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Abstract: Accurately identifying industrial loads helps to accelerate the construction of new power
systems and is crucial to today’s smart grid development. Therefore, this paper proposes an industrial
load classification method based on two-stage feature selection combined with an improved marine
predator algorithm (IMPA)-optimized kernel extreme learning machine (KELM). First, the time- and
frequency-domain features of electrical equipment (active and reactive power) are extracted from the
power data after data cleaning, and the initial feature pool is established. Next, a two-stage feature
selection algorithm is proposed to generate the smallest features, leading to superior classification
accuracy. In the initial selection phase, each feature weight is calculated using ReliefF technology, and
the features with smaller weights are removed to obtain the candidate feature set. In the reselection
stage, the k-nearest neighbor classifier (KNN) based on the MPA is designed to obtain the superior
combination of features from the candidate feature set concerning the classification accuracy and the
number of feature inputs. Third, the IMPA-KELM classifier is developed as a load identification model.
The MPA improvement strategy includes self-mapping to generate chaotic sequence initialization and
boundary mutation operations. Compared with the MPA, IMPA has a faster convergence speed and
more robust global search capability. In this paper, actual data from the cement industry within China
are used as a research case. The experimental results show that after two-stage feature selection, the
initial feature set reduces the feature dimensionality from 58 dimensions to 3 dimensions, which is
5.17% of the original. In addition, the proposed IMPA-KELM has the highest overall recognition
accuracy of 93.39% compared to the other models. The effectiveness and feasibility of the proposed
method are demonstrated.

Keywords: machine learning; industrial load identification; ReliefF; kernel extreme learning machine;
marine predator algorithm; two-stage feature selection

1. Introduction

With the development of power demand-side management and smart grids world-
wide [1], applying load monitoring and identification technologies for energy management
has received increasing attention [2]. Industrial loads account for a large percentage of
energy consumption and are considered an essential demand-side resource [3,4]. Achieving
accurate and reliable identification of industrial loads is necessary for users to manage their
electrical loads effectively [5]. Valid industrial load identification helps users to keep abreast
of electricity consumption and adjust the production method according to the demand,
save electricity, and optimize the industrial structure. At the same time, it helps power
suppliers to adjust the electricity consumption structure and promote the development
of an intelligent grid [6]. Therefore, it is crucial to develop an effective industrial load
identification method.
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The initial idea of load monitoring and identification was proposed in the 1980s [7].
Up to now, many methods have been proposed by domestic and foreign scholars [8–10].
Tao et al. [11] proposed a two-layer classification load identification and decomposition
method based on the k-NN algorithm. The first level uses PQ load characteristics, and the
second level uses the third and fifth harmonics of the current as the load characteristics.
Considering that there is feature overlap when using a single load feature to identify
devices, the requirements for the fine-grained classification of devices cannot be met.
Zhang et al. [12] proposed a feature fusion using RGB color coding and implemented a
load recognition method by improving the region-based fully convolutional networks
(R-FCN) model. It is worth noting that the above studies are all based on the premise of
high-frequency sampling data. However, high-frequency acquisition has high requirements
for sampling hardware equipment, requires a large amount of data to be stored, and is
challenging to promote. Therefore, load identification under low-frequency sampling has
become a hot spot for domestic and international research. With the rapid development
of deep learning techniques, some new solutions for load recognition have been provided
in recent years. Kim et al. [13] proposed a method for load recognition using advanced
deep learning and the long short-term memory recurrent neural network (LSTM-RNN)
to improve the model’s performance. Mukaroh et al. [14] used the generative adversarial
network (GAN) to generate the noise distribution of the background load while constructing
a convolutional neural network (CNN) which is implemented as a load classifier for the
energy consumption analysis of device loads. This method avoids confusing actual load
features and background load in Dorf in recognition, with a load recognition accuracy of
92.04%. Despite the advantages of deep learning techniques in the load recognition field,
their performance needs to be improved by further developing the architecture of neural
networks and training the model’s parameters on large-scale datasets [15]. Finally, it is
noteworthy that while load identification techniques for residential scenarios have been
heavily researched, they are still an open challenge for industrial scenarios. This has a lot to
do with the difficulty of data collection for industrial equipment and knowledge migration
for industrial customer load characteristics [16].

Traditional low-frequency power load identification methods are mainly implemented
through data processing, feature extraction, feature selection, and load classification. The
effectiveness of feature extraction plays a vital role in the accuracy of load recognition [17].
Given this, time- and frequency-domain features of active and reactive power are extracted
in this paper and combined as an initial feature pool. However, not all of these features
help to identify the load type. In this case, feature selection is an effective technique to deal
with these problems [18]. It finds the most efficient subset of features from the original
feature set, thus achieving shorter model training time, avoiding dimensional disasters,
and enhancing generalization by reducing overfitting [19]. Feature selection is divided into
two main categories: filter and wrapper. Filtering methods usually rely on the statistical
properties of the training data to evaluate the merits of feature subsets and are less time-
consuming. However, since data mining algorithms are not involved, the results of filtering
methods are only sometimes satisfactory [20]. Wrapper methods select the optimal feature
subset based on the classifier’s performance evaluation. Therefore, wrapper methods are
more efficient in classification accuracy but more time-consuming [21].

In conclusion, the filter and wrapper methods have advantages and disadvantages.
By combining the benefits of each type of method, hybrid selection methods have broad
application potential [22]. ReliefF is a filter method that assigns a corresponding weight
value to the feature [23]. The higher the weight value, the stronger the discriminative
power of the feature. Therefore, some features with high weights can be selected for the
wrapper method. The dimensionality of the original feature set is thus reduced. Today,
researchers are focusing more on using metaheuristic algorithms in the form of wrapper
models applied to wrapper feature selection [24]. Some of these examples include parti-
cle swarm optimization (PSO) [25], gray wolf optimization (GWO) [26], and the whale
optimization algorithm (WOA) [27]. The marine predator algorithm (MPA) is a novel
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metaheuristic algorithm. Compared with other metaheuristic algorithms, it performs well
in finding solutions to optimization problems [28]. Therefore, this paper uses MPA as the
second-stage wrapper feature selection method to select the best feature subset from the
candidate features.

With the same feature set, choosing different classifiers is crucial to whether the load
can be accurately identified [29]. As a classical algorithm in machine learning, the extreme
learning machine (ELM) has been applied to many problems since its introduction [30,31].
ELM randomly generates input weights and hidden layer biases, leading to unstable al-
gorithms. To solve this problem, a kernel function is introduced based on ELM to obtain
the kernel extreme learning machine (KELM). In solving some practical engineering prob-
lems, KELM shows high classification accuracy and good generalization performance [32].
However, the performance of KELM is affected mainly by the kernel function parameter
γ and the penalty factor C. Therefore, many optimization algorithms are used to optimize
its parameters to improve its performance [33–35]. Given the excellent merit-seeking ability
of the MPA algorithm [36], this paper utilizes it to optimize the critical parameters of
the KELM. In addition, to further improve the solution’s quality, this study presents the
design of an improved marine predator algorithm (IMPA). A logical self-mapping is used
to generate chaotic sequences for initialization and to improve population diversity. The
boundary mutation operation also performs the optimization of the MPA merit-seeking
process. The experimental results show that the proposed IMPA obtains better model
parameters than other heuristic algorithms. The IMPA-KELM model achieves a higher
accuracy of load identification.

In summary, this paper proposes a new industrial load classification method based
on the significant advantages of each technique, combining time–frequency-domain
features, novel two-stage feature selection, and the IMPA-KELM classifier. Firstly, the
time–frequency-domain features of the PQ of cement plant equipment are extracted as
the initial feature set. Then, a two-stage feature selection method based on ReliefF, MPA,
and KNN classifiers is proposed to select a combined feature set that considers the fea-
ture dimension and classification accuracy. A candidate feature set is selected from all
features in the initial selection stage using the ReliefF technique. Then, an MPA-based
KNN classifier is designed to find a better-combined feature set in the candidate feature set.
Next, the MPA algorithm is improved by designing chaotic population initialization and
boundary mutation strategies. Finally, the new reduced feature set is fed into the improved
MPA-KELM classifier to achieve high-accuracy industrial load identification. The proposed
method is tested for different equipment types in cement plants within China. The results
show the superiority of the proposed method.

The remainder of this paper is organized as follows: Section 2 summarizes the theories
used in the proposed method. Sections 3 and 4 prove that the proposed method has high
effectiveness and superiority through a large number of experiments. Section 5 discusses
the conclusions and future directions of this work.

2. Methodology
2.1. Framework of the Proposed Method

Based on the above methods, a new load identification method is proposed in this
paper. It mainly includes power data preprocessing and feature extraction, two-stage
feature selection combining filter and wrapper, and a classification model based on an
improved MPA algorithm with optimized KELM. The framework of the proposed method
is shown in Figure 1.

Firstly, the collected power data of cement plant equipment are cleaned, including
median filtering. Then, the time- and frequency-domain features of the load data PQ are
extracted as the original feature set. In the two-stage feature selection process, the candidate
features are first selected from the original feature set using the ReliefF technique. Then,
the MPA-based KNN classifier is designed for feature optimization to filter features further
and obtain the optimal feature set. Next, MPA’s convergence speed and optimization-
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seeking accuracy are improved by introducing a chaotic initialization strategy and boundary
mutation operation. Finally, the improved MPA algorithm is used to optimize the kernel
parameters and penalty factors of KELM to identify industrial loads accurately.
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2.2. Time–Frequency-Domain Features

The power signal’s time- and frequency-domain characteristics vary for different
loads in steady-state operation [37]. The power signal characteristics for different loads
can be obtained by analyzing the power signal’s time-domain waveform and frequency
spectrum [38]. In this paper, 16 time-domain features (mean, root mean square, square root
mean, absolute mean, and skewness, etc.) are extracted from the power signal of the load
and are shown in Table 1, where x(n) is a signal series for n = 1, 2, . . . , N and N is the
number of data points.

Table 1. Features extraction of the time domain.

Feature Equation Feature Equation

Mean value TD1 = ∑N
n=1 x(n)

N
Minimum value TD9 = min{x(n)}

Root mean square TD2 =

√
∑N

n=1 (x(n))
2

N
Peak-to-peak value TD10 = TD8 − TD9

Square mean root TD3 =

(
∑N

n=1

√
|x(n)|

N

)2
Waveform index TD11 = TD2

TD4

Absolute mean TD4 = ∑N
n=1|x(n)|

N
Peak index TD12 = TD8

TD2

Skewness TD5 = ∑N
n=1 (x(n)−T1)

3

N
Pulse index TD13 = TD8

TD4

Kurtosis TD6 = ∑N
n=1 (x(n)−TD1)

4

N(TD7
2)

Margin index TD14 = TD8
TD3

Variance TD7 = ∑N
n=1 (x(n)−T1)

2

N
Skewness index TD15 = TD5

(
√

TD7)
3

Maximum value TD8 = max{x(n)} Kurtosis index TD16 = TD6

(
√

TD7)
4
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The frequency domain can disclose the data that cannot be discovered in the time
domain. In this work, 13 frequency-domain features (mean, frequency center, root variance,
mean square deviation, kurtosis, etc.) are extracted using FFT, as shown in Table 2, where
s(k) is a spectrum for k = 1, 2, . . . , K; K is the number of spectrum lines; and fk is the
frequency value of the k-th spectrum line.

Table 2. Features extraction of the frequency domain.

Feature Equation Feature Equation

Mean FD1 = ∑K
k=1 s(k)

K
Kurtosis FD8 = ∑K

k=1 ( fk−FF10)
4
s(k)

K(FF6
4)

Variance of mean frequency FD2 = ∑K
k=1 (s(k)−FD1)

2

K
Root mean square ratio FD9 =

∑K
k=1

√
( fk−FD10)s(k)
K
√

FD5

Skewness power spectrum FD3 = ∑K
k=1 (s(k)−FD1)

3

K(
√

FD2)
3

Frequency center FD10 = ∑K
k=1 fks(k)

∑K
k=1 s(k)

Kurtosis power spectrum FD4 = ∑K
k=1 (s(k)−FD1)

4

K(FD2
2)

Root mean square FD11 =

√
∑K

k=1 fk
2s(k)

∑K
k=1 s(k)

Root variance FD5 =

√
∑K

k=1 ( fk−FD10)
2s(k)

K

Mean frequency that crosses
the mean of the time-domain

signal
FD12 =

√
∑K

k=1 fk
4s(k)

∑K
k=1 fk

2s(k)

Coefficient of variability FD6 = FD5
FD10

Stabilisation factor FD13 = ∑K
k=1 fk

2s(k)√
∑K

k=1 s(k)∑K
k=1 fk

4s(k)

Skewness FD7 = ∑K
k=1 ( fk−FD10)

3s(k)
K(FD5

3)

2.3. ReliefF

The ReliefF algorithm was developed by Kononeill in 1994 to extend the functionality
of the Relief algorithm to deal with multi-category problems [39]. The ReliefF algorithm
evaluates attributes’ quality based on attribute values’ ability to distinguish samples close
to each other [40]. In dealing with multi-class problems, the R-th sample is randomly
removed from the training data one at a time, and then the k-nearest neighbor samples
(Near Hits) of the same kind as R are found in the training sample set, denoted as Hj. The
k-nearest neighbor samples (Near Misses), marked as Mj(C) (j = 1, 2, . . . , k, C 6= class(R)),
are identified from the set of samples that differ from R. The update of the weight W(A) of
the attribute A depends on the sample R, the nearest neighbor samples Hj of the same kind
of R, and the samples M that are different from the class of R, as shown in Equation (1):

W(A) = W(A)−
k

∑
j=1

di f f (A, R, Hj)

mk
+ ∑

C 6=class(R)

[
P(C)

1− P(class(R))

k

∑
j=1

di f f (A, R, Mj(C))

]/
(mk) (1)

where di f f (A, R1, R2) denotes the distance between samples R1 and R2 on feature A;
P(C) denotes the probability of the class C target; and Mj(C) denotes the j-th nearest
neighbor sample in the class C target.

2.4. Marine Predator Algorithm

The marine predator algorithm is a new metaheuristic algorithm inspired by nature
and proposed by Faramarzi et al. [41]. It relies on the movements of marine predators in
search of prey, namely Levy and Brownian stochastic activities, respectively. When prey
is scarce, predators use Levy motion, while when prey is abundant, they use Brownian
motion. The mathematical formulation of the MPA algorithm is as follows.

1. Initialization: construct the Prey matrix and Elite matrix. They contain the position
vectors of variable random positions and repeated best fitness function in the proposed
domain, respectively.
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2. Phase 1 [while Iter < 1
3 Itermax]: The first one-third of the iterations are dedicated to

this phase, when the prey moves using the Brownian strategy and the predator is
stationary. Equation (2) reflects this phase.

→
Si =

→
RB ⊗ (

→
Elitei − (

→
RB ⊗

→
Preyi))

→
Preyi =

→
Preyi + (0.5

→
R ⊗

→
Si)

i = 1, 2, . . . , n (2)

where
→
Si is the step size,

⇀
RB is a vector with random numbers based on Brownian

motion normal distribution and
→
R is a random uniform vector between [0, 1].

3. Stage 2 [while 1
3 Itermax < Iter < 2

3 Itermax]: The predator uses Brownian movement
and the prey uses Levy movement. The first half of the population was updated
using Equation (3).

→
Si =

→
RL ⊗ (

→
Elitei − (

→
RL ⊗

→
Preyi))

→
Preyi =

→
Preyi + (0.5

→
R ⊗

→
Si)

i = 1, 2, . . . , n (3)

where the vector
→
RL contains random values based on the Levy motion normal dis-

tribution. In addition, the other half of the population is updated using Equation (4).
→
Si =

→
RB ⊗ ((

→
RB ⊗

→
Elitei)−

→
Preyi)

→
Preyi =

→
Elitei + (0.5C f ⊗

→
Stepi)

i = 1, 2, . . . , n (4)

where C f controls the predator step length and is calculated as in Equation (5).

C f = [1− (Iter/Itermax)]
(2×Iter/Itermax) (5)

4. Phase 3 [While Iter > 2
3 Itermax]: This occurs in the last third of the iteration. In this

phase, the predator moves using Levy motion and the prey is updated using Equation (6).
→
Si =

→
RL ⊗ ((

→
RL ⊗

→
Elitei)−

→
Preyi)

→
Preyi =

→
Elitei + (0.5C f ⊗

→
Sy)

i = 1, 2, . . . , n (6)

5. The effects of FADs: Environmental issues can also cause changes in the behavior
of marine predators. One example is the effects of fish-aggregating devices (FADs),
also known as eddy formation. The mathematical model of FAD’s effect is defined
in Equation (7):

→
Preyi =


→

Preyi + C f

[
Xmin +

→
RL ⊗ (Xmax − Xmin)

]
⊗
→
U, r ≤ FADs

→
Preyi + [FADs(1− r) + r](

→
Preyr1 −

→
Preyr2), r > FADs

(7)

where FADs = 0.2 denotes the probability of being affected by FADs during optimiza-
tion, and U is constructed by generating a random vector in an array of binary vectors
containing 0 and 1. If the array is less than 0.2, the array is changed to 0; if it is greater
than 0.2, it is changed to 1. r is a uniform random number in [0, 1], and the r1 and r2
subscripts denote the random indexes of the prey matrix.

2.5. MPA Feature Selection

In this feature selection phase, MPA aims to extract the candidate features filtered by
ReliefF. By designing the fitness function, the purpose of considering higher classification
accuracy and fewer feature numbers is achieved. The necessary steps for MPA feature
selection are summarized as follows:
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MPA creates N predators in the initialization phase, with each agent representing a
set of features to be evaluated. Before evaluating the fitness values, each solution Xi is
translated into XSF

i using the binary operator using Equation (8). With this step, all features
are encoded as [0, 1]. If the value of an element is within [0.5, 1], the feature is retained; if
not, it is excluded.

XSF
i =

{
1 if Xi > 0.5
0 otherwise

(8)

The fitness function is determined for each agent XSF
i to determine the quality of

these features after evaluating the subset of selected features. Classification accuracy and
feature cost are the two key factors used to design the fitness function, where feature cost
is obtained from the ratio of selected features to the total number of features. The smaller
the feature cost (the fewer the selected features), the higher the classification accuracy,
indicating that the subset of features is superior. Therefore, the ith solution’s fitness is
determined by Equation (9):

FS- f itness = µ(1− Acc) + (1− µ)
NS
NF

(9)

where (1 − Acc) represents the error rate of KNN classification, selected features are
denoted by NS, NF indicates the total number of features, µ denotes the classification error
weight, (1− µ) indicates the feature selection quality weights, and µ can range between
0 and 1. In our experiments, µ is set to 0.9.

Next, we enter the update phase, in which the process of updating the solution of MPA
introduced in Section 2.4 is executed in an orderly manner. The process is reproduced in
the case that the termination condition is satisfied. The termination condition corresponds
to the maximum number of iterations that allow us to evaluate the performance of the
MPA algorithm. Then, the best solution Xbest is returned and transformed to determine
the number of relevant features. The specific MPA feature selection steps are shown
in Figure 2.
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2.6. Kernel Extreme Learning Machine Optimized by the Improved Marine Predator Algorithm
(IMPA-KELM)
2.6.1. Kernel Extreme Learning Machine (KELM)

KELM is one of the most popular learning techniques. It is derived from the traditional
ELM [42]. However, it can obtain better results than ELM. In KELM, different kernel
functions are used for various applications. The kernel mapping function of ELM can
be written as

Ωk = HHT , Ωk,i,j = h(pi)h(pj) = K(pi, pj) (10)

where H represents the output matrix of the hidden layer.
In addition, the generalized output function of KELM can be defined as

F(λ) =

 K(p, p1)
· · ·
K(p, pN)

T

(
1
λ
+ Ωk)

−1
Q (11)

where Q is the output vector and λ denotes the penalty parameter.
Among the many kernel functions, the radial basis function (RBF) is one of the most

widely used functions (this paper also uses RBF as the kernel function). The RBF kernel
can be defined as

K(p, pi) = exp(−γ‖p− pi‖2) (12)

where γ is a kernel parameter.

2.6.2. Improved Marine Predator Algorithm

a. Chaos initialization strategy
Using the randomness, ergodicity, and initial value sensitivity of chaotic motion to

improve the efficiency of stochastic optimization algorithms is called chaos optimization.
Among various models of chaotic sequences, it is shown that the chaotic sequences obtained
using the logistic self-mapping function are better than the logistics mapping [43]. A chaotic
series is generated using the logistic self-mapping function, as shown in Equation (13).

cxk+1
j = 1− 2× (cxk

j )
2
, cx0

j ∈ (−1, 1), j = 1, 2, . . . , d (13)

In this case, the initial values cannot be 0 and 0.5 in order to avoid chaotic sequences
with 1 s or 0.5 s intervals that are all 1 or 0.5. cxk

j represents the j-th dimensional component
of a chaotic variable, and k is the number of iteration steps.

Step 1: For M prey individuals in D-dimensional space, the initial variables are
generated randomly in the (−1, 1) interval by initializing the chaotic variables according
to the nature of the logical self-map function.

Step 2: Iterating according to Equation (13), the MaxGeneration ∗ D− 1 chaotic vari-
ables generated by the logical self-mapping, together with the initial chaotic variables,
correspond to all MaxGeneration ∗ D prey individuals.

Step 3: The resulting sequence of chaotic variables is transformed into the search space
of the objective function according to Equation (14) to generate the prey matrix for the
initial population of M individuals with the following equation.

xi,d = Lb + (Ub− Lb) ∗ yi,d (14)

where Lb and Ub denote the lower and upper limits of the d-th dimension of the search
space, respectively. yn,d is the d-th dimensional chaotic variable corresponding to the
i-th prey generated according to Equation (14). xi,d denotes the coordinate value of the i-th
prey in the d-th dimension of the search space.

b. Boundary mutation strategy
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In the process of optimization with the marine predator algorithm, the location of the
prey is likely to break its boundary value. In this case, the traditional approach replaces the
individual’s position with the boundary value that is exceeded by the domain constraint
formula shown in Equation (15).

xi =

{
xmax, xi > xmax
xmin, xi < xmin

(15)

where xmax is the upper limit of the search space and xmin is the lower limit of the search
space. This boundary control strategy tends to cause the algorithm to fall into the local
optimum, and the points beyond the boundary are all constrained at the boundary, which
may cause the algorithm to converge prematurely at the boundary and reduce the search
rate of the algorithm.

Therefore, a boundary mutation strategy is introduced to solve this problem when the
domain constraint formula is shown in Equation (16).

xi =

{
2xmax − xi, xi > xmax
2xmin − xi, xi < xmin

(16)

The boundary mutation operation can keep the position of the searching individ-
uals in the population within the feasible domain at all times, preventing the marine
predator algorithm from falling into the local optimum at the boundary. At the same
time, the diversity of the population is improved to a certain extent, and the boundary
variation operation effectively improves the optimal search performance of the marine
predator algorithm.

2.6.3. Steps for IMPA to Optimize KELM

The above describes the principles of the KELM and IMPA algorithms, respectively.
In the implementation of the KELM learning algorithm, the performance of the model
will be affected if the penalty coefficient C and the kernel parameter γ are not selected
properly. Therefore, in this paper, the IMPA optimization algorithm is combined with
KELM to optimize C and γ to improve the performance of the model to some extent. The
classification error rate is used as the fitness function CE-fitness. The smaller the value of
CE-fitness, the lower the error rate and the better the classification effect. Based on this, the
IMPA-KELM classifier can be obtained. The detailed optimization steps are as follows:

(1) The load features after two-stage feature selection are divided into the training and
test samples at a ratio of 8:2.

(2) The prey matrix is designed according to the chaotic optimization strategy
(Equations (13) and (14)), while the IMPA parameters are initialized, the number
of populations is set to 30, and the maximum number of iterations is 50. The upper
and lower bounds for the KELM penalty coefficient C and the kernel parameter γ are
set to 0.001 and 1000, respectively, for the optimization search.

(3) Calculate the fitness value of prey, and update the best fitness value.
(4) Update the positions of predators and prey at different iteration periods according to

Equations (2)–(6). Calculate and update the optimal fitness values again. The prey
moves according to the FADs in Equation (7), thus changing the predator’s behavior.
In this case, the position correction is performed using Equation (16) for prey that are
beyond the search boundary.

(5) Steps (3) and (4) are repeated until the maximum number of iterations is reached, and
the predator position with the best adaptation is obtained and retained as the best
C and γ parameters for KELM.

(6) KELM classification model is developed using the obtained parameters C and γ.
Implement load identification of the test set samples using IMPA-KELM.
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2.7. Performance Metrics

To verify the effectiveness of the proposed method for load identification in this paper,
several multi-class classification evaluation metrics are used to evaluate models. The
performance metrics used in the paper include accuracy, precision, recall, and F1-score, in
addition to classification accuracy.

Accuracy =
TP + FP

TP + TN + FP + FN
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1-score = 2× Precision× Recall
Precision + Recall

(20)

where true positive (TP), false positive (FP), true negative (TN), and false negative (FN) are
used to show how much the applied model correctly and wrongly classified load category.

3. Experiments and Results

In this chapter, the performance of the proposed method is verified using the au-
tonomously collected load dataset. The operation process of the whole procedure and the
functions of its various parts are also explained in detail. A desktop computer with an
Inter Core i7 (10700) processor and 32 GB RAM was used, where MATLAB R2022a was
employed as a simulation tool.

In this paper, a cement plant in East China was used as a research case to verify the
effectiveness of the proposed method. To ensure the diversity of electrical loads, equipment
in different workshops was selected considering the various operating characteristics of
the loads in different workshops. These pieces of equipment were a raw material mill
(RMM), a kiln tail high-temperature fan (KTHTF), an exhaust gas treatment fan (EGTF),
a coal mill fan (CMF), a coal mill motor (CMM), a kiln head induced draft fan (KHIDF),
a fixed roller press (FRP) and a dynamic roller press (DMP), providing a total of eight
types of motor equipment. The electrical parameters collected were active power P (kW)
and reactive power Q (kVar). The electrical data time range was from 12 October 2021 to
30 December 2021, recorded every 5 min and sampled at low frequency. It is worth noting
that there were missing cases during the data collection and entry process. For example,
the FRP’s reactive power for 23 October and 3 November was missing. Figures 3 and 4
show the active and reactive power of different loads. Figures 3a and 4a show the power
state diagrams of the eight pieces of electrical equipment, and it can be seen that there
are differences in the power characteristics of the operation of different pieces of power
equipment. Some of the loads operate with similar power variation trends, especially the
two loads, FRP and DRP. This phenomenon can be seen in Figures 3b and 4b. This makes it
more difficult to distinguish between the two loads accurately.

After acquiring and analyzing the load dataset above, the data were pre-processed.
This step was essential. This paper used the P and Q of electrical appliances as input
information. Firstly, the power data of each electrical device were divided as a data
sample, with the length of a day as the basic unit. Then, the samples with all zero power
(i.e., the electrical equipment is not used) were excluded. In the case of missing data in
the dataset, if there were a few missing values in the whole day, linear interpolation was
used to fill them. If there were more missing values for that day, the sample was discarded
directly, and no further interpolation was performed. In addition, it can be seen from
Figures 3 and 4 that some load power curves have obvious burrs due to outliers in the
obtained electric load operating power. Given this, this paper adopted the median filtering
method to reduce the noise of the power data. As shown in Figure 5, the median filtering
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effect of the reactive power curve from 24 December to 30 December is plotted for the raw
material mill (RMM) as an example.
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Figure 3. Active power curve of different electric loads. (a) Active power diagrams for eight types of
electrical equipment. (b) Comparison of active power between FRP and DRP loads.
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Figure 4. Reactive power curve of different electric loads. (a) Reactive power diagrams for eight
types of electrical equipment. (b) Comparison of reactive power between FRP and DRP loads.
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Figure 5. Raw material mill (RMM) median filtering effect graph (24 December–30 December).

After pre-processing, the active and reactive power data for the eight types of cement
plant equipment are shown in Table 3. The missing data for each load collected differed,
resulting in a slightly different final sample size for them. As can be seen from the table,
the RMM has the most significant operating power consumption among the eight loads.
For the two motors, CMF and CMM, the active power operating state parameters do not
differ much, but the reactive power has a more noticeable difference. The KHIDF is the
only one working during the whole data collection period. The FRP and DRP two electric
loads operate with similar power parameters, corresponding to the above analysis.

The above pre-processing process obtains “clean” raw power data. At this point,
the data could not be directly input into the classifier. It was necessary to extract useful
information using a feature extraction technique that converts the raw input data into
simplified information or encodes the relevant information to identify the load class.
Sixteen time-domain features and thirteen frequency-domain features were extracted from
the denoised power data (active and reactive) to generate an initial load feature set that
contained rich information about the load identification system. Finally, a feature pack
containing 2× (16 + 13) = 58 features was obtained to represent the load operation state.

After feature extraction, the most critical work was selecting compelling features and
removing redundant ones. This study employed a two-stage feature selection strategy, with
the ReliefF filtering method being used in the initial screening.

The 58 joint time–frequency-domain feature weights calculated using ReliefF are
shown in Figure 6. The weight of each feature varies, and a larger weight indicates the
corresponding feature is more efficient. The frequency-domain features generally have a
higher weighting factor than the time-domain features. The weights of the time-domain
features vary widely for both active and reactive power, and the first-time domain feature
TD1, which represents the mean value (Mean value), has a high weight. The time-domain
features TD5, TD6 and TD11~TD16 have less weight. In this paper, the candidate feature
set comprises the top 80% of the weighted features. Through this feature selection stage,
the number of features in the candidate feature set is reduced from the original 58 to 46.
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Table 3. Load information table.

No. Device ID Device Type
P/kW Q/kVar

Sample Size
Max Min Mean Variance Max Min Mean Variance

1 RMM Raw material mill 2.6467 × 103 0 1.1478 × 103 713.4977 1.0959 × 103 0 514.6201 329.7208 76

2 KTHTF kiln tail high temperature fan 1.1358 × 103 0 953.7741 199.1667 333.5100 0 232.5849 48.6378 77

3 EGTF Exhaust gas treatment fan 354.8300 0 173.9166 56.7118 84.2600 0 41.2736 12.1320 77

4 CMF Coal mill fan 165.3700 0 133.2663 22.7862 40.6000 0 31.7787 5.7884 78

5 CMM Coal mill motor 195.4000 0 121.2151 27.3095 148.4600 0 125.8172 14.7483 78

6 KHIDF Kiln head induced draft fan 105.9500 49.4900 79.3093 7.6361 26.6500 12.0500 19.1434 1.9674 77

7 FRP Fixed roller press 1.6523 × 103 0 1.0958 × 103 557.2647 549.7500 0 335.6737 169.0129 71

8 DRP Dynamic roller press 1.6599 × 103 0 1.1245 × 103 561.6063 558.8900 0 351.2886 173.1773 73
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Figure 6. ReliefF weights of 58 joint time–frequency-domain features.

The best subset of features must maximize the classification accuracy and minimize
the classification error rate. In addition, it must have a minimum number of selected
features. Therefore, MPA is used as a re-feature selection method to perform a screening of
the candidate feature set and maintain a balance between a high classification accuracy and
a small number of selected features. In the MPA, the number of populations and iterations
is set to 10 and 100, respectively. In the expression of Equation (9), the error rate weight µ is
set to 0.9 to seek a lower error rate for the classification model. The feature selection quality
weight is 0.1 to ensure the quality of the selected features while pursuing classification
efficiency. Finally, the dimension of the preselected features can be further reduced from
46 to 3. Two-step feature selection reduces the number of features from 58 to 3. The three
features selected after the feature selection are the frequency center (FD10), coefficient of
variation (FD6) and variance (TD6) of reactive power. The final number of features is only
5.17% of the initial number, significantly reducing the number of features.

After feature extraction and selection, the processed data were fed into the classifier
for load identification. The classifier used in this paper was IPMA-KELM, where IPMA
was derived from the chaos strategy and the boundary mutation strategy to improve MPA.
IMPA was used to optimize the kernel parameters γ and penalty coefficient C of KELM. The
classification error rate of KELM was the fitness function. The initial population number
and the maximum number of iterations of IMPA were set to 30 and 50, respectively. The
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upper and lower bounds of γ and C seeking of KELM were 0.001 and 1000. The number of
samples in the training and test sets in the experiment was 486 and 121, respectively.

The confusion matrix of the experimental results of the proposed model is shown in
Figure 7. Where, the integers in the figure represent the number of samples of devices in the
test set. Blue represents the number of correctly classified samples, and orange represents
the number of incorrect samples. It was obtained by identifying eight different types of
cement plant equipment. There were 16 samples of CMF in the test set, among which the
proposed model misclassified only one sample as an EGTF. The recognition accuracy of the
coal mill fans is 93.75%. From the analysis in Section 2.3, it is clear that the power data of the
dynamic roller press and the fixed roller press are highly similar, with little differentiation.
This makes it more difficult for the model to identify both accurately. Even so, the proposed
model achieves 71.43% and 80% accuracy for both, respectively. The recognition accuracy
of the other five devices is 100%. The excellent classification performance of the proposed
model is demonstrated.
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4. Comparative Study

In this chapter, a large number of comparative experiments are designed to demon-
strate the superiority of the proposed method in this paper. Ablation experiments are
also set up to verify the necessity of improvements in the proposed method and some
steps used.

4.1. Comparison of Different Feature Extraction

To verify the superiority of time–frequency-domain feature sets, this paper directly in-
puts time–frequency-domain feature sets, time-domain feature sets, and frequency-domain
feature sets into the KELM model without any feature selection step. The effects of the
initial feature set selection on the model performance are compared. In this case, the
kernel parameter γ and the penalty coefficient C of KELM are set to 1. The classification
accuracies of different initial feature sets are shown in Table 4. It can be seen that the
classification accuracy of the load corresponding to the time–frequency-domain feature
pool is the highest among the three initial feature sets, reaching 0.8930 and 0.8264, re-
spectively. The classification accuracy of the training set of the time–frequency-domain
feature set is improved by 8.23% and 5.08% compared to the time-domain and frequency-
domain feature sets, respectively—the accuracy of the test set was enhanced by 7.52%
and 4.16%, respectively. The classification effect is ranked as follows: time–frequency
domain > frequency domain > time domain. As can be seen from Table 4, the load recog-
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nition efficiency of the time-domain feature set with 32 features is worse than that of the
frequency-domain feature set with 26 features. In addition, the time–frequency-domain fea-
ture set that combines both features has the highest classification accuracy. This illustrates
that the selection of the initial feature set can affect the model’s performance to some extent.
In addition, the number of features does not determine the good or bad final classification
results. This further shows the importance of feature selection.

Table 4. Comparison of classification accuracy with different initial feature sets.

Feature Set Number of Features Training Set Test Set

Time-domain features 32 0.8251 (401/486) 0.7686 (93/121)
Frequency-domain features 26 0.8498 (413/486) 0.7934 (96/121)

Time–frequency-domain features 58 0.8930 (434/486) 0.8264 (100/121)

4.2. Comparison of Feature Selection Methods
4.2.1. Comparison of First-Stage Filtered Feature Selection

Preliminary feature screening is especially important for the overall two-stage fea-
ture selection. The common filtered feature selection methods in machine learning are
selected for comparison experiments in this paper. These are Pearson’s correlation co-
efficient (PCC), Spearman’s coefficient (SCC) and the maximum information coefficient
(MIC). The experimental results are shown in Figure 8. The change in load recognition
accuracy with the gradual increase in features under different filtered feature selection
methods is depicted.
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Figure 8. Performance comparison of common filtered feature selection methods.

From Figure 8, it can be seen that the model’s classification accuracy increases faster at
the beginning when the number of feature dimensions grows. When the number of feature
dimensions exceeds a certain threshold, the model performance will no longer increase or
gradually decrease. Reflecting the importance of feature selection, there are redundant bad
features among the 58 time–frequency-domain features. Among the four filtered feature
selection methods, the overall performance of SCC is the worst in relative terms. The
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number of features ranges from 18 to 37, and the accuracy of features selected using the
ReliefF method significantly exceeds that of the other filtered methods. Meanwhile, the
number of features ranges from 1 to 18, and the performance of the ReliefF feature selection
model is equally good. Although there is no method that can beat other methods in all
cases, overall, ReliefF performs better than other single-feature selection methods. The
superiority of ReliefF in the first stage of feature selection in this paper is verified.

4.2.2. Comparison of Second-Stage Heuristic Feature Selection

To show the superiority of MPA as a second-stage feature selection technique, MPA,
the firefly algorithm (FA) [44], and the slime mold algorithm (SMA) [45] are compared
under the premise that the first step of feature screening is the ReliefF method. The
convergence plots of the FS-fitness convergence of the fitness function of MPA and different
intelligent optimization algorithms are shown in Figure 9. From Equation (9), the smaller
the FS-fitness value, the better the selected features, i.e., the lower the recognition error rate
and the smaller the number of feature dimensions. The adaptation values of ReliefF-FA,
ReliefF-SMA and ReliefF-MPA are 0.1662, 0.1032 and 0.0809, respectively. Lower adaptation
values mean that the selected features are more effective. Compared to FA and SMA as
the second-stage feature selection, the fitness values of MPA decreased by 51.32% and
21.61%, respectively. This proves the superiority of MPA as the second-stage feature
selection method.
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Figure 9. Adaptation curves of different heuristic feature selection methods under ReliefF.

To observe the effect of different feature choices on the actual electrical load classifi-
cation more clearly, the KNN algorithm was used to classify the test set, and the results
are shown in Figure 10. The features selected by the two-stage feature selection method
proposed in this paper have the best effect. Even if the feature pre-selection stage is all Reli-
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efF, the different heuristic algorithms used in the reselection stage can significantly affect
the final classification results. If FA is selected in the reselection stage, the classification
algorithm will misclassify five types of equipment (KTHTF, CMF, CMM, FRP, and DRP),
with 20 misidentified samples and 0.8347 classification accuracy. If SMA is selected in the
reselection stage, four types of electrical equipment will be misidentified (KTHTF, CMF,
FRP, and DRP), with 13 misidentified samples and 0.8926 classification accuracy.
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Figure 10. Classification results of KNN under different wrapper methods.

In contrast, the MPA feature selection method proposed is used. Only the DRP and
FRP of the dynamic roller press are incorrectly identified, with an accuracy of 0.9174. The
superiority of MPA as the reselection stage of the two-stage feature selection is reflected
in the number of equipment types identified correctly and the total number of correctly
identified samples.

4.3. Comparison of Different Classifiers and Optimization Algorithms

To verify the superiority of the IMPA-KELM classifier proposed in this paper, it is
compared with support vector machine (SVM), extreme learning machine (ELM), and
classifiers optimized by the FA and the SMA without improvements. The performance
metrics of each classifier obtained from the experimental results are recorded in Table 5.
Among them, regarding SVM, this paper uses the LIBSVM3.1 toolbox to implement it. The
kernel function is RBF. The number of nodes in the hidden layer of ELM is set to 8. The
kernel parameters and penalty coefficients of KELM are set to 1. To ensure the fairness of
comparison among the algorithms, the number of populations and the maximum number
of iterations of each optimization algorithm are set to 30 and 50, respectively. The optimal
value of each evaluation metric is marked in bold font. Rank is the sum of the ranking of
the four metrics of the algorithm among all models. These results prove the efficiency of
the IMPA-KELM.
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Table 5. Load classification performance comparison.

Classification Model Accuracy Precision Recall F1-Score Rank

SVM 0.7769 / 0.7714 / 8
ELM 0.7273 0.7432 0.7239 0.6995 6

KELM 0.7355 0.7445 0.7342 0.7124 10
FA-SVM 0.9008 0.8975 0.8975 0.8971 36
FA-ELM 0.8347 0.8312 0.8306 0.8243 22

FA-KELM 0.9256 0.9242 0.9225 0.9222 55
SMA-SVM 0.9091 0.9069 0.9065 0.9056 43
SMA-ELM 0.8182 0.8123 0.8145 0.8108 16

SMA-KELM 0.8926 0.8886 0.8880 0.8874 32
MPA-SVM 0.9091 0.9064 0.9053 0.9048 40
MPA-ELM 0.8347 0.8372 0.8300 0.8186 21

MPA-KELM 0.9256 0.9225 0.9220 0.9220 52
IMPA-SVM 0.9174 0.9148 0.9148 0.9143 48
IMPA-ELM 0.8430 0.8613 0.8436 0.8375 28

IMPA-KELM 0.9339 0.9321 0.9315 0.9313 60

From the table, it can be seen that the load recognition performance of the classifier
optimized by the optimizer is superior to that of the classifier without hyperparameter
tuning. This reflects the importance of the setting of hyperparameters for the classification
performance of the algorithm. In addition, even for the same classifier, there are significant
differences in the results obtained using different optimization algorithms. This is due to the
differences in the optimal parameters set by the optimization algorithms for SVM, ELM and
KELM. As can be seen from the table, the IMPA-KELM model obtained better results than
the other models in all four evaluation metrics, all of which exceeded 0.93. The introduction
of IMPA improved the classification accuracy of SVM, ELM and KELM by 18.08%, 15.91%
and 26.97%, respectively. This is unmatched by other optimization algorithms, which
indicates that IMPA always finds more suitable parameters for SVM, ELM and KELM than
other optimization algorithms. IMPA satisfies their potential classification performance
and demonstrates solid parameter-finding ability.

The classification performance of metaheuristic-based algorithms is further investi-
gated using Table 5’s ranking technique for each benchmark. In Figure 11, stacked bars
depict the total ranking results. As can be seen from the figure, overall, KELM has the high-
est ranking score, followed by SVM, and ELM has the lowest. In addition, the performance
scores are greatly improved after the metaheuristic algorithm optimization, regardless
of the algorithm. It is also worth noting that the IMPA algorithm finds more suitable
parameters for each algorithm.
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The convergence curves of several metaheuristic KELM-based models are shown
in Figure 12. The figure shows that the KELM model optimized by IMPA has the low-
est recognition error rate for power equipment. This indicates that the improved MPA
has a stronger global search capability. In addition, it can be seen that the convergence
speed of IMPA is faster compared to MPA. This proves the superiority of IMPA proposed
in this paper.
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5. Conclusions

In this paper, a classification method based on a two-stage feature selection strategy
and IMPA-KELM model is proposed for the industrial power load identification problem.
The superiority and feasibility of the proposed method are verified by using the collected
power data from different workshops of a cement plant in China. The experimental results
show the advantages of the proposed method as follows.

(1) The operating information of each load is extracted as much as possible by extracting
the time-domain features and frequency-domain features of P and Q of electrical
equipment. A rich set of combined features is generated.

(2) This paper proposes a new method combining ReliefF and MPA feature selection.
ReliefF is used as a pre-feature filter, and MPA is used to optimize the features
again. Feature dimensionality and recognition accuracy are considered by setting the
fitness function equation. This method reduces the original time–frequency-domain
feature set of 58 features to 3, which is 5.17% of the original feature dimensionality.
While ensuring high classification accuracy, features with redundant information are
eliminated as much as possible, reducing the complexity of the classification process,
the computational cost and storage requirements.

(3) A new and improved marine predator algorithm is proposed. This algorithm in-
troduces a chaotic initialization strategy and boundary variation operation to im-
prove MPA’s convergence speed and global search capability. In this paper, the
improved MPA is applied to the parameter optimization process of KELM to obtain
the new classifier, IMPA-KELM, which achieves the optimal selection of KELM kernel
parameters and penalty coefficients and thus improves the accuracy of its electric
load identification.
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(4) A valuable reference for future research is provided. A large number of comparative
experiments are set up to summarize and verify the determination of the initial feature
set, the application effect of the dimensionality reduction methods, the classification
performance of different classifiers and the impact of some optimization algorithms.
The datasets are obtained through the actual cement plant’s record collection, which
avoids the performance saturation of some methods and can effectively distinguish
the effects in different ways.

Although the proposed method has a superior performance, it still presents some
misclassifications that must be further studied.
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