in the position
of the landmarks is estimated from the comparison with the annotation defined as ground
truth in the LAE editor. The relative error εri between the estimated landmark k̂i position
and its corresponding position ki in the ground truth annotation is the Euclidean distance
between these two positions, expressed in pixels:

εri = ‖k̂i − ki‖2 (11)

If ki = (wi, hi) and k̂i =
(

ŵi, ĥi

)
and the image (width, height) is (w,h), the normalized

relative error for landmark I, (εni) is:

εni =

√√√√ (ŵi − wi)
2

w2 +

(
ĥi − hi

)2

h2 (12)

The standard deviation (SD), σε in the distribution of the landmark estimation error
εni across all L landmarks is:

σε =

√√√√ 1
L

L

∑
i=1

(εni − µε)
2 (13)

Electronics 2023, 12, 3338 20 of 29

where µε is mean error of εni i.e.,

µε =
1
L

L

∑
i=1

εni (14)

The standard deviation in the distribution of estimation error εnij of a specific landmark
i in P images (0 ≤ j < P) is:

σi =

√√√√ 1
P

P

∑
j=1

(
εnij − µi

)2 (15)

where µi is mean error of εnij, i.e.,

µi =
1
P

P

∑
j=1

εnij (16)

Another standard deviation metric (σP) used is in the average relative error µεj (see
Equation (14)) of all landmarks of an image in all the P test images:

σP =

√√√√ 1
P

P

∑
j=1

(
µεj − µP

)2 (17)

where µP is the mean of µεj:

µP =
1
P

P

∑
j=1

µεj (18)

Table 5 shows the average, minimum and maximum, absolute and relative errors that
have appeared in all landmarks and all the P test images when the model M1 is employed
for maximum accuracy.

Table 5. Global absolute and relative errors for M1.

Type of Error Error

Min Absolute Error 0.36 pixels
Max Absolute Error 78.33 pixels

Average Absolute Error 17.54 pixels
Min Relative Error 0.1%
Max Relative Error 33.6%

Average Relative Error 4.8%

The standard deviation σε limits as well as the σP deviation of the average error in the
P test images are listed in Table 6.

Table 6. Relative error standard deviation σε limits and σP for M1.

Parameter Value

Min σε deviation 0.0068
Max σε deviation 0.081

Average σε deviation 0.03
σP deviation 0.0215

The mean error µi of each landmark i, along with its standard deviation σi is plotted
in Figure 12, for model M1. This plot is of particular interest because it highlights the
landmarks that show the highest error.

Electronics 2023, 12, 3338 21 of 29

Electronics 2023, 12, x FOR PEER REVIEW 21 of 29

Table 6. Relative error standard deviation σε limits and σP for M1.

Parameter Value
Min σε deviation 0.0068
Max σε deviation 0.081

Average σε deviation 0.03
σP deviation 0.0215

The mean error µi of each landmark i, along with its standard deviation σi is plotted
in Figure 12, for model M1. This plot is of particular interest because it highlights the
landmarks that show the highest error.

The error in the relative height and length estimation for the default ERT model M1
of the fish in the test set is listed in Table 7 along with their standard deviations.

Figure 12. The mean relative error and standard deviation for each one of the 18 landmarks.

Table 7. Error and standard deviation in measuring relative fish length and height.

Parameter Value
Fish length error 5.4%

Length error deviation 0.049
Fish height error 4.5%

Width error deviation 0.062

Figure 13 can be used to compare the error shown by the ERT models of Table 4, in
the estimation of the fish length, height and the location of the eyes and gills from the
corresponding landmarks.

Concerning the fish orientation methods described in Section 3.4, Table 8 lists the
success rates achieved with each method. The PCA method is capable of recognizing the
fish tilt with a very good accuracy (less than ±10° in more than 95% of the cases). However,

Figure 12. The mean relative error and standard deviation for each one of the 18 landmarks.

The error in the relative height and length estimation for the default ERT model M1 of
the fish in the test set is listed in Table 7 along with their standard deviations.

Table 7. Error and standard deviation in measuring relative fish length and height.

Parameter Value

Fish length error 5.4%
Length error deviation 0.049

Fish height error 4.5%
Width error deviation 0.062

Figure 13 can be used to compare the error shown by the ERT models of Table 4, in
the estimation of the fish length, height and the location of the eyes and gills from the
corresponding landmarks.

Concerning the fish orientation methods described in Section 3.4, Table 8 lists the
success rates achieved with each method. The PCA method is capable of recognizing the
fish tilt with a very good accuracy (less than ±10◦ in more than 95% of the cases). However,
the direction that the fish is facing is recognized with much lower accuracy as shown in
Table 8. COD performs a draft classification in left or right direction, while FOD performs
a more detailed orientation classification in quadrants Q0–Q3 with the success rate listed
in Table 8. Eye template matching (TM) is also used to classify the direction in one of the
Q0–Q3 quadrants. A number of combinations of these orientation classification methods
are then tested.

Electronics 2023, 12, 3338 22 of 29

Electronics 2023, 12, x FOR PEER REVIEW 22 of 29

the direction that the fish is facing is recognized with much lower accuracy as shown in
Table 8. COD performs a draft classification in left or right direction, while FOD performs
a more detailed orientation classification in quadrants Q0–Q3 with the success rate listed
in Table 8. Eye template matching (TM) is also used to classify the direction in one of the
Q0–Q3 quadrants. A number of combinations of these orientation classification methods
are then tested.

Figure 13. The mean relative error for estimating the fish length, height, eye and gills position with
each one of the M1–M4 ERT models.

Table 8. Success rate in fish direction recognition with PCA, left or right direction classification with
COD, classification in Q0–Q3 quadrants with FOD, template matching (TM) and their combinations.

 PCA COD FOD TM PCA + COD PCA + COD (2) PCA + TM

Success
Rate:

44.8% 67.2% 43.1% 63.8% 65.5% 65.5% 77.6%

In PCA+COD, the tilt found by PCA is used while COD is used to detect the direction.
In PCA+COD (2), COD direction is taken into consideration only if the confidence is above
a threshold. In PCA+TM, the coarse left–right direction indicated by TM is taken into con-
sideration to decide the direction on the tilt estimated by PCA. If, for example, the tilt is
from bottom-left to top-right, then Q1 is selected if TM finds the fish eye in the right quad-
rants (Q1, Q3). If the fish eye is found in the left quadrants (Q0, Q2), then Q2 is selected.
In PCA+TM (2) method, the TM direction is considered only if the template matching
found the fish eye in one of the quadrants that are compatible with the fish tilt indicated
by PCA. For example, if the fish is facing up-right, its caudal fin is in Q2 and its head is in
Q1. If the TM method finds the fish eye in Q1 or Q2 then, the direction indicated by TM
will be assumed correct. Specifically, with fish eye found by TM in Q1 it will correctly be
recognized that the fish is facing up-right while if the fish eye is found in Q2 it will be
assumed by mistake that the fish is facing down-left. If the TM finds the fish eye in Q0 or

Figure 13. The mean relative error for estimating the fish length, height, eye and gills position with
each one of the M1–M4 ERT models.

Table 8. Success rate in fish direction recognition with PCA, left or right direction classification with
COD, classification in Q0–Q3 quadrants with FOD, template matching (TM) and their combinations.

PCA COD FOD TM PCA + COD PCA + COD (2) PCA + TM

Success Rate: 44.8% 67.2% 43.1% 63.8% 65.5% 65.5% 77.6%

In PCA + COD, the tilt found by PCA is used while COD is used to detect the direction.
In PCA + COD (2), COD direction is taken into consideration only if the confidence is
above a threshold. In PCA + TM, the coarse left–right direction indicated by TM is taken
into consideration to decide the direction on the tilt estimated by PCA. If, for example,
the tilt is from bottom-left to top-right, then Q1 is selected if TM finds the fish eye in the
right quadrants (Q1, Q3). If the fish eye is found in the left quadrants (Q0, Q2), then Q2
is selected. In PCA + TM (2) method, the TM direction is considered only if the template
matching found the fish eye in one of the quadrants that are compatible with the fish tilt
indicated by PCA. For example, if the fish is facing up-right, its caudal fin is in Q2 and
its head is in Q1. If the TM method finds the fish eye in Q1 or Q2 then, the direction
indicated by TM will be assumed correct. Specifically, with fish eye found by TM in Q1 it
will correctly be recognized that the fish is facing up-right while if the fish eye is found in
Q2 it will be assumed by mistake that the fish is facing down-left. If the TM finds the fish
eye in Q0 or Q3, the direction indicated by TM will not be taken into consideration and
only the direction indicated by PCA will be used.

In Table 9, a comparison can be found between our fish length and height estimation
method and the references that present fish size estimation results. The last column of
Table 9 lists the frame-processing latencies (Df) of the referenced approaches and our work.

Electronics 2023, 12, 3338 23 of 29

Table 9. Fish size estimation error and frame-processing speed comparison.

Reference Description Error Frame Processing Latency
Df

[21] Tuna fish size
estimation SD: 0.328–0.396 2 s

[26] Fish length
estimation Error 5% Nor reported

[27] Fish size estimation Error 8% 0.2 s (NVIDIA ® Tesla K40)

[32] Fish length
estimation

Error 2–8%
depending on the
fish size

Previous work [10] Fish length
estimation Error 4.93% 2.7–5.1 s (Intel i5 platform)

Previous work [10] Fish height
estimation Error 10.13%

This work Fish length
estimation

Error 5.4%
SD: 0.049

<0.5 µs (on Intel i5
platform)
<16 ms (on Xilinx ZCU102
platform)

This work Fish height
estimation

Error 4.5%
SD: 0.062

5. Discussion

The error in the landmark position estimation as presented in Tables 5, 7 and 9 and Fig-
ures 11 and 12 is largely due to the low contrast of the images in the employed dataset [34].
Other referenced approaches [23–25], are also tested with low-quality underwater images.
However, in most cases they display fish that are more clearly visible than the images
in the UVIMEF dataset. The fish in images from ImageCLEF/LifeCLEF dataset used
in [23], Fish4Knowledge [24] and ImageNet [25] are more distinct as shown in the exam-
ple photographs of Figure 14 (they can be compared to sample images from UVIMEF
in Figure 7b–e).

Electronics 2023, 12, x FOR PEER REVIEW 23 of 29

Q3, the direction indicated by TM will not be taken into consideration and only the direc-
tion indicated by PCA will be used.

In Table 9, a comparison can be found between our fish length and height estimation
method and the references that present fish size estimation results. The last column of
Table 9 lists the frame-processing latencies (Df) of the referenced approaches and our
work.

Table 9. Fish size estimation error and frame-processing speed comparison.

Reference Description Error
Frame Processing Latency

Df

[21]
Tuna fish size esti-
mation

SD: 0.328–0.396 2 s

[26]
Fish length esti-
mation

Error 5% Nor reported

[27]
Fish size estima-
tion

Error 8% 0.2 s (NVIDIA ® Tesla K40)

[32]
Fish length esti-
mation

Error 2–8% depending on
the fish size

Previous
work [10]

Fish length esti-
mation

Error 4.93%
2.7–5.1 s (Intel i5 platform)

Previous
work [10]

Fish height esti-
mation

Error 10.13%

This work
Fish length esti-
mation

Error 5.4%
SD: 0.049

<0.5 µs (on Intel i5 plat-
form)
<16 ms (on Xilinx ZCU102
platform)

This work
Fish height esti-
mation

Error 4.5%
SD: 0.062

5. Discussion
The error in the landmark position estimation as presented in Tables 5, 7, 9 and Fig-

ures 11 and 12 is largely due to the low contrast of the images in the employed dataset
[34]. Other referenced approaches [23–25], are also tested with low-quality underwater
images. However, in most cases they display fish that are more clearly visible than the
images in the UVIMEF dataset. The fish in images from ImageCLEF/LifeCLEF dataset
used in [23], Fish4Knowledge [24] and ImageNet [25] are more distinct as shown in the
example photographs of Figure 14 (they can be compared to sample images from UVIMEF
in Figure 7b–e).

(a) (b) (c) (d)

Figure 14. Sample images from ImageCLEF (a,b) and Fish4Knowledge (c,d) datasets.

To measure the contrast in the images of a dataset, various metrics can be used. The
Root Mean Square (RMS) contrast in an image Im, with Row × Col pixels is defined as:

Figure 14. Sample images from ImageCLEF (a,b) and Fish4Knowledge (c,d) datasets.

To measure the contrast in the images of a dataset, various metrics can be used. The
Root Mean Square (RMS) contrast in an image Im, with Row × Col pixels is defined as:

RMS contrast =

√√√√ 1
Row·Col

Row

∑
i=1

Col

∑
j=1

(
Im− Ĩm

)2
(19)

where Ĩm is the average intensity of the pixels in image Im. Another popular metric is
the Michelson contrast that is based on the minimum (Imin) and maximum (Imax) pixel
intensities in an image Im:

Michelson contrast =
Imax − Imin
Imax + Imin

(20)

Electronics 2023, 12, 3338 24 of 29

The entropy of an image or of a specific region in an image measures the information
incorporated is this region. Thus, entropy is also related with contrast since higher entropy
indicates more information expressed as abrupt changes in the intensity of neighboring
pixels. Entropy is defined as:

Entropy = −∑ Pe. ∗ log2Pe (21)

Pe contains the normalized histogram counts of the image Im. A total of 20 indicative
photographs have been selected from our dataset (UVIMEF) and the same number of images
from ImageCLEF and Fish4Knowledge datasets. The average values of the contrast metrics
defined above are listed in Table 10. As can be seen from this table our dataset has the lowest
contrast. UVIMEF has a much smaller RMS and Michelson contrast than the other two
datasets. Concerning the entropy, only Fish4Knowledge has lower average entropy than
UVIMEF. Moreover, the fish dimensions in UVIMEF photographs are quite small resulting
in patches that may have extremely low resolution (e.g., 70 × 30 pixels). The low resolution
and contrast of the images that serve as input to our shape alignment approach, pose much
worse conditions for our experiments, compared with the referenced approaches.

Table 10. Contrast comparison.

Dataset RMS Contrast Michelson Contrast Entropy

UVIMEF used in this work 23.61 0.82 6.80
ImageCLEF used in [23] 63.26 1.00 7.37
Fish4Knowledge used in [24] 55.64 0.94 6.10

From the experimental results presented in the previous section, the average relative
error (using M1 model) in the alignment of a single landmark is 4.8% (corresponding to an
absolute error of 17.54 pixels) with the following SDs: σε = 0.03, σP = 0.0215. The relative
error in the estimation of fish length is 5.4% and 4.5% in the estimation of the height (with
the corresponding SDs being 0.049 and 0.062, respectively). Taking into consideration that
the length of the fish recognized in the photographs of the dataset ranges from 10 cm to
30 cm, the average absolute error is in the order of 0.5 cm–1.5 cm.

More details concerning the accuracy in the alignment of individual landmarks can
be found in Figure 12. Specifically, landmarks 7 (top of the caudal fin) and 9 (bottom of
the caudal fin) are located with a mean error equal to 6.8% and 7.8%, respectively. These
are the highest relative errors measured per landmark. They appear at the landmarks
that mark the edge of the caudal fin because in most photographs of the UVIMEF dataset
used for training and testing, the caudal fin perimeter is often indistinguishable from the
background. Landmarks 1 (mouth) and 8 (middle of the caudal fin), that are used for the
estimation of fish length are located with a mean error of 6.8% and 5.6%, respectively. When
they are combined to estimate the fish length, the average relative error is 5.4%.

Landmarks 3 and 13 are used to estimate fish height. Their average relative error is
4.8% and 4.6%, lower than the error shown by landmarks 1 and 8 that are used for length
estimation. For this reason, the error in fish height estimation (4.5%) is lower than that of the
fish length (5.4%). Other landmarks of interest are No. 17 and 18 that are used to locate the
fish eye ROI. These landmarks are located with an average relative error of 4.5% and 3.6%.
Taking into consideration the fish size range mentioned above, this relative error in the fish
eye localization is interpreted to about 0.4 cm–1.2 cm. In the experiments conducted, the
fish eye was not always found between landmarks No. 17 and 18. Nevertheless, additional
pattern recognition methods can be applied to localize the exact position of the eye in the
neighborhood of these landmarks. Similarly, the position of the gills is another ROI located
by landmarks No. 14, 15 and 16. The mean relative errors in the estimation of the position
of these landmarks range between 3.8% and 4.7%.

Electronics 2023, 12, 3338 25 of 29

In Figure 13, the relative error in the estimation of four morphological features, by the
ERT models listed in Table 4, is displayed. More specifically, the error in the estimation
of the fish length, height, as well as the position of the eyes and gills is compared. In all
cases, the error of model M2 is slightly higher than that of model M3 and the error of M3
is slightly higher than the error M4. However, the error shown by the default model M1
is higher than that of M3 in the estimation of the fish height and the position of the fish
gills. Model M3 seems to show an error comparable to that of M1 and can replace it, if
higher processing speed is required. If the frame-processing latency of the default model
M1 (Nt = 500, Tc = 10) is Df, the following equation estimates the latency D′f of a different
model with N′t trees and T′c cascade stages:

D′f =
T′c N′t
TcNt

D f (22)

For example, the latency of M3 (N′t = 500, T′c = 8) is D′f = 8·500
10·500 D f = 0.8·D f . M4

(N′t = 400, T′c = 8) is the model with the lowest latency: D′f =
8·400

10·500 D f = 0.64·D f . Thus,
M4 is expected to have 56.25% higher speed than M1.

Concerning the fish orientation classification, Table 8 shows that the best results are
achieved with the combination of PCA with TM when the false eye template matching
estimations are ignored. PCA is capable of detecting the tilt of the fish with high accuracy.
However, it could detect the direction of the fish in only 44.8% of the cases, using the
low-contrast images of the UVIMEF dataset. The COD achieved a higher success rate
(67.2%) but can detect only a draft left or right direction. The FOD method could be used
to classify the direction of the fish in four quadrants but its classification accuracy is only
43.1%. On the other hand, fish eye template matching has a relatively higher success rate of
63.8%. This could have been even higher, if the resolution and the quality of the dataset
images were better because in many fish image patches the eye is not visible at all. In these
cases, the eye is confused either with background objects or with other parts of the fish like
a strip in the caudal fin of some species such as Diplodus annularis (see Figure 7). Certain
combinations of these orientation detection methods were also tested as shown in Table 8.
Combining PCA with the left or right classification of COD achieved a success rate of 65.5%.
The highest accuracy was achieved when the PCA was combined with TM and can reach
79.3%. A much higher orientation accuracy is expected to be achieved if the track of the
fish is also taken into consideration as explained in Section 3.5.

Comparing the fish size estimation methods listed in Table 9 as well as the errors
displayed in Figure 13, it is obvious that the proposed fish length or height estimation
achieves one of the best accuracies reported for morphological feature estimation. In [26], a
slightly lower error (5%) is achieved in the estimation of the fish length while in [32] the
error is lower only in some specific fish sizes. However, in most of the cases presented
in the literature, fish size is estimated in a controlled environment (e.g., on a conveyor
belt) or with high-resolution underwater images and clearly visible fish as described in
Figure 14 and Table 10. Estimating fish size in low-contrast and resolution images like those
generated from UVIMEF dataset, is a much more challenging task. It is obvious that all the
errors listed in Tables 5–7 and 9, as well as Figures 12 and 13 would be lower if the ERT
models had been trained with higher-quality images. It is also worth noting from Table 9,
that the accuracy in the present work is much better compared to previous work [10]. The
frame-processing speed of the current approach is also orders of magnitude higher than
that of the previous work [10].

In summary, the developed framework offers a number of useful services for fish
monitoring such as morphological feature estimation, fish orientation classification and
fish tracking. These services can be employed both for monitoring fish in free waters and
aquacultures. The fish detection, orientation classification and shape alignment methods for
morphological feature estimation were described in detail. The principles of fish tracking
in the developed framework were also discussed.

Electronics 2023, 12, 3338 26 of 29

One of the limitations of the current work is the latency of the fish detection. Specific
directions were given to pipeline the fish detection in specific frames with other tasks
that can run as parallel threads. These tasks can be the bounding box interpolation in
intermediate frames between actual fish detections, the execution of the orientation classifi-
cation and the shape alignment. Hardware acceleration of the shape alignment process was
applied for embedded target platforms. Similarly, the inference for fish detection can also
be implemented in hardware on the same target platform. Developing such an architecture
is part of our on-going work in order to achieve a high frame-processing speed for the
overall system and support real-time operation. Finally, more sophisticated techniques
can also be incorporated into the presented fish-tracking approach. For example, feedback
from the shape alignment stage can be exploited to identify with higher confidence the
fish in successive frames without confusing their positions. The fish orientation can also
indicate when the fish is changing direction in its track.

6. Conclusions

Fish detection, orientation classification, size estimation, locating regions of interest
and fish tracking are supported in the framework presented in this paper. It can be exploited
for fish monitoring in aquaculture systems and open sea. It is based on deep learning for
fish detection, OpenCV services for orientation classification and the adaptation of a shape
alignment machine learning method called Ensemble of Regression Trees. Hardware and
software acceleration techniques have been developed for the shape alignment process
achieving a frame-processing latency of less than 0.5 µs on an Intel i5 platform or less
than 16 ms on an embedded platform with programmable logic. The fish detection is
performed with an accuracy higher than 95% since almost all of the fish that were expected
to be monitored, were detected. The orientation of the fish is classified in four major
directions with 80% success rate. The relative fish size estimation was also performed with
an accuracy ranging between 4.5% and 5.5%. Preliminary demos and tutorials for this work
are available as Supplementary Materials.

Future work will focus on employing hardware acceleration for the fish detection
inference, in order to improve the frame-processing speed of the overall system. More-
over, the employed fish-tracking method will be implemented taking into consideration
additional information such as the speed and the changes in the direction of the fish.

Supplementary Materials: A description of how DEST was ported to Ubuntu environment and MS
Visual Studio 2019 as well as the use of LAE editor can be found in the videos of the playlist https:
//www.youtube.com/playlist?list=PLXUuQj2gQ4s9TXI12kP9WMaxthWrjAweF. The description
of how hardware acceleration has been applied to DEST video tracking application for face shape
alignment can be found in https://www.youtube.com/watch?v=OlCBCwroAkw&ab_channel=
ESDALab (accessed on 1 August 2023).

Author Contributions: Conceptualization, N.P. and G.K.; methodology, N.P.; software, N.P.; valida-
tion, N.P. and G.K.; resources, C.P.A. and N.V.; data curation, N.P.; writing—original draft preparation,
N.P.; writing—review and editing, all; supervision, N.V.; project administration, N.P. and N.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: UVIMEF Dataset: https://www.kaggle.com/datasets/nikospetrellis/
uvimef (accessed on 1 August 2023).

Acknowledgments: The authors wish to thank the student Spilios Kostopoulos for conducting part
of the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.youtube.com/playlist?list=PLXUuQj2gQ4s9TXI12kP9WMaxthWrjAweF
https://www.youtube.com/playlist?list=PLXUuQj2gQ4s9TXI12kP9WMaxthWrjAweF
https://www.youtube.com/watch?v=OlCBCwroAkw&ab_channel=ESDALab
https://www.youtube.com/watch?v=OlCBCwroAkw&ab_channel=ESDALab
https://www.kaggle.com/datasets/nikospetrellis/uvimef
https://www.kaggle.com/datasets/nikospetrellis/uvimef

Electronics 2023, 12, 3338 27 of 29

Abbreviations

BMA Binary Mask Annotation
BRAM Block RAM
CLEF Cross Language Evaluation Forum
CNN Convolution NN
COD Coarse Orientation Detection
CPU Central Processing Unit
DCNN Deep CNN
DEST Deformable Shape Tracking
DIDSON Dual Frequency Identification Sonar
ERT Ensemble of Regression Trees
FPGA Field Programmable Gate Array
FPI Fish Position Interpolation
FOD Fine Orientation Detection
GMM Gaussian Mixture Model
GPU Graphics Processing Unit
LAE Landmark Annotation Editor
ML Machine Learning
NN Neural Network
PCA Principal Component Analysis
PM Pattern Matching
R-CNN Region-based CNN
RMS Root Mean Square
ROI Region of Interest
SCIA Segmented Color Image Annotation
SD Standard Deviation
SVD Singular Vector Decomposition
TM Template Matching
UVIMEF Underwater Videos–Images of Mediterranean Fish
UWP Universal Windows Platform
YOLO You Only Look Once

References
1. Vo, T.T.E.; Ko, H.; Huh, J.-H.; Kim, Y. Overview of Smart Aquaculture System: Focusing on Applications of Machine Learning

and Computer Vision. Electronics 2021, 10, 2882. [CrossRef]
2. Zion, B. The use of computer vision technologies in aquaculture—A review. Comput. Electron. Agric. 2012, 88, 125–132. [CrossRef]
3. Mathiassen, J.R.; Misimi, E.; Bondø, M.; Veliyulin, E.; Østvik, S.O. Trends in application of imaging technologies to inspection of

fish and fish products. Trends Food Sci. Technol. 2011, 22, 257–275. [CrossRef]
4. Fish Detection. Available online: https://github.com/kwea123/fish_detection (accessed on 1 March 2023).
5. OpenCV. Available online: https://opencv.org/ (accessed on 25 May 2023).
6. Kazemi, V.; Sullivan, J. One millisecond face alignment with an ensemble of regression trees. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 867–1874. [CrossRef]
7. Dlib C++ Library. Available online: http://dlib.net/ (accessed on 25 May 2023).
8. Deformable Shape Tracking (DEST). Available online: https://github.com/cheind/dest (accessed on 25 May 2023).
9. Petrellis, N.; Christakos, P.; Zogas, S.; Mousouliotis, P.; Keramidas, G.; Voros, N.; Antonopoulos, C. Challenges Towards Hardware

Acceleration of the Deformable Shape Tracking Application. In Proceedings of the 2021 IFIP/IEEE 29th International Conference
on Very Large Scale Integration (VLSI-SoC), Singapore, Singapore, 4–7 October 2021. [CrossRef]

10. Petrellis, N. Measurement of Fish Morphological Features through Image Processing and Deep Learning Techniques. Appl. Sci.
2021, 11, 4416. [CrossRef]

11. Gu, K.; Zhai, G.; Yang, X.; Zhang, W.; Chen, C.W. Automatic Contrast Enhancement Technology with Saliency Preservation. IEEE
Trans. Circuits Syst. Video Technol. 2015, 25, 1480–1494. [CrossRef]

12. Gu, K.; Lin, W.; Zhai, G.; Yang, X.; Zhang, W.; Chen, C.W. No-Reference Quality Metric of Contrast-Distorted Images Based on
Information Maximization. IEEE Trans. Cybern. 2017, 47, 4559–4565. [CrossRef]

13. Franceschelli, L.; Berardinelli, A.; Dabbou, S.; Ragni, L.; Tartagni, M. Sensing Technology for Fish Freshness and Safety: A Review.
Sensors 2021, 21, 1373. [CrossRef]

https://doi.org/10.3390/electronics10222882
https://doi.org/10.1016/j.compag.2012.07.010
https://doi.org/10.1016/j.tifs.2011.03.006
https://github.com/kwea123/fish_detection
https://opencv.org/
https://doi.org/10.1109/CVPR.2014.241
http://dlib.net/
https://github.com/cheind/dest
https://doi.org/10.1109/VLSI-SoC53125.2021.9606999
https://doi.org/10.3390/app11104416
https://doi.org/10.1109/TCSVT.2014.2372392
https://doi.org/10.1109/TCYB.2016.2575544
https://doi.org/10.3390/s21041373

Electronics 2023, 12, 3338 28 of 29

14. Freitas, J.; Vaz-Pires, P.; Câmara, J.S. From aquaculture production to consumption: Freshness, safety, traceability and authentica-
tion, the four pillars of quality. Aquaculture 2020, 518, 734857. [CrossRef]

15. Choi, J.W.; Jang, M.K.; Hong, C.W.; Lee, J.W.; Choi, J.H.; Kim, K.B.; Xu, X.; Ahn, D.H.; Lee, M.K.; Nam, T.J. Novel application of
an optical inspection system to determine the freshness of Scomber japonicus (mackerel) stored at a low temperature. Food Sci.
Biotechnol. 2020, 29, 103–107. [CrossRef]

16. Dowlati, M.; Mohtasebi, S.S.; Omid, M.; Razavi, S.H.; Jamzad, M.; De La Guardia, M. Freshness assessment of gilthead sea bream
(Sparus aurata) by machine vision based on gill and eye color changes. J. Food Eng. 2013, 119, 277–287. [CrossRef]

17. Li, X.; Shang, M.; Qin, H.; Chen, L. Fast accurate fish detection and recognition of underwater images with Fast R-CNN. Oceans
2015, 2015, 1–5. [CrossRef]

18. Jalal, A.; Salman, A.; Mian, A.; Shortis, M.; Shafait, F. Fish detection and species classification in underwater environments using
deep learning with temporal information. Ecol. Inform. 2020, 57, 101088. [CrossRef]

19. Sung, M. Vision based real-time fish detection using convolutional neural network. Oceans 2017, 1–6. [CrossRef]
20. Xie, Y. Improved Gaussian Mixture Model in Video Motion Detection. J. Multimed. 2013, 8, 527–533. [CrossRef]
21. Lekunberri, X.; Ruiz, J.; Quincoces, I.; Dornaika, F.; Arganda-Carreras, I.; Fernandes, A.A. Identification and measurement of

tropical tuna species in purse seiner catches using computer vision and deep learning. Ecol. Inform. 2022, 67, 101495. [CrossRef]
22. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. Available online: https://arxiv.org/abs/1703.06870 (accessed on 25

May 2023).
23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
24. Qin, H.; Li, X.; Liang, J.; Peng, Y.; Zhang, C. Deepfish: Accurate underwater live fish recognition with a deep architecture.

Neurocomputing 2016, 187, 49–58. [CrossRef]
25. Sun, X.; Shi, J.; Dong, J.; Wang, X. Fish recognition from low-resolution underwater images. In Proceedings of the 9th IEEE

International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 471–476, Datong,
China, 15–17 October 2016. [CrossRef]

26. Ubina, N.A.; Cheng, S.C.; Chang, C.C.; Cai, S.Y.; Lan, H.Y.; Lu, H.Y. Intelligent underwater Stereo Camera Design for Fish Metric
Estimation Using Reliable Object Matching. IEEE Access 2022, 10, 74605–74619. [CrossRef]

27. Fisher, M.H.; French, J.; Gorpincenko, A.; Mackiewicz, M.; Holah, H.; Clayton, L.; Selkow, R. Motion Stereo at Sea: Dense
3D Reconstruction from Image Sequences Monitoring Conveyor Systems on Board Fishing Vessels. IET Image Process. 2022,
17, 349–361. [CrossRef]

28. Karnani, K.; Pepper, J.; Bakis, Y.; Wang, X.; Bart, H.; Breen, D.; Greenberg, J. Computational Metadata Generation Methods
for Biological Specimen Image Collections. 27 April 2022, PREPRINT (Version 1) Available at Research Square, European
Bioinformatics Institute. Available online: https://www.researchsquare.com/article/rs-1506561/v1 (accessed on 1 August 2023).

29. Kandimalla, V.; Richard, M.; Smith, F.; Quirion, J.; Torgo, L.; Whidden, C. Automated Detection, Classification and Counting of
Fish in Fish Passages with Deep Learning. Front. Mar. Sci. 2022, 8, 823173. [CrossRef]

30. Alori, J.; Descoins, A.; Ríos, B.; Castro, A. Norfair Library. Tryolabs/Norfair: v0.3.1. Available online: https://zenodo.org/
record/5146254 (accessed on 25 May 2023).

31. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
32. Martignac, F.; Daroux, A.; Bagliniere, J.L.; Ombredane, D.; Guillard, J. The use of acoustic cameras in shallow waters: New

hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology. Fish Fish. 2015, 16, 486–510.
[CrossRef]

33. Terayama, K.; Shin, K.; Mizuno, K.; Tsuda, K. Integration of sonar and optical camera images using deep neural network for fish
monitoring. Aquac. Eng. 2019, 86, 102000. [CrossRef]

34. Petrellis, N.; Keramidas, G.; Antonopoulos, C.P.; Voros, N. UVIMEF [Data Set]. Kaggle. 2023. Available online: https://www.
kaggle.com/datasets/nikospetrellis/uvimef (accessed on 25 May 2023).

35. Chyrka, I.; Kharchenko, V. 1D direction estimation with a YOLO network. In Proceedings of the 2019 European Microwave
Conference in Central Europe (EuMCE), Prague, Czech Republic, 13–15 May 2019; pp. 358–361.

36. Hara, K.; Vemulapalli, R.; Chellappa, R. Designing Deep Convolutional Neural Networks for Continuous Object Orientation
Estimation. arXiv 2017, arXiv:1702.01499. [CrossRef]

37. Song, F.; Guo, Z.; Mei, D. Feature selection using principal component analysis. In Proceedings of the 2010 International
Conference on System Science, Engineering Design and Manufacturing Informatization, Yichang, China, 18 November 2010;
pp. 27–30. [CrossRef]

38. De Silva, A. Object Orientation Detection and Correction Using Computer Vision. Culminating Projects in Computer Science and
Information Technology. 33. St. Cloud State University. 2020. Available online: https://repository.stcloudstate.edu/csit_etds/33
(accessed on 25 May 2023).

39. Lendave, V. Detecting Orientation of Objects in Image Using PCA and OpenCV. Available online: https://analyticsindiamag.
com/detecting-orientation-of-objects-in-image-using-pca-and-opencv/ (accessed on 15 May 2023).

https://doi.org/10.1016/j.aquaculture.2019.734857
https://doi.org/10.1007/s10068-019-00639-z
https://doi.org/10.1016/j.jfoodeng.2013.05.023
https://doi.org/10.23919/OCEANS.2015.7404464
https://doi.org/10.1016/j.ecoinf.2020.101088
https://doi.org/10.1109/OCEANSE.2017.8084889
https://doi.org/10.4304/jmm.8.5.527-533
https://doi.org/10.1016/j.ecoinf.2021.101495
https://arxiv.org/abs/1703.06870
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.neucom.2015.10.122
https://doi.org/10.1109/CISP-BMEI.2016.7852757
https://doi.org/10.1109/ACCESS.2022.3185753
https://doi.org/10.1049/ipr2.12636
https://www.researchsquare.com/article/rs-1506561/v1
https://doi.org/10.3389/fmars.2021.823173
https://zenodo.org/record/5146254
https://zenodo.org/record/5146254
https://doi.org/10.1111/faf.12071
https://doi.org/10.1016/j.aquaeng.2019.102000
https://www.kaggle.com/datasets/nikospetrellis/uvimef
https://www.kaggle.com/datasets/nikospetrellis/uvimef
https://doi.org/10.48550/arXiv.1702.01499
https://doi.org/10.1109/ICSEM.2010.14
https://repository.stcloudstate.edu/csit_etds/33
https://analyticsindiamag.com/detecting-orientation-of-objects-in-image-using-pca-and-opencv/
https://analyticsindiamag.com/detecting-orientation-of-objects-in-image-using-pca-and-opencv/

Electronics 2023, 12, 3338 29 of 29

40. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Sys. Man. Cyber 1979, 9, 62–66. [CrossRef]
41. Eigen 3.3.9. Available online: https://eigen.tuxfamily.org/ (accessed on 15 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSMC.1979.4310076
https://eigen.tuxfamily.org/

	Introduction
	Related Work
	Materials and Methods
	Dataset, Tools and Target Environment
	General Architecture of the Proposed System
	Employed Fish Detection Approach
	Orientation Classification Method
	Fish Tracking
	ERT Background
	Shape Alignment for Fish Morphological Feature Extraction

	Experimental Results
	Discussion
	Conclusions
	References

