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Abstract: The problem of global prescribed-time stabilization is reported in this paper for a kind
of uncertain nonlinear system in power normal form. Compared with related work, the distinct
characteristics of this study are that the system under consideration has an input-quantized actu-
ator, and the prescribed time convergence of the system states is wanted. To meet these special
requirements, a novel state-scaling transformation (SST) is firstly given to convert the prescribed-time
stabilization of original systems to the asymptotic stabilization of the transformed one. Then, under
the new framework of equivalent transformation, a quantized state feedback controller that ensures
the achievement of the performance requirements is developed by using a power integrator (API)
technique. Finally, the simulation results of a liquid-level system are provided to confirm the efficacy
of the proposed approach.

Keywords: power normal nonlinear systems (PNNSs); input quantization; state-scaling transformation
(SST); prescribed-time stabilization

1. Introduction

It is well known that all practical systems are inherently nonlinear systems because of
the appearance of unmodel dynamics and disturbances. However, unlike linear systems
it is very difficult or even impossible to find a unified solution to nonlinear systems due
to the complexity of their structures. Fortunately, their special canonical structures can
be exploited to obtain meaningful results. As a result, in the past decades researchers
have began to focus on nonlinear systems with different special structures, such as strict-
feedback nonlinear systems, pure-feedback nonlinear systems, and non-strict feedback
nonlinear systems. Recently, power normal nonlinear systems (PNNSs) as a general
structure of nonlinear dynamic systems have received lots of attention because of their
significant values both in theory and practice [1,2]. But the general structure also leads
to the control of PNNSs being challenging because of their distinctive feature of the non-
existence and/or the lack of controllability/observability of the Jacobian linearization
around the origin, which blocks the applications of commonly used methods such as
backstepping and feedback linearization. Mainly thanks to the technique of adding a power
integrator (API) [3], which develops the traditional backstepping technique by introducing
the feedback-domination mechanism and contributes to a technological breakthrough in
coping with such intrinsic obstacles, the asymptotic stabilizing/tracking control of PNNSs
has made tremendous progress during an infinite time interval, for example, refer to [4–12]
and the references therein.

On the other hand, to meet the practical needs the research on finite-time control
has become popular recently because of the superior properties of the finite-time stable
system, such as fast response, good robustness, and disturbance rejection. Especially,
since the milestone work of the Lyapunov finite-time stability theorem was established
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in [13], many significant results have been obtained [14–23]. Note that the settling time
functions achieved in the above-mentioned results depend on initial system conditions.
This means that the settling time may increase to an unacceptable degree as the magnitude
of initial conditions increases. To overcome this faultiness, Andrieu et al., in [24] put
forward the notion of fixed-time stability, which requires that the upper bound of the
associated settling time function exists regardless of the initial system conditions. Under
the new framework of fixed-time stability, a great number of results have appeared to
study the control designs of linear/nonlinear systems. Generally speaking, the existing
methods of such fixed-time control designs can be classified into two kinds: one is the
bi-limit homogeneous method [24,25], and the other is the Lyapunov-based method [25–36].
However, it is important to note that both two methods have some inherent shortcomings.
Namely in the former, the upper bound of the settling time (UBST) function exists but is
unknown, and in the latter, the UBST is bounded and adjustable, but it is difficult or even
impossible to be prespecified discretionarily in line with requirements because the settling
time function derived from the Lyapunov-based method currently relies on a few design
parameters, whose choices are actually not easy to satisfy the pregiven settling time.

However, prespecifiable settling time is indeed expected by some practice applications,
e.g., missile guidance [37]. This fact urges that prescribed/predefined-time control has
become an active research topic [34–41]. Especially, drawing support from scaling the state
by a function that grows unboundedly toward the terminal time, a computationally singular
controller was given for prescribed-time stabilization (PTS) of Brunovsky systems in [42].
The extension of this technique was further refined in [43], where a novel state-scaling
transformation (SST) was proposed to overcome the computationally singular problem
and provided a solution to the problem of PTS for strict-feedback (switched) nonlinear
systems. However, the powers of the studied systems are identically equal to 1 (i.e., pi = 1)
required in [43], which certainly limits their application because many practical systems are
described by PNNSs (refer to the typical example of liquid-level system given in Section 4).
Moreover, another common drawback of the aforementioned results is that the effect of the
quantized input is ignored.

As is known to all, most of the control tasks of modern engineering application are
achieved based on network information transfer, which means that the actual control
signals in such systems must be quantized to overcome the communication constraints
including the limited data transmission rate of communication channels and their limited
bandwidth. However, the application of quantizers inevitably introduces quantization
errors, which seriously degrade the system’s performance and prevent the implementation
of quantizers [44–47]. In addition, it should be mentioned that the appearance of quantized
input nonlinearity will destroy system structure characteristics, and thus the existing
methods cannot be directly applied. To date, few prescribed-time control techniques have
been reported for the quantized nonlinear systems. Therefore, the following question
naturally arises: For a PNNS with input quantization, is it possible to devise a controller to achieve
its PTS? If possible, how can one design it?

This paper focuses on addressing the problem of global PTS for a kind of PNNSs with
quantized input and giving an affirmative answer to the above question. The significant
contributions are underlined as follows.

(i) Fully taking into consideration the practical system requirements, both quantized
input and prescribed-time convergence are included firstly in this paper.

(ii) A novel SST is proposed to change the original PTS problem into the problem of
asymptotic stabilization of the transformed one.

(iii) Under a new homogeneous-like restricted condition on system growth, a systematic
design method ensuring the achievement of the performance requirements is proposed
by delicately utilizing the API technique.

(iv) As an application of the proposed theoretical result, the problem of PTS with quantized
input for a liquid-level system is solved.
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Notations. The notations adopted in this paper are fairly standard. Specifically, for a
vector z = (z1, . . . , zn)T ∈ Rn, denote z̄j = (z1, . . . , zj)

T ∈ Rj, j = 1, . . . , n, and the function
dzeδ is defined as dzeδ = sign(z)|z|δ where the sign(·) is the signum function.

2. Problem Formulation and Preliminaries
2.1. Problem Formulation

Consider a HONS as

ż1 = d1(t)dz2eq1 + f1(t, z1),
ż2 = d2(t)dz3eq2 + f2(t, z̄2),

...
żn−1 = dn−1(t)dzneqn−1 + fn−1(t, z̄n−1),
żn = dn(t)Q(u) + fn(t, z̄n),

(1)

where z̄i = (z1, . . . , zi)
T ∈ Ri is the system state (vector). di ∈ R, qi ∈ R+ (with qn = 1),

i = 1, . . . , n are the control coefficients and the power orders of the system, respectively.
fi ∈ R (i = 1, . . . , n) are uncertain continuous functions satisfying fi(t, 0) = 0. u ∈ R is
the control input to be designed, and Q denotes the mapping relationship between the
designed control u and quantized input Q(u), which is governed by Q(u) ∈ R, which
denotes the quantized input described by

Q(u) = Q1(t)u + Q2(t), (2)

where

Q1(t) =
{

1 + ϑ1δ, |u| ≥ umin,
1, |u| < umin,

(3)

and

Q2(t) =
{

0, |u| ≥ umin,
ϑ2umin, |u| < umin,

(4)

where 0 ≤ δ < 1 and umin are known parameters and −1 ≤ ϑj ≤ 1, j = 1, 2 are unknown
parameters of the quantizer (2).

Remark 1. It is worth noting that many practical quantizers, such as logarithmic quantizer,
hysteresis quantizer, and uniform quantizer, belong to the considered class described by (2). For
instance, consider the logarithmic quantizer used in [44,45], which is modeled as

Q(u) =


uj,

uj

1 + δ
< u ≤

uj

1− δ
,

0, 0 ≤ u <
d

1 + δ
,

−Q(−u), u < 0,

(5)

where uj = ς1−jd (j = 1, 2, . . .), with the parameters being selected to satisfy d > 0 and 0 < ς < 1.
δ = 1−ς

1+ς determines the quantization density of Q(u). u0 = d
1+δ determines the size of the dead

zone for Q(u).
Clearly, this quantizer is in the shape of (2) with ϑ1 = (Q(u)− u)/(δu) and umin = u0.

The aim of this paper is to present a quantized state feedback control mechanism that
stabilizes system (1) within prescribed finite time under the following wild assumptions.

Assumption 1. For i = 1, . . . , n, there are smooth functions ϕi ≥ 0 and a constant τ > 0
such that

| fi(t, z̄i)| ≤ ϕi(z̄i)
i

∑
j=1
|zj|

λi−τ
λj , (6)
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where λi’s are recursively defined by

λn+1 = τ, qiλi+1 = λi − τ ≥ 0, i = 1, . . . , n− 1. (7)

Assumption 2. There are (known) positive constants di and di, i = 1, . . . , n such that di ≤ di(t) ≤ di.

Remark 2. Assumption 1 is a new type of condition of homogeneous-growth-like because in it λi’s
are radically different from the conventional ones used in [4–12,15–23] where they are recursively
defined by λ1 = 1, qiλi+1 = λi − τ ≥ 0, i = 1, . . . , n. In addition, it should be mentioned that it
is reasonable in engineering practice to impose the control coefficients with the known boundedness
in Assumption 2. Similar requirements can be found in the existing literature [21–23,32,33,46].

2.2. Preliminaries

Consider the nonlinear system

ż = f (t, z), z(0) = z0 ∈ Rn, (8)

where f : R×Rn → Rn is continuous with respect to z and satisfies f (t, 0) = 0.

Definition 1 ([26]). The origin of system (8) is globally finite-time stable if it is globally asymptot-
ically stable and for any z0 ∈ Rn, and a settling time function T : Rn \ {0} → (0, ∞) exists such
that each solution z(t, z0) of (8) satisfies z(t, z0) = 0, ∀t ≥ T(z0).

Definition 2 ([26]). The origin of system (8) is globally fixed-time stable if it is globally finite-time
stable and the settling-time function T(z0) is bounded by a positive constant ∀z0 ∈ R.

Definition 3. The origin of system (8) is globally prescribed-time stable if it is globally fixed-time
stable and for any prescribed finite time Tc > 0 there is a tunable designing parameter ϑ ∈ R such
that T(z0) ≤ Tc, ∀z0 ∈ R.

Lemma 1 ([4]). For any x, y ∈ R, and a constant a ≥ 1, one obtains (i)|x + y|a ≤ 2a−1|xa + ya|;
(ii)(|x|+ |y|)1/a ≤ |x|1/q + |y|1/a ≤ 2(a−1)/a(|x|+ |y|)1/a.

Lemma 2 ([4]). If c, d are positive constants, then for any real-valued function one obtains
δ(u, v) > 0, |u|c|v|d ≤ c

c+d δ(u, v)|u|c+d + d
c+d δ−c/d(u, v)|v|c+d.

Lemma 3 ([48]). Let 0 < p ≤ 1 and a > 0 be constants. Then, for any u, v ∈ R there is
|dueaq − dveap| ≤ 21−p|duea − dvea|p.

3. Prescribed-Time Stabilization

In this section, we propose a constructive design mechanism of the state feedback
controller, which can stabilize system (1) within any prescribed finite time Tc > 0. The
design consists of defining such a stabilizing controller as a piecewise one. Specially, when
t ∈ [0, Tc) we first design a non-autonomous controller to force the states tending to the
origin regardless of initial conditions within Tc; thereafter, we design an autonomous
controller to keep the states at the origin.

3.1. Controller Design of t ∈ [0, Tc)

Firstly, to shift the original PTS to the framework of asymptotic stabilization, the
following novel coordinate transformation of state-scaling is introduced:

ζi = Γ(1+c)λi zi, i = 1, . . . , n, v = Γ(1+c)λn+1 Q(u), (9)
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where v is the input of the transformed system and c ≥ (1/τ)− 1 is a design constant and
Γ is defined as

Γ =
Tc

Tc − t
. (10)

Remark 3. It is obvious that Γ(·) is monotonically increasing on [0, Tc) and satisfies
Γ(0) = 1, Γ(Tc) = +∞.

From (9), system (1) is redescribed as

ζ̇1 = Γ(1+c)τ(d1dζ2eq1 + g1(ζ1)
)
,

ζ̇2 = Γ(1+c)τ(d2dζ3eq2 + g2
(
ζ̄2
))

,
...

ζ̇n−1 = Γ(1+c)τ(dn−1dζneqn−1 + gn−1
(
ζ̄n−1

))
,

ζ̇n = Γ(1+c)τ(dnQ(v) + gn
(
ζ̄n
))

,

(11)

where

gi(ζ̄i) = ζi
(1 + c)λiΓ̇
Γ1+(1+c)τ

+ Γ(1+c)(λi−τ) fi(z̄i), i = 1, . . . , n, (12)

Proposition 1. For i = 1, . . . , n, some smooth functions ϕ̄i(ζ̄i) ≥ 0 exist such that

|gi(ζ̄i)| ≤ ϕ̄i(ζ̄i)
i

∑
j=1
|ζ j|

λi−τ
λj . (13)

Proof. See Appendix A.

Next, a state feedback controller for the asymptotic stabilization of system (11) is
designed for the case of t ∈ [0, Tc) by employing the API technique.

Step 1. Take ρ ≥ max1≤i≤n{λi} as a real number and the Lyapunov function V1 for
this step as

V1 = W1 =
∫ ζ1

0

⌈
dse

ρ
λ1 − 0

⌉ 2ρ−λ1
ρ

ds. (14)

Applying Assumptions 1 and 2 and (13) produces

V̇1 = Γ(1+c)τdπ1e
2ρ−λ1

ρ (d1dζ2eq1 + g1)

≤ Γ(1+c)τ
(
dπ1e

2ρ−λ1
ρ d1(ζ2eq1 − dζ∗2eq1) + d1dπ1e

2ρ−λ1
ρ dζ∗2eq1 + |π1|

2ρ−λ1
ρ ϕ̄1

)
,

(15)

where π1 = dζ1e
ρ

λ1 , and ζ∗2 is the virtual controller of ζ2 to be specified.
Take the virtual controller ζ∗2 as

ζ∗2 = −dπ1e
λ2
ρ β

λ2
ρ

1 (ζ1), (16)

where

β1(ζ1) ≥
(

n + ϕ̄1

d1

) ρ
q1λ2

, (17)

is a smooth function. Then, by substituting (16) and (17) into (15), one obtains

V̇1 ≤ −nΓ(1+c)τ |π1|
2ρ−τ

ρ + Γ(1+c)τd1dπ1e
2ρ−λ1

ρ (dζ2eq1 − dζ∗2eq1). (18)
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Step 2. Define π2 = dζ2e
ρ

λ2 − dζ∗2e
ρ

λ2 and take the Lyapunov function V2 = V1 + W2
with

W2 =
∫ ζ2

ζ∗2

⌈
dse

ρ
λ2 − dζ∗2e

ρ
λ2

⌉ 2ρ−λ2
ρ

ds. (19)

From 
∂W2

∂ζ2
= dπ2e

2ρ−λ2
ρ ,

∂W2

∂ζ1
= −2ρ− λ2

ρ

∂

(
dζ∗2e

ρ
λ2

)
∂ζ1

×
∫ ζ2

ζ∗2

∣∣∣∣dse ρ
λ2 − dζ∗2e

ρ
λ2

∣∣∣∣
ρ−λ2

ρ

ds,

(20)

a direct calculation gives

V̇2 ≤ −nΓ(1+c)τ |π1|
2ρ−τ

ρ + Γ(1+c)τd1dπ1e
2ρ−λ1

ρ (dζ2eq1 − dζ∗2eq1)

+
∂W2

∂ζ1
Γ(1+c)τ(d1dζ2eq1 + g1) +

∂W2

∂ζ2
Γ(1+c)τ(d2dζ3eq2 + g2)

≤ −nΓ(1+c)τ |π1|
2ρ−τ

ρ + Γ(1+c)τd1dπ1e
2ρ−λ1

ρ (dζ2eq1 − dζ∗2eq1)

+Γ(1+c)τ
(

∂W2

∂ζ1
(d1dζ2eq1 + g1) + d2dπ2e

2ρ−λ2
ρ (dζ3eq2 − dζ∗3eq2)

+d2dπ2e
2ρ−λ2

ρ dζ∗3eq2 + dπ2e
2ρ−λ2

ρ g2

)
,

(21)

where ζ∗3 is the virtual controller of ζ3 to be designed later. To continue, the following
estimates for some terms of (21) are needed.

First, based on the definitions of πj and ζ∗j (j = 1, 2) and Lemma 3, one obtains

|dζ2eq1 − dζ∗2eq1 | =

∣∣∣∣∣∣
(
dζ2e

ρ
λ2

) λ2q1
ρ

−
(
dζ∗2e

ρ
λ2

) λ2q1
ρ

∣∣∣∣∣∣
≤ 21− λ2q1

ρ

∣∣∣dζ2e
ρ

λ2 − dζ∗2e
ρ

λ2

∣∣∣ λ2q1
ρ

= 21− λ2q1
ρ |π2|

λ2q1
ρ .

(22)

Thus, from (22), Assumption 2 and Lemma 2, it is obtained that

d1dπ1e
2ρ−λ1

ρ (dζ2eq1 − dζ∗2eq1) ≤ 21− λ2q1
ρ d̄1|π1|

2ρ−λ1
ρ |π2|

λ2q1
ρ

≤ 1
3
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ $21,

(23)

where $21 ≥ 0 is a smooth function.
Secondly, from (13) and Lemma 1, one obtains

|g2| ≤ ϕ̄2

(
|ζ1|

λ2−τ
λ1 + |ζ2|

λ2−τ
λ2

)
≤ ϕ̄2

(
|π1|

λ2−τ
ρ + |π2|

λ2−τ
ρ + β

λ2−τ
ρ

1 |π1|
λ2−τ

ρ

)
≤ ϕ̃2

(
|π1|

λ2−τ
ρ + |π2|

λ2−τ
ρ

)
,

(24)

where ϕ̃2 ≥
(

1 + β
λ2−τ

ρ

1

)
ϕ̄2 is a smooth function.
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Using (24) and Lemma 2 yields

dπ2e
2ρ−λ2

ρ g2 ≤ dπ2e
2ρ−λ2

ρ ϕ̃2

(
|π1|

λ2−τ
ρ + |π2|

λ2−τ
ρ

)
≤ 1

3
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ $22,

(25)

where $22 ≥ 0 is a smooth function.
Finally, note that

2ρ− λ2

ρ

∫ ζ2

ζ∗2

∣∣∣∣dse ρ
λ2 − dζ∗2e

ρ
λ2

∣∣∣∣
ρ−λ2

ρ

ds ≤ 2ρ− λ2

ρ
|π2|

ρ−λ2
ρ |ζ2 − ζ∗2 |

≤ 2ρ− λ2

ρ
21− λ2

ρ |π2|,
(26)

and ∣∣∣∣∣∣∣∣
∂

(
dζ∗2e

ρ
λ2

)
∂ζ1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∂(β1dπ1e)
∂ζ1

∣∣∣∣
≤

∣∣∣∣∂β1

∂ζ1

∣∣∣∣|π1|+
ρ

λ1
β1|π1|

ρ−λ1
ρ

≤ |π1|
ρ−λ1

ρ γ2,

(27)

where γ2 ≥ 0 is a smooth function.
Therefore, on the basis of (24), (26), (27), and Lemma 2, one obtains

∂W2

∂ζ1
(d1dζ2eq1 + g1)

≤ 2ρ− λ2

ρ

∫ ζ2

ζ∗2

∣∣∣∣dse ρ
λ2 − dζ∗2e

ρ
λ2

∣∣∣∣
ρ−λ2

ρ

ds×

∣∣∣∣∣∣∣∣
∂

(
dζ∗2e

ρ
λ2

)
∂ζ1

∣∣∣∣∣∣∣∣(d1dζ2eq1 + g1)

≤ 1
3
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ $23,

(28)

where $23 ≥ 0 is a smooth function.
Substituting (23), (25), and (28) into (22) yields

V̇2 ≤ −(n− 1)Γ(1+c)τ |π1|
2ρ−τ

ρ + Γ(1+c)τd2dπ2e
2ρ−r2

ρ (dζ3eq2 − dζ∗3eq2)

+Γ(1+c)τ
(

d2dπ2e
2ρ−r2

ρ dζ∗3eq2 + ($21 + $22 + $23)|π2|
2ρ−τ

ρ

)
.

(29)

Then, one can design the virtual controller

ζ∗3 = −dπ2e
λ3
ρ β

λ3
ρ

2 (ζ̄2), (30)

where the smooth function β2 satisfies

β2(ζ̄2)≥
(

n− 1 + $21 + $22 + $23

d2

) ρ
q2λ3

, (31)

such that

V̇2 ≤ −(n− 1)Γ(1+c)τ
(
|π1|

2ρ−τ
ρ + |π2|

2ρ−τ
ρ

)
+ Γ(1+c)τd2dπ2e

2ρ−r2
ρ (dζ3eq2 − dζ∗3eq2). (32)

Step i (i = 3, . . . , n). The following proposition can be obtained in this step.
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Proposition 2. Suppose at step i− 1, a C1 Lyapunov function Vi−1 exists that is positive, definite,
and proper, and a row of C0 virtual controllers ζ∗1 , . . . , ζ∗i defined by

ζ∗1 = 0, π1 = dζ1e
ρ

λ1 − dζ∗1e
ρ

λ1 ,

ζ∗2 = −dπ1e
λ2
ρ β

λ2
ρ

1 (ζ1), π2 = dζ2e
ρ

λ2 − dζ∗2e
ρ

λ2 ,
...

...

ζ∗i = −dπi−1e
λi
ρ β

λi
ρ

i−1(ζ̄i−1), πi = dζie
ρ
λi − dζ∗i e

ρ
λi ,

(33)

with β1 > 0, . . ., βi−1 > 0 being smooth, such that

V̇i−1 ≤ −(n− i + 2)Γ(1+c)τ
i−1

∑
j=1
|πj|

2ρ−τ
ρ + Γ(1+c)τdi−1dπi−1e

2ρ−λi−1
ρ (dζieqi−1 − dζ∗i eqi−1). (34)

Then, the ith Lyapunov function Vi = Vi−1 + Wi with

Wi =
∫ ζi

ζ∗i

⌈
dse

ρ
λi − dζ∗i e

ρ
λi

⌉ 2ρ−λi
ρ

ds, (35)

is C1, positive, definite, and proper, and there is a C0 state feedback controller

ζ∗i+1 = −β

λi+1
ρ

i (ζ̄i)dπie
λi+1

ρ , (36)

such that

V̇i ≤ −(n− i + 1)Γ(1+c)τ
i

∑
j=1
|πj|

2ρ−τ
ρ + Γ(1+c)τdidπie

2ρ−ri
ρ (dζi+1eqi − dζ∗i+1eqi ). (37)

Proof. See the Appendix A.

Step n. Selecting

Vn =
n

∑
j=1

Wj =
n

∑
j=1

∫ ζ j

ζ∗j

⌈
dse

ρ
λj − dζ∗j e

ρ
λj

⌉ 2ρ−λj
ρ

ds, (38)

the above inductive step indicates that a desired dead-zone output exists

ζ∗n+1 = −dπne
λn+1

ρ β

λn+1
ρ

n (ζ̄n), (39)

such that

V̇n ≤ −Γ(1+c)τ
n

∑
j=1
|πj|

2ρ−τ
ρ + Γ(1+c)τdπne

2ρ−λn
ρ
(
v− ζ∗n+1

)
≤ −Γ(1+c)τ

n

∑
j=1
|πj|

2ρ−τ
ρ + Γ2(1+c)τdπne

2ρ−λn
ρ

(
Q(u)− Γ−(1+c)τζ∗n+1

)
.

(40)

Therefore, from (3) the state feedback control u is designed as

u =



(
Γ−(1+c)τζ∗n+1

1− δ̄
+ umin

)
, ζ∗n+1 > 0,

0, ζ∗n+1 = 0,(
Γ−(1+c)τζ∗n+1

1− δ̄
− umin

)
, ζ∗n+1 < 0,

(41)
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which renders(
Q(u)− Γ−(1+c)τζ∗n+1

)

=



Q(u)
u

(
Γ−(1+c)τζ∗n+1

1− δ
+ umin

)
− Γ−(1+c)τζ∗n+1 > 0, ζ∗n+1 > 0,

0, ζ∗n+1 = 0,
Q(u)

u

(
Γ−(1+c)τζ∗n+1

1− δ
− umin

)
− Γ−(1+c)τζ∗n+1 < 0, ζ∗n+1 < 0.

(42)

By noting −dπne
2ρ−λn

ρ ζ∗n+1 ≥ 0, one obtains

V̇n ≤ −Γ(1+c)τ
n

∑
j=1
|πj|

2ρ−τ
ρ ≤ −

n

∑
j=1
|πj|

2ρ−τ
ρ . (43)

Consequently, the following result is obtained.

Theorem 1. For system (1) under Assumptions 1 and 2, the state feedback controller (41) consisting
of (33) and (39) renders the states of the CLS convergent to zero within the prescribed finite time
Tc > 0.

Proof. Represents that property that the positive, definite, and proper properties of Vn given
in Proposition 2 together with (43) and Lemma Lemma 4.3 in [49] reveal that there are class
K∞ functions η1, η2 and η3 such that

η1(|ζ|) ≤ Vn(ζ) ≤ η2(|ζ|), (44)

V̇n ≤ −η3(|ζ|), (45)

which indicate that ζ(t) is asymptotically convergent and bounded on [0, Tc).
On the other hand, the SST (9) gives

zi(t) = Γ−(1+c)λi ζi(t) =
(

Tc − t
Tc

)(1+c)λi

ζi(t), i = 1, . . . , n. (46)

Consequently, it further can be obtained that

lim
t→Tc

zi(t) = lim
t→Tc

(
Tc − t

Tc

)(1+c)λi

ζi(t) = 0, i = 1, . . . , n. (47)

Therefore, the proof is completed.

3.2. Controller Design for t ∈ [Tc, +∞) and Main Result

The state feedback controller that drives system states to zero in prescribed finite time
Tc > 0 has been designed in the above subsection. As a result, in this subsection we need
only consider how to design a controller that the states reach and that is maintained at the
origin for all t ∈ [Tc, +∞).

By the solution properties of existence and continuation, it is obtained that z(Tc) = 0.
Therefore, the control u can be simply selected as u = 0, which, together with fi(0) = 0,
guarantees z(t) = 0 for any t ∈ [Tc, +∞) [43]. However, this choice will render that the
CLS is sensitive to external disturbances. To avoid this, here we give an alternative solution
for t ∈ [Tc, +∞). Observe that the original system (1) and the transformed system (11)
have a similar structure except for the time-varying control coefficient Γ(1+c)τ . Therefore,
by letting Γ = 1, we can design a new controller u consisting of (33), (39) and (41) to keep
the states at the origin for all t ≥ Tc.
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Till now, the control design of PTS for the system (1) is completed. Accordingly, the
following theorem is given to sum up the main results of this paper.

Theorem 2. Considering system (1) under Assumptions 1 and 2, if the state feedback controller

u =



(
Γ−(1+c)τζ∗n+1

1− δ
+ u0

)
, ζ∗n+1 > 0,

0, ζ∗n+1 = 0,(
Γ−(1+c)τζ∗n+1

1− δ
− u0

)
, ζ∗n+1 < 0,

(48)

with

Γ1 =


Tc

Tc − t
, t ∈ [0, Tc),

1, t ∈ [Tc, +∞),
(49)

ζ∗n+1 = −dπne
λn+1

ρ β

λn+1
ρ

n (ζ̄n), (50)

is applied, then the origin of the CLS is globally prescribed-time stable.

Proof. According to the properties of the monotonous growth of Γ(t) = Tc/(Tc − t) and
the asymptotical convergent of ζ(t) for all t ∈ [0, Tc), one has

|z(t)| ≤ |ζ(t)| ≤ |ζ(0)| = |z(0)|, (51)

which, together with z(t) = 0 for any t ∈ [Tc, +∞), lead to

|z(t)| ≤ |z(0)|, t ≥ 0. (52)

That is to say, the origin of the CLS is globally Lyapunov stable. Furthermore, with the
global prescribed-time convergent of the CLS in mind, this theorem is straightforwardly
concluded from Definition 3.

4. Simulation Example

To give an example of the utilization of the proposed control scheme, we consider a
liquid-level system exhibited in Figure 1, the dynamics of which are represented by

C1Ḣ1 = Q1
C2Ḣ2 = Q−Q1 −Q2

Q1 =

{
k1
√

2g|H2 − H1|, H2 ≥ H1,
−k1

√
2g|H2 − H1|, H2 < H1,

Q2 = k2
√

2gH2,

(53)

where the physical meanings of system parameters are as

Hi Liquid levels of tank i;
H Steady-state liquid levels of two tanks;
Ci Cross sections of tank i;
k1 Cross sections of the inlet manual valves of tanks 1 and 2;
k2 Cross sections of the right outlet manual valves of tank 2;
Q Inflow rate of this system;
Q1 Inflow rate from tank 2 to tank 1;
Q2 Outflow rate of this system;
g Gravitational acceleration.
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Tank 1 Tank 2

Q

1
H 2

H

1
Q

2
Q

Figure 1. Schematic diagram of the liquid-level system.

By introducing the variable changes

z1 = H1 − H, z2 = H2 − H1, u =
Q
C2
−

k2
√

2gH
C2

, (54)

and taking the quantized input nonlinearity into account, the dynamics of (53) can be
further modelled as

ż1 = d1dz2e
1
2 ,

ż2 = Q(u) + f2(z̄2),
(55)

where d1 =
k1
√

2g
C1

and f2(z̄2) = −C1
C2

d1dz2e
1
2 − k2

√
2g

C2
dz1 + z2 + He 1

2 +
k2
√

2g
C2
dHe 1

2 ; Q
denotes the quantized input nonlinearity described by (5). Based on Lemma 3, it is easily
verified that

| f2| ≤
k1
√

2g
C2
|z2|

1
2 +

k2
√

2g
C2

∣∣∣dz1 + z2 + He 1
2 − dHe 1

2

∣∣∣
≤ k1

√
2g

C2
|z2|

1
2 +

k2
√

2g
C2

(
|z1|

1
2 + |z2|

1
2 + H

1
2 − H

1
2

)
≤ k1

√
2g

C2
|z2|

1
2 +

k2
√

2g
C2

(
|z1|

1
2 + |z2|

1
2

)
≤
√

2g
C2

(k1 + k2)
(
|z1|

1
2 + |z2|

1
2

)
.

(56)

That is, Assumption 1 is satisfied with λ3 = τ = 1 and λ1 = λ2 = 2, ϕ2 =

√
2g

C2
(k1 + k2).

Introducing ζi = Γ(1+c)λi
1 zi, i = 1, 2 with

Γ1 =


Tc

Tc − t
, t ∈ [0, Tc),

1, t ∈ [Tc, +∞),
(57)
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and taking ρ = 2 and c = 0 , according to Theorem 2 one can design a state feedback controller

u =



(
Γ−(1+c)τζ∗3

1− δ
+ u0

)
, ζ∗3 > 0,

0, ζ∗3 = 0,(
Γ−(1+c)τζ∗3

1− δ
− u0

)
, ζ∗3 < 0,

(58)

ζ∗3 = −(0.1 + $21 + $22 + $23)dπ2e
1
2 , (59)

with β1 = (1.1 + 2
Tc
(1 + ζ2

1)
1
2 )/d1 if t ∈ [0, Tc) and β1 = 1.1/d1 if t ∈ [Tc, +∞), π2 =

ζ2 − ζ∗2 , ζ∗2 = −β1ζ2
1, ϕ̃2 = (1 + β

1
2
1 )(1 + c)λ2|ζ2|τ/λ2 /Tc + ϕi, $21 = 3.7712d

3
2
1 , $22 =

0.6667ϕ̃
3
2
2 + ϕ̃2, $23 = | ∂ζ∗2

∂ζ1
d1|+ 0.6667| ∂ζ∗2

∂ζ1
|3(d1β

1
2
1 + 2

Tc
(1 + ζ2

1)
1
2 )3, which can render the

system (56) globally prescribed-time stable.
For the simplicity, select the system parameters as H = 100 cm, g = 9.8 m/s2,

C1 = C2 =
√

2g = 4.427 cm2, k1 = 1 cm2, k2 = 0.25 cm2, d = 0.05, and δ = 0.2 and the
prescribed time as Tc = 4 s. For different initial conditions (i) (z1(0), z2(0)) = (0.5,−1),
(ii) (z1(0), z2(0)) = (5,−10), Figures 2–5 are given to exhibit the responses of the CLS. It
can be clearly seen that the convergence time of the system states stays below the prescribed
time 4 s in spite of the initial value growing, which confirms the validity of the control
scheme. As a result, the simulation results confirm the validity of the control scheme.
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Figure 2. System states of case (i).
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Figure 3. Dead-zone input and output of case (i).
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Figure 4. System states of case (ii).
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Figure 5. Dead-zone input and output of case (ii).

5. Conclusions

In this paper, the problem of prescribed-time state feedback stabilization has addressed
a kind of PNNSs with quantized input nonlinearity. Based on a novel SST to translate the
original problem of prescribed-time stabilization into the asymptotic stabilization of the
transformed one, a constructive quantized control design procedure of state feedback is
established with the aid of the API technique. A significant advantage of the presented
scheme is that its settling time can be preset and is easy to adjust arbitrarily according to
practical requirements. However, it is mentioned that the given controller is essentially
based on the information of entire system states, and apparently the current method is
unavailable to the case without such knowledge. Accordingly, knowing how to develop a
control scheme for PNNSs only using partial state measurements [50] will be a topic of our
future work. Moreover, the multi-agent systems [51] and cyber-physical systems [52,53]
are very important systems that need to be studied, and thus exploring the application of
the proposed method to such systems is also an interesting research topic.
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Appendix A

Proof of Proposition 1. Firstly, the definition of Γ in (10) gives Γ̇ = Γ2/Tc. Furthermore,
this together with (9) and Assumption 1 implies

|gi(ζ̄i)| =

∣∣∣∣ζi
(1 + c)λiΓ̇
Γ1+(1+c)τ

+ Γ(1+c)(λi−τ) fi(z̄i)

∣∣∣∣
≤ (1 + c)λi

Tc
Γ1−(1+c)τ |ζi|+

∣∣∣∣∣Γ(1+c)(λi−τ)ϕi

i

∑
j=1
|zj|

λi−τ
λj

∣∣∣∣∣
≤ (1 + c)λi

Tc
Γ1−(1+c)τ |ζi|+ ϕi

i

∑
j=1

∣∣ζ j
∣∣ λi−τ

λj .

(A1)

By noting that c ≥ (1/τ) − 1 and Γ ≥ 1 for all t ∈ [0, Tc), the smooth functions
ϕ̄i(ζ̄i) ≥ (1 + c)λi|ζi|τ/λi /Tc + ϕi exist to ensure that Proposition 1 is true.

Proof of Proposition 2. First of all, some simple calculations lead to
∂Wi
∂ζi

= dπie
2ρ−λi

ρ ,

∂Wi
∂ζ j

= −2ρ− λi
ρ

∂

(
dζ∗i e

ρ
λi

)
∂ζ j

×
∫ ζi

ζ∗i

∣∣∣∣dse ρ
λi − dζ∗i e

ρ
λi

∣∣∣∣
ρ−λi

ρ

ds,

(A2)

for j = 1, . . . , i− 1. Due to ρ ≥ max1≤i≤n{λi} and β j(·) being smooth, it is clear that Wi,
and Vi is C1.

Second, using the classified discussion idea as in [4], one can prove that

Wj ≥ Mj|ζ j − ζ∗j |
ρ−λj

ρ , (A3)

some constant Mj > 0.
Furthermore, one obtains

Vi = Vi−1 + Wi ≥ Vi−1 + Mi|ζi − ζ∗i |
ρ−λi

ρ , (A4)

and thus Vi is positive, definite, and proper.
Finally, we show inequality (35). From (34) and (A2), it follows that

V̇i ≤ −(n− i + 2)Γ(1+c)τ
i−1

∑
j=1
|πj|

2ρ−τ
ρ + Γ(1+c)τ

(
di−1dπi−1e

2ρ−λi−1
ρ (dζieqi−1 − dζ∗i eqi−1)

+didπie
2ρ−λi

ρ dζi+1eqi + dπie
2ρ−λi

ρ gi +
i−1

∑
j=1

∂Wi
∂ζ j

(
djdζ j+1eqj + gj

))
.

(A5)

Following the similar line as that in Step 2, the estimates of some terms of (A5) on the
basis of Lemmas 1–3 can be given as:

di−1dπi−1e
2ρ−λi−1

ρ (dζieqi−1 − dζ∗i eqi−1) ≤ 1
3
|πi−1|

2ρ−τ
ρ + |πi|

2ρ−τ
ρ $i1, (A6)

dπie
2ρ−λi

ρ gi ≤
1
3

i−1

∑
j=1
|πj|

2ρ−τ
ρ + |πi|

2ρ−τ
ρ $i2, (A7)

i−1

∑
j=1

∂Wi
∂ζ j

(
djdζ j+1eqj + gj

)
≤ 1

3

i−1

∑
j=1
|πj|

2ρ−τ
ρ + |πi|

2ρ−τ
ρ $i3, (A8)

for some positive smooth functions $ij, j = 1, 2, 3.
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Substituting (A6)–(A8) into (A5), one obtains

V̇i ≤ −(n− i + 1)Γ(1+c)τ
i−1

∑
j=1
|πj|

2ρ−τ
ρ + Γ(1+c)τ

(
didπie

2ρ−λi
ρ (dζi+1eqi − dζ∗i+1eqi )

+didπie
2ρ−λi

ρ dζ∗i+1eqi + |πi|
2ρ−τ

ρ ($i1 + $i2 + $i3)

)
.

(A9)

Then, the virtual (actual) controller

ζ∗i+1 = −dπie
λi+1

ρ β

λi+1
ρ

i (ζ̄i), (A10)

where βi(·) is smooth and satisfies

βi(ζ̄i) ≥
(

n− i + 1 + $i1 + $i2 + $i3
di

) ρ
qiλi+1

, (A11)

renders

V̇i ≤ −(n− i + 1)Γ(1+c)τ
i

∑
j=1
|πj|

2ρ−τ
ρ + Γ(1+c)τdidπie

2ρ−λi
ρ (dζi+1eqi − dζ∗i+1eqi ). (A12)

This completes the proof.
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