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Abstract: In this paper, we present a novel approach for speech representation using latent regression
Bayesian networks (LRBN) to address the issue of poor performance in low-resource language speech
systems. LRBN, a lightweight unsupervised learning model, learns data distribution and high-level
features, unlike computationally expensive large models, such as Wav2vec 2.0. To evaluate the
effectiveness of LRBN in learning speech representations, we conducted experiments on five different
low-resource languages and applied them to two downstream tasks: phoneme classification and
speech recognition. Our experimental results demonstrate that LRBN outperforms prevailing speech
representation methods in both tasks, highlighting its potential in the realm of speech representation
learning for low-resource languages.
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1. Introduction

Speech representation learning involves the utilization of machine learning techniques
to extract abstract and high-level representations from speech signals. The objective is to
transform the speech signal into a feature representation that encompasses various types
of information, such as phonemes, emotions, and speaker characteristics. The extraction
of effective speech representations from speech signals is crucial for reducing the learning
complexity of downstream tasks and minimizing the amount of annotated data required.
This holds importance in the realm of speech processing, particularly in the context of
low-resource speech processing.

With over 7000 languages existing worldwide, many of them suffer from inadequate
speech data, making it challenging to develop systems for low-resource speech tasks.
Constructing such systems necessitates a resource-intensive data collection and labeling
processes. To tackle this issue, researchers employ high-quality speech representation
models, trained on extensive speech datasets, to serve as feature extractors by extracting
audio features. Speech representation learning can be achieved through both supervised
and unsupervised approaches. Supervised speech representation learning typically in-
volves the utilization of large volumes of annotated data from high-resource languages
for pre-training. The trained models are then employed as feature extractors, for instance,
through the use of bottleneck features (BNF) [1–3]. However, the efficacy of pre-training
is affected by the linguistic variability between the source and target tasks. On the other
hand, unsupervised speech representation learning does not require the labeling of input
data. This method relies on training models with abundant unannotated speech data and
learning by reconstructing the input frames [4–7]. Additionally, self-supervised learning,
which falls under the umbrella of unsupervised learning methods, leverages information
constructed from unsupervised data itself as labels for learning representations that prove
useful for downstream tasks [8]. One of the most advanced self-supervised speech repre-
sentation methods is Wav2vec 2.0 [9], and large self-supervised models such as Wav2vec 2.0
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have achieved human equivalence on numerous datasets. However, despite the promising
results demonstrated by the Wav2vec 2.0 framework, its high computational cost poses
a challenge when it comes to the practical application of these speech representations on
low-resource languages [9]. Moreover, one study [10] has indicated that Wav2vec 2.0 is not
universally applicable to all low-resource languages.

In this paper, our proposal centers around the utilization of a latent regression Bayesian
network (LRBN) for speech representation learning in low-resource languages. The aim
is to enhance the performance of low-resource speech systems. Unlike large models such
as Wav2vec 2.0, LRBN is a lightweight model that learns data distribution and latent
features in an unsupervised manner. By reconstructing its input through the latent layer,
LRBN extracts the latent representation from the latent activation values. The goal is to
ensure that the latent representation retains the essential features of the original data while
being easier to analyze and process. This lightweight nature of LRBN is advantageous
when dealing with small sample data, making it well-suited for speech representation
learning in low-resource languages. Classical probabilistic deep generative models, such
as restricted Boltzmann machines (RBM) and deep belief networks (DBN), often overlook
correlations between latent variables, leading to a reduction in the representational power
of the models [11]. In contrast, LRBN preserves the dependencies between latent variables.
Studies have demonstrated that LRBN outperforms existing models in terms of data
reconstruction and achieves comparable data representation performance [12]. To evaluate
the effectiveness of LRBN in speech representation learning, we conducted experiments
on two downstream tasks: phoneme classification and speech recognition. The results
illustrate that LRBN surpasses previous approaches in these tasks, highlighting its efficacy
in speech representation learning for low-resource languages.

Our research makes contributions in the following ways: (1) We extend the application
of LRBN to address the issue of poor performance in speech recognition tasks for low-
resource languages. LRBN, which has previously demonstrated success in the image
domain for data representation, is introduced to speech representation learning in our work.
(2) Through comprehensive experiments involving five different low-resource languages,
including Tibetan, Cantonese, Korean, Uyghur, and Mongolian, we have demonstrated that
our LRBN method achieves comparable or even superior performance against other speech
representation techniques. (3) We investigated the impact of varying the number of latent
layer nodes of LRBN on speech representation. Our findings suggest that optimizing the
number of latent layer nodes can improve the effectiveness of our approach, highlighting
its potential for further optimization.

2. Related Work

In the realm of speech representation, two distinct categories can be identified: tradi-
tional methods and deep learning methods. Traditional speech representation involves the
use of manually crafted speech features, which offer computational simplicity, consistency,
and high interpretability when compared to deep features. Traditional features such as
Mel Frequency Cepstral Coefficients (MFCCs) and Filter Bank (FBank) are widely used
features in speech processing. The process of extracting MFCCs involves several steps,
including computing the Fourier transform, mapping the power spectrum to the Mel non-
linear spectrum, and applying the discrete cosine transform (DCT) for decorrelation [13,14].
The latter step is essential for machine learning algorithms. Subsequently, FBank features
were introduced. Unlike MFCCs, FBank features do not employ the DCT for decorrelation
and offer superior information content with reduced computational complexity and higher
feature correlation. Traditional features primarily focus on low-level attributes of speech,
such as frequency, energy, and harmonics. In contrast, deep learning speech representation
captures high-level attributes and the underlying relationships in speech signals, thereby
enhancing the performance of low-resource speech systems for various languages [15].
Furthermore, studies have demonstrated that deep learning-based speech representations
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exhibit superior generalization capabilities and do not necessitate features specifically
designed for particular downstream tasks [14].

Deep learning-based speech representations can be acquired through supervised or
unsupervised learning. Supervised learning allows for effective speech representations
to be learned from large annotated datasets, such as Bottleneck Features (BNF), which is
particularly useful for low-resource languages. In practice, the work of [16,17] has demon-
strated that BNF can enhance the performance of low-resource speech tasks. However, if
the pre-trained source language substantially differs from the target language of the task,
the model may fail to capture the necessary acoustic and linguistic information required for
the low-resource target task. On the other hand, unsupervised learning can be employed
by training models with ample unannotated speech data, offering the potential to learn
meaningful representations from speech [6,7]. Within the speech domain, a subcategory of
unsupervised learning called self-supervised learning has garnered attention. Contrastive
Predictive Coding (CPC), a self-supervised training criterion [8], facilitates representation
learning by predicting adjacent frames based on the current frame. Wav2vec, introduced
by Schneider et al. [18], directly employs the CPC loss for speech representation learning.
Baevski et al. [19] proposed an improved method called Vq-wav2vec, which employs
vector quantization to quantize and learn discrete speech representations from extracted
features. Additionally, Baevski et al. [9] put forward Wav2vec 2.0, a combination of the
Vq-wav2vec method and a masked language model (MLM) for training discrete speech
units with contextual representations [20]. In addition to these methods, several recent
theoretical and empirical works have focused on speech representation tasks. Refs. [21,22]
delved into the representation and generalization capabilities of deep neural networks
(DNNs) for speech processing. Notably, ref. [23] even explored the application of quantum
neural networks to extract more representative speech features for low-resource speech
recognition.

Presently, Wav2vec 2.0 stands as one of the most widely adopted speech feature
representation methods in the domain of low-resource speech recognition. In ref. [24],
Wav2vec 2.0 was utilized as a feature extractor for low-resource speech recognition. This
study demonstrates the ability of Wav2vec 2.0 to learn high-quality feature representations
from unlabeled speech data through self-supervised learning, which are then employed
for speech recognition tasks. The results indicate that Wav2vec 2.0 exhibits remarkable
transferability. Initially, the focus of Wav2vec 2.0 research was primarily on English. How-
ever, researchers in ref. [25] subsequently pre-trained a new version of Wav2vec 2.0 called
XLSR using 56k hours of speech audio from 53 different languages. This model learns
cross-language speech representations by pre-training on raw multilingual speech wave-
forms and demonstrates that cross-language pre-training can enhance speech recognition
performance. While the Wav2vec 2.0 framework displays promising outcomes, it is compu-
tationally demanding [9]. Moreover, it has been noted in ref. [10] that Wav2vec 2.0 is not
universally applicable to all low-resource languages. Thus, in this paper, LRBN is employed
for low-resource speech representation learning to explore a more suitable approach for
low-resource speech representation.

3. Methods
3.1. Latent Regression Bayesian Network

The LRBN model, utilizing the Bayesian network framework, enables the modeling
of intricate interdependencies among variables. This model explicitly aims to capture the
dependencies between latent variables for effective data representation. It comprises a
visible layer X with nd dimensions and a latent layer H with nh dimensions, as depicted in
Figure 1. Each latent variable is connected to visible variables through directed edges.
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Figure 1. LRBN structure.

LRBN fulfills the chain rule, whereby it represents the visible variables as x =
(

x1, . . . , xnd

)
and the hidden variables as h =

(
h1, . . . , hnh

)
. The joint probability distribution of all visible

and hidden variables can be formulated as the product of the prior probability distribution
of any hidden variable and the conditional probability distribution of any visible variable
given the values of the hidden variables. The joint probability of x and h is computed in
Equation (1):

P(x, h) =
nh

∏
j=1

P
(
hj
) nd

∏
i=1

P(xi | h) (1)

where nh and nd refer to the number of hidden and visible nodes, respectively. The joint
probability of the visible and hidden variables is represented by P(x, h), whereas the prior
probability of the hidden variable hj is denoted as P

(
hj
)
. Furthermore, P(xi | h) represents

the conditional probability of the visible variable xi given all hidden variables h. Both P
(
hj
)

and P(xi | h) follow Bernoulli distribution and can be expressed as Equations (2) and (3),
respectively:

P
(
hj
)
= σ

(
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)hj

(
1− σ

(
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))1−hj (2)

where σ(z) = 1/(1 + exp(−z))and dj is the deviation of the variable hj.

P(xi | h) = σ
(
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i h + bi

)xi
(

1− σ
(

wT
i h + bi

))1−xi
(3)

where wi represents the weight linking the hidden node h with the visible node xi, while
bi denotes the bias value of the visible node xi. By integrating Equations (2) and (3),
Equation (1) can be derived as Equation (4):

PΘLRBN (x, h)

= ∏
j

exp
(
djhj

)
1 + exp

(
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) ∏

i

exp
((
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(
wT

i h + b
)

=
exp

(
−ΓΘLRBN (x, h)

)
∏j

(
1 + exp

(
dj
))

(4)

where ΘLRBN = W , b, d, and

ΓΘLRBN (x, h) = −∑
i

(
wT

i h + bi

)
xi −∑

j
djhj

+ ∑
i

log
(

1 + exp
(

wT
i h + bi

))
.

(5)

Equation (5) bears resemblance to the energy function found in a restricted Boltz-
mann machine (RBM). However, Equation (5) distinguishes itself with an additional term
appended at the end, ∑i log

(
1 + exp

(
wT

i h + bi
))

. This supplementary term effectively
captures the intricate dependencies among the latent variables. Unlike RBMs, where latent
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and visible nodes are connected through undirected line segments, the LRBN employs
directed connections, resulting in more nuanced interconnections between the latent layers.
Consequently, the LRBN possesses superior capability in capturing inherent patterns within
the input data compared to RBMs. Moreover, as the LRBN joint distribution is derived
from the multiplication of prior and conditional probabilities, it remains unaffected by the
collocation function problem encountered in RBM.

3.2. Speech Representation Learning Using LRBN

LRBN is a deep directed generative model designed to learn speech representation
from data in an unsupervised manner. Traditional probabilistic deep generative models,
such as Restricted Boltzmann Machines (RBM) and Deep Belief Networks (DBN), often
overlook the correlations between latent variables, resulting in a loss of representational
power. In contrast, LRBN is capable of capturing complex dependencies between variables
by incorporating directed connections between latent and visible layers. To maintain the
interdependencies among latent variables, LRBN employs a conditional pseudo-likelihood-
based inference method. This approach approximates the true likelihood by considering the
conditional probabilities of each visible variable given the values of other visible and latent
variables. Notably, visible variables within the LRBN framework can take on continuous or
discrete values, while latent variables are binary. Each latent variable is connected to all
visible variables, forming a directed acyclic graph.

To utilize LRBN for speech feature representation, it is necessary to preprocess the
speech signal to obtain an appropriate input representation. In this particular study, tra-
ditional features are employed as input features. The parameters of the LRBN model
are learned using the hard Expectation-Maximization (EM) algorithm for training. No-
tably, the data likelihood is calculated using a max-out method instead of summing
out, thereby addressing the challenges associated with traditional EM algorithms in
likelihood calculation.

The hard EM algorithm, a variant of the EM algorithm, employs the most probable val-
ues of potential variables instead of their expected values to update the model parameters.
During the E-step of the hard EM algorithm, Maximum A Posteriori (MAP) inference is
required, which can be effectively achieved using a pseudo-likelihood-based approach. To
circumvent the exponential number of latent variable configurations, the maximum output
setting is utilized in the E-step of learning to approximate the data likelihood. During the
M-step, the problem is transformed into parametric learning using complete data, which
simplifies the handling process. In this study, the visible layer in LRBN represents the
input speech features, while the latent layer represents the learned speech representation.
The training objective aims to maximize the log-likelihood of the training data, which
is equivalent to minimizing the reconstruction error between the input features and the
reconstructed features. Finetuning pretrained models or using them as representation
extractors are two common usages [26]. To facilitate comparison with other representation
models, we extracted speech representations from a pretrained LRBN model and fine-tuned
it on the downstream task, as illustrated in Figure 2.
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Figure 2. LRBN’s speech representations for downstream tasks.

4. Experiment

To evaluate the effectiveness of LRBN in speech representation learning, a series of
three experiments were conducted. The first experiment involved a phoneme classification
task, wherein the performance of LRBN-extracted speech features was compared with
MFCCs, FBank, BNF, Wav2vec 2.0 (W2V2), and Wav2vec 2.0 XLSR (XLSR) features as input
features for downstream tasks. This was done to evaluate LRBN’s capability to capture
high-level speech information. The second experiment focused on a speech recognition task
that explored the adaptability of LRBN to five distinct low-resource languages in real-world
applications. The performance of LRBN was compared to MFCCs, FBank, BNF, W2V2, and
XLSR features as input features for downstream tasks. The third experiment, an ablation
experiment, aimed to investigate the effect of varying the number of latent nodes on a
single dataset on the performance of LRBN speech representation.

4.1. Datasets

In this study, we evaluated the proposed approach using five low-resource speech
datasets, namely the TIBMD Tibetan Lhasa dataset (TI) [27], the Cantonese dataset (CA) in
Common Voice [28], the Zeroth-Korean Korean dataset (KO) [29], the THUYG-20 Uyghur
dataset (UY) [30], and the IMUT-MC Mongolian dataset (MO) [31]. The TIBMD Tibetan
dataset comprised recordings of three dialects (Amdo, Kham, and Ü-Tsang) by native
Tibetan-speaking students. For our experiments, we specifically selected 31.8 h of data from
the Ü-Tsang dialect. The Cantonese dataset in Common Voice is an open-source speech
dataset contributed by volunteers from around the world. We utilized 21.5 h of Cantonese
data for our experiments. From the Zeroth-Korean dataset, an open-source dataset for
Korean, we randomly selected 26.4 h of data. The THUYG-20 dataset is a Uyghur dataset
created by Xinjiang University and Tsinghua University. For our experiments, we utilized
24.9 h of Uyghur data. The IMUT-MC Mongolian dataset consisted of five subsets, with the
IMUT-MC3 subset primarily selected as the experimental data. This subset contains daily
conversations in Mongolian. All speech signals were sampled at 16 kHz and quantized
at 16 bits. Further details regarding each dataset in the continuous speech recognition
experiments can be found in Table 1.
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Table 1. Data statistics for the speech recognition experiments.

Language Training Data (h) Training Utterances Testing Data (h) Testing
Utterances

TI 28.7 25,704 3.1 2847
CA 19.4 16,884 2.1 1877
KO 23.8 10,224 2.6 1136
UY 21.5 8521 2.4 947
MO 21.8 12,075 3.0 1643

For the phoneme classification experiments, we randomly selected a portion of speech
data from each of the aforementioned five datasets. Phoneme-forced alignment was per-
formed using the Kaldi-based Montreal Forced Aligner (MFA). Subsequently, the speech
data for each language were segmented into small phoneme-level segments. For specific
information regarding the data used for phoneme classification, refer to Table 2.

Table 2. Data statistics for the phoneme classification experiments.

Language Phoneme Class Training Data Testing Data

TI 41 457,881 40,688
CA 71 421,865 37,461
KO 46 586,958 52,166
UY 40 531,711 47,263
MO 32 396,309 35,219

4.2. Experimental Setup
4.2.1. Experimental Setup for Phoneme Classification

In order to utilize LRBN for speech feature representation, a preprocessing step is
required to obtain a suitable input representation. We employed MFCCs with a frame
length of 25 ms and a frame shift of 10 ms as the input features. The LRBN architecture
consists of a visible layer with 39 nodes and a latent layer with 120 nodes. During training,
a batch size of 128, a learning rate of 0.00005, and 300 epochs were employed. The training
process initializes the parameters randomly, and the activation values of the latent layer
are extracted as input features for the phoneme classification task upon completion of
the training iterations. For comparision, we also extracted features using MFCCs, FBank,
BNF, W2V2, and XLSR. The BNF features were extracted using the Shennong library [32],
and the activation values of the bottleneck layer were obtained using the BUT/Phonexia
feature extractor [33]. W2V2 features were extracted using the official Facebook-provided
wav2vec2-base pre-training model. For the input speech signal, the implicit layer rep-
resentation of the pre-training model was extracted and weighted, and the weighted
representations were summed to obtain the final speech representation. XLSR features
utilized the wav2vec2-xlsr pre-training model, and the speech representation extraction
followed the same procedure as W2V2.

To ensure a fair comparison, the extracted features were used individually as inputs
for the same downstream task, namely the phoneme classification task. We constructed
a convolutional neural network model for phoneme classification, consisting of five con-
volutional layers, two linear layers, and one additional Dropout layer between each layer.
The output layer utilized the softmax activation function, with the number of nodes corre-
sponding to the number of phoneme class. The hyperparameters for this model included a
learning rate of 0.0008, a batch size of 64, and 100 epochs. The classification accuracy (ACC)
was used as the performance metric to evaluate the phoneme classification model.

4.2.2. Experimental Setup for Speech Recognition

Similar to the phoneme classification experiments, the LRBN-based speech feature
representation required preprocessing of the speech signal to obtain an appropriate input
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representation. In this case, FBank features were chosen, as they are more effective than
MFCCs for continuous speech recognition. The FBank features were extracted using a
frame length of 25 ms and a frame shift of 10 ms per speech sample. The visible layer of
LRBN consisted of 40 nodes, while the latent layer contained 120 nodes. The unsupervised
training of LRBN involved a batch size of 32, a learning rate of 0.00001, and 500 epochs. The
latent layer activation values were extracted as the input features for the speech recognition
task after completing the training iterations. The extraction process for MFCCs, FBank, BNF,
W2V2, and XLSR features followed the same procedure as in the phoneme classification
experiments.

For the downstream task of speech recognition, we utilized a Transformer model [34].
The convolutional layer of the Transformer comprised two CNN layers with a step size
of 2 and a kernel size of 3. The encoder consisted of a stack of six Encoder layers, each
containing four attention heads. These attention heads were concatenated and weighted.
The hyperparameters for the Transformer model included a learning rate of 0.001, a batch
size of 16, and 100 epochs. Batch Normalization was incorporated into the training process
to prevent overfitting. The Transformer model was trained for a fixed number of iterations,
and the validation set was not used in the experiment. Words were used as the basic
modeling unit, and during testing, no language model was employed to decode the
sentences. The word error rate (WER) was used as the performance evaluation metric for
the model.

4.3. Experimental Results and Analysis

Five distinct phoneme datasets underwent phoneme classification experiments, where
LRBN features were tested against traditional features including MFCCs, FBank, and depth
model-based BNF. Additionally, W2V2 and XLSR features were utilized as model inputs.
The evaluation metric employed was phoneme classification accuracy, and the results can
be found in Table 3.

Table 3. Comparison of phoneme classification accuracy for MFCCs, FBank, BNF, W2V2, XLSR, and
LRBN features.

Features
ACC(%)

TI CA KO UY MO

MFCCs 57.27 43.76 56.43 64.87 62.88
FBank 55.08 42.79 53.48 61.94 62.33
BNF 61.45 55.80 67.13 66.20 67.32

W2V2 85.25 61.56 77.52 71.98 73.77
XLSR 90.10 64.14 86.82 79.07 78.88
LRBN 94.66 64.82 * 87.36 * 79.42 * 80.23

* We evaluated these three results that showed marginal performance improvements for statistically significant
differences.

The LRBN features exhibited the highest phoneme classification accuracies across all
five languages, achieving percentages of 94.66, 64.82, 87.36, 79.42, and 80.23, respectively. In
contrast, traditional methods such as MFCCs and FBank yielded the lowest accuracies, indi-
cating their limited ability to capture higher-level information. Conversely, the supervised
learning-based BNF representation method demonstrated a enhancement in phoneme
classification accuracy compared to MFCCs and FBank. This observation suggests that the
model can effectively capture high-level speech signal information through supervised
learning using extensive, well-resourced corpora. Furthermore, the W2V2 and XLSR repre-
sentations, under the Wav2vec 2.0 self-supervised framework, exhibited superior phoneme
classification accuracy when compared to MFCCs, FBank, and BNF representations for all
low-resource languages. This finding underscores the potential of self-supervised learning
in acquiring phonological representations, especially in low-resource language scenar-
ios. Moreover, the multilingual pre-training model XLSR outperformed the monolingual
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pre-training model W2V2 in the phoneme classification task, indicating the benefits of
incorporating cross-linguistic information in speech representation learning. Notably, the
phoneme recognition accuracy of LRBN surpassed that of XLSR by 4.56, 0.68, 0.54, 0.35, and
1.35 for Tibetan, Cantonese, Korean, Uyghur, and Mongolian, respectively. To evaluate the
performance enhancements of our method for Cantonese, Korean, and Uyghur languages,
we conducted McNemar’s Test [35] to determine whether there are statistically significant
differences between LRBN and XLSR. Initially, we stated the null hypothesis that both
methods should have the same accuracy rate. Subsequently, for the performance variations
of LRBN and XLSR on Cantonese, Korean, and Uyghur, we calculated their respective
p-values of 0.000025, 0.00016, and 0.0048. It is widely accepted that a p-value of less than
0.05 indicates a statistically significant difference. In all three datasets, the obtained p-values
were less than 0.05, indicating statistically significant differences. This demonstrates the
superiority of LRBN in low-resource speech representation, allowing for the capture of
complex dependencies between variables through the directed connections between latent
and visible layers.

In speech recognition experiments conducted on five low-resource datasets, LRBN,
MFCCs, FBank, BNF, W2V2, and XLSR features were employed as model inputs, and
their performances were compared using the word error rate as the evaluation metric.
The experimental results, displayed in Table 4, reveal that LRBN outperforms all other
representations for low-resource languages. Specifically, LRBN achieves the lowest word
error rate for Tibetan, Korean, Uyghur, and Mongolian, and the second lowest word error
rate for Cantonese. In comparison to traditional representations such as MFCCs and FBank,
LRBN demonstrates performance improvements. This indicates that LRBN effectively
captures crucial features and speech signal dependencies in low-resource languages, lead-
ing to enhanced speech recognition performance. Conversely, the experimental results
indicate that BNF exhibits a higher word error rate on the Cantonese dataset compared to
traditional features. This suggests that, in supervised learning-based speech representation,
the model may fail to capture the necessary acoustic and linguistic information required
for low-resource target tasks, particularly when substantial differences exist between the
pre-trained source language and the target task language.

Table 4. Comparison of word error rates for MFCCs, FBank, BNF, W2V2, XLSR, and LRBN features.

Features
WER(%)

TI CA KO UY MO

MFCCs 37.71 13.94 41.96 45.82 25.21
FBank 36.86 13.58 41.18 44.31 23.63
BNF 36.77 19.93 29.91 43.29 22.13

W2V2 33.68 17.26 28.50 44.18 22.07
XLSR 28.56 10.92 25.75 37.88 20.91
LRBN 27.16 12.53 24.09 36.45 19.78

Moreover, the Wav2vec 2.0 Self-Supervised Framework for W2V2 and XLSR represen-
tation methods yielded lower word error rates than traditional and BNF methods for all
low-resource languages. However, the high computational cost associated with this frame-
work restricts its practical application. Additionally, the word error rate of W2V2 on the
Cantonese dataset exceeded that of the traditional feature FBank by 3.68. This exemplifies
the unsuitability of W2V2 for all low-resource languages. In contrast, LRBN represents a
lightweight model capable of unsupervised learning, effectively capturing data distribution
and latent features while achieving comparable performance to XLSR. The lightweight
design and unsupervised learning approach of LRBN make it well-suited for learning
speech representations of low-resource languages, resulting in improved performance in
low-resource speech recognition tasks.

To mitigate network complexity and overfitting concerns, we conducted ablation
studies to examine the impact of the potential number of nodes on LRBN speech represen-
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tation performance. Specifically, we performed ablation experiments on the Tibetan speech
dataset, as detailed in Table 5.

Table 5. Word error rate comparison for LRBN with varying latent nodes.

Latent Nodes WER(%)

80 33.20
100 29.47
120 27.16
140 28.73
160 28.36
180 29.09

To gain deeper insights into the results, we also employed a visualization technique, as
depicted in Figure 3. From Figure 3, we observe that the speech recognition model achieved
optimal performance for the Tibetan language dataset when the number of latent nodes
was set to 120. Consequently, in subsequent speech recognition experiments, we fixed the
number of latent nodes at 120.

80 100 120 140 160 180
The number of latent nodes

23

25

27

29

31

33

35

37

W
ER

(%
)

Figure 3. Word error rate comparison for LRBN with varying latent nodes.

5. Conclusions

This paper investigates the effectiveness of LRBN for learning low-resource language
speech representations, and compares it to traditional speech representation techniques,
namely MFCCs/FBank, supervised speech representation methods such as BNF, and self-
supervised speech representation methods such as Wav2vec 2.0. Our experimental results
show that LRBN outperforms the other three methods in terms of phoneme classification
accuracy and word error rates on five low-resource language speech datasets. Therefore,
LRBN is capable of capturing high-level features of speech signals, making it an effective
speech representation method for low-resource languages.
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