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Abstract: The Urban Transit Routing Problem (UTRP) is a challenging discrete problem that revolves
around designing efficient routes for public transport systems. It falls under the category of NP-hard
problems, characterized by its complexity and numerous constraints. Evaluating potential route
sets for feasibility is a demanding and time-consuming task, often resulting in the rejection of many
solutions. Given its difficulty, metaheuristic methods, such as swarm intelligence algorithms, are
considered highly suitable for addressing the UTRP. However, the effectiveness of these methods
depends heavily on appropriately adapting them to discrete problems, as well as employing suitable
initialization procedures and solution-evaluation methods. In this study, a new variant of the particle
swarm optimization algorithm is proposed as an efficient solution approach for the UTRP. We
present an improved initialization function and improved modification operators, along with a post-
optimization routine to further improve solutions. The algorithm’s performance is then compared to
the state of the art using Mandl’s widely recognized benchmark, a standard for evaluating UTRP
solutions. By comparing the generated solutions to published results from 10 studies on Mandl’s
benchmark network, we demonstrate that the developed algorithm outperforms existing techniques,
providing superior outcomes.

Keywords: swarm intelligence; population-based optimization; transit network design; particle
swarm optimization; UTRP

1. Introduction

The field of transportation has grown rapidly in recent times, presenting significant
challenges for engineers and planners alike. The escalating transportation needs of individ-
uals, both domestically and internationally, have made transportation a critical concern
in our era. Amidst high pollution levels in urban areas, environmental considerations
have become paramount, putting sustainability at the forefront. As a result, researchers
are increasingly emphasizing the integration of environmentally friendly measures into
transportation models. Such strategies include the adoption of emission-free buses, public
bike stations, and vehicle-sharing programs [1]. Transit networks play a crucial role in
sustainable transportation systems, garnering considerable attention from the academic
community in terms of both planning and operational aspects.

The Urban Transit Routing Problem (UTRP) is a challenging problem in transportation
planning that involves designing and optimizing transit route networks for urban areas [2].
The objective is to find the most efficient routes for public transportation vehicles, consider-
ing factors such as travel time, passenger demand, transfer connections, vehicle capacities,
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operating costs, and environmental impacts. The problem is usually formulated as an opti-
mization problem that seeks to minimize some form of total system costs while satisfying
specific service levels and performance criteria. The UTRP is a complex problem due to
the large number of potential routes and the various constraints that must be considered.
Finding an optimal solution to the UTRP is known to be computationally difficult, with
many heuristic and metaheuristic algorithms developed to address the problem [3]. These
include techniques such as genetic algorithms (GAs), simulated annealing, and swarm
intelligence methods [4]. Efficient and effective public transportation systems are critical
for the mobility and sustainability of urban areas, making the UTRP an important area of
research in transportation engineering.

Motivated by the promising performance of swarm intelligent algorithms for the
UTRP and the need for efficient algorithms to handle the problem, this study develops a
new variant of the PSO algorithm to solve the UTRP. We present an improved initialization
function and improved modification operators, along with a post-optimization routine
to further improve solutions. We compare our method to 10 earlier studies presenting
metaheuristics that utilize the same set of assumptions and parameters as our study,
allowing for a fair and straightforward comparison of results. Mandl’s [5] benchmark
instance is used as a basis for comparison. The computational results corroborate the
potential of PSO for the UTRP, outperforming other metaheuristics.

The remainder of the paper is organized as follows: Section 2 reviews related literature
on the UTRP; Section 3 describes the problem at hand; Section 4 presents the PSO algorithm
developed; and Section 5 presents the experimental results. Conclusions and suggestions
are given in Section 6.

2. Related Work

In the field of transportation, addressing the UTRP has been an ongoing challenge for
researchers. Early attempts to tackle the problem relied on heuristic approaches, which
proved to be limited in handling large networks and delivering accurate solutions [6].
However, they did lay the groundwork for the development of future methodologies.
Analytical methods were then employed, aiming to estimate network structure based on
the physical characteristics of transit networks. Yet, as noted by Chakroborty and Wivedi [7],
these methods optimized only parameters such as route spacing and length, rather than
determining the actual routes themselves. Mathematical programming formulations were
also investigated [8,9] but proved inadequate for realistically representing transit routes.
Such formulations constructed routes to achieve desirable features, which were reflected
by the objective function and constraints rather than determining them directly through
the mathematical program.

Early work on metaheuristics included single-solution approaches and Gas. Various
single-solution metaheuristics have been proposed, often in combination with other meta-
heuristics. Simulated annealing frameworks were presented by Zhao and Zeng [10], Fan
and Machemehl [11], and Fan and Mumford [3]. Other approaches using Tabu Search were
developed by Fan and Machemehl [12], Pacheco et al. [13], and Roca-Riu et al. [14]. Most
relevant studies, however, proposed different evolutionary optimization approaches, in-
cluding GAs, multi-objective evolutionary algorithms, and memetic algorithms for solving
the UTRP. Among the early such studies, Chakroborty and Wiwedi [7] presented a novel
stochastic initialization procedure and a multi-criteria evaluation method using a GA, while
Chew and Lee [15] developed an efficient GA solution scheme. Nayeem et al. [16] used a
GA featuring the concept of elitism and an increasing population approach. More recently,
Jha et al. [17] used a GA for determining routes combined with a multi-objective PSO
framework for generating corresponding frequencies. Additionally, differential evolution
strategies and memetic evolutionary algorithms have also been proposed by Buba and
Lee [18,19], Zhao et al. [20], and Duran-Micco et al. [21].

In a departure from earlier GAs and single-solution metaheuristics, swarm intelli-
gence methods, such as Bee Colony Optimization (BCO), PSO, and Ant Colony Algorithms
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(ACOs), have been receiving growing attention for solving the UTRP, showcasing their
potential in addressing the problem. Early efforts using swarm intelligence for transit net-
work optimization were based on ACO. Hu et al. [22] proposed two methods to maximize
passenger flow and optimize headways, while Yu and Yang [23] presented an iterative
approach to obtain a Pareto-optimal solution for bus network design and transit assignment.
Yang et al. [24] proposed a coarse-grain parallel ant colony algorithm to optimize a bus
network, while Blum and Mathew [25] presented an intelligent agent system based on ant
colonies to determine routes and frequencies for a given transit network. Yu et al. [26]
extended the direct traveler density model to maximize transit trip density with respect to
total demand and route length using ACO. A subsequent stream of studies investigated the
potential of bee colonies for the UTRP. In this line of work, Szeto and Jiang [27] and Jiang
et al. [28] used a hybrid enhanced artificial bee colony algorithm to determine the route
structure for a bus network. Nikolić and Teodorović [29] proposed a BCO model for the
UTRP, which outperformed other metaheuristics on Mandl’s network. They later extended
their work [30] to simultaneously determine both routes and frequencies.

In terms of PSO, the standard version of the algorithm is well-suited for continuous
optimization problems since it employs equations to calculate the velocity and position
of any individual. However, for discrete decision variables such as those in the UTRP,
appropriate modifications must be made to represent the search process. In this respect,
Kechagiopoulos and Beligiannis [31] developed a discrete version of the PSO algorithm,
demonstrating competitive performance compared to other metaheuristics. In a later effort,
Gunby and Gustavsen [32] proposed a hybrid swarm intelligence method that combines
ACO with additional attributes inspired by BCO and PSO, resulting in better performance
than the basic ACO implementation. Recently, Katsaragakis et al. [33] introduced a modified
version of the Cat Swarm Optimization (CSO) algorithm for the UTRP that achieved better
results than previous implementations.

For further reading, the interested reader is referred to the thorough reviews of related
methodological developments provided in [4,6,34,35]. This study further explores the
potential of swarm intelligence for the problem and presents a new variant of the PSO
algorithm for the UTRP.

3. Problem Description
3.1. The UTRP Problem

The planning process for any transit operator involves the following five steps, in this
order: (1) route design, (2) frequency determination, (3) timetabling, (4) vehicle scheduling,
and (5) the crew scheduling and rostering [34]. The UTRP consists of the construction
of routes for a fleet of vehicles subject to operational and other constraints. The problem
belongs to a broader class of optimization problems known as the Vehicle Routing Problem
(VRP), which has been at the core of designing routing operations for decades; a set of routes
is determined so that several customers are served by a fleet of vehicles at a minimum cost.
Similarly, the UTRP aims to satisfactorily meet passenger demand while minimizing travel
costs, comprising a multi-objective problem.

The main focus of the UTRP is to optimize the efficiency of public transportation
networks while considering operational and resource constraints, such as the number and
length of routes, allowable service frequencies, and available buses. The transport network
is represented as an undirected graph G = (N, A) with nodes, N, representing access points
and edges, A, representing direct transport links. A route R is represented by a path in
the transport network, and the UTRP’s solution is specified by a route set RS. The route
network associated with a route set is defined as a subgraph of the transport network that
contains only those edges that appear in at least one route of the route set.

To solve the UTRP, the optimal value of the objective function must be determined
given a road network, a transit demand matrix, and a set of constraints. Various design
objectives have been proposed in the literature, including minimizing user cost (such as
average travel time, average waiting time, and number of transfers), minimizing operator
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cost (such as number of routes, fleet size, length of routes, and hours of operation), or
both [35]. Figure 1 shows a road network and a transit route on this network.
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One of the inherent difficulties of designing a transit network is the need to offer
a desirable level of service for passengers, while ensuring a profitable operation for the
transit agency. From the passengers’ standpoint, the service should be fast, offering quicker
travel compared to other available transportation modes. Additionally, the service should
primarily facilitate direct trips, allowing, at most, one, or for longer trips, a maximum of
two, transfers between vehicles, which is generally acceptable to passengers. Efficient route
sets are characterized by low unsatisfied demand, a high percentage of demand satisfied
through direct trips, and a low average travel time per user. On the other hand, the transit
company aims to minimize its operational cost while meeting the passengers’ standards.
Operational costs usually depend on the number of routes, the fleet size, the length of the
routes, and the hours of operation. Real-world constraints must also be considered, such as
the length and number of routes offered, to incorporate practical considerations such as
scheduling and shift duration. Finally, routes cannot have cycles, and the road network
must be a connected graph, i.e., offer the possibility to all passengers to travel between
their origin and destination.

3.2. Problem Difficulty

The complexity of the UTRP stems from several factors that contribute to its intricacy.
Firstly, the discrete nature of the decision variables involved in the problem is a primary
source of complexity. These decision variables refer to the routes and their constituent
links, and even in a small network, the sheer number of these variables significantly
amplifies the computational cost [8]. Additionally, the presence of logical conditions, such
as route connectivity and cycle existence, further burdens the computational process as
they necessitate modeling and verification.

In terms of complexity, the UTRP problem is known to be NP-hard in its general
form, implying that finding an acceptable solution within a polynomial time frame using a
deterministic algorithm is infeasible [36]. Another noteworthy characteristic of the problem
is the lack of a universally adopted solution method in the existing literature, despite the
abundance of available approaches. Newell [36] highlighted the difficulty of designing
a route structure for a realistic-sized network as a non-convex optimization problem,
requiring a direct comparison of multiple local optima. The author emphasized that the
problem’s discrete, NP-hard, and combinatorial nature makes it challenging to obtain
a solution through traditional optimization techniques, primarily due to the intricacies
involved in calculating the objective function.
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This complexity is one of the key reasons why conventional methods are deemed
inefficient for addressing the UTRP, as external procedures are necessary to compute input
quantities for the optimization process [37]. Indeed, evaluating the quality of a given route
set necessitates a complex procedure, as passengers must be assigned to routes, requiring
the evaluation of all routes within the final route set as an integrated entity. Chakroborty [37]
attributes the failure of traditional solution approaches to the representation mechanisms
employed in mathematical programming formulations, which struggle to incorporate
concepts such as transfers and route continuity.

Another notable characteristic of the UTRP problem is the presence of numerous
conflicting objectives that need to be fulfilled, as previously explained. This inherently
gives rise to a multi-objective problem, wherein multiple targets compete with one another.
These competing objectives include reducing service costs, maximizing the percentage of
passengers benefiting from direct service, and minimizing average travel time, among others.

4. Solution Algorithm

Motivated by the promising performance of the discrete PSO on the UTRP for Mandl’s
benchmark [1,6,31], we seek to further improve upon the former, by introducing appropriate
modifications. The proposed PSO algorithm was developed in Java. A comprehensive
explanation of the algorithm’s elements can be found in the subsequent sub-sections. The
initial solution generation, the route-set-modification procedure, the objective function,
and the termination criterion are addressed next.

4.1. Solution Representation

A key element in solving the problem is the representation of the solution. Herein, we
chose a popular solution representation based on matrices [37,38]. Table 1 shows a solution
with a set of four routes.

Table 1. Solution representation.

Routes

1 11 1 3 10 12 13 9 12

2 7 9 12 5 0 1 2 10

3 14 8 7 6 13 12

4 9 6 14 5 1 4 3 1

4.2. Initialization Process

Although optimization algorithms can converge regardless of the quality of initial
solutions, employing a set of “good” initial solutions can expedite the convergence process.
Various approaches have been proposed to generate an efficient initial route set for the
UTRP. One such approach, presented by Chakroborty et al. [39], involves probabilistically
selecting the first node of a path based on its activity level, giving higher-activity nodes
a greater likelihood of selection. Similarly, subsequent nodes are chosen using the same
methodology based on adjacency. Kechagiopoulos and Beligiannis [31] modified this
process by incorporating the Make-Small-Change procedure developed by Fan et al. [2]
and Fan and Mumford [3], which ensures that each route reaches the maximum allowable
number of nodes. Conversely, Fan et al. [2] argued that employing a non-random method
for individual route generation does not enhance algorithmic convergence, as the best
quality of individual routes does not guarantee the best quality of the route set.

The initialization process proposed herein extends the one used by Fan et al. [2].
Modifications entail the use of a random variable to introduce randomness in the route
length constraint, as wells as changes in the process of selecting the first node of each route
and the remaining ones. We also use a priority heap to select the best k initial solutions.
The steps of the method are as follows:
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1. The desired length of a route is given by an integer number within the acceptable
range, as defined by the problem inputs. The value of this number depends on the
random variable; if its value is set to true, a number within the feasible range is chosen
at random; otherwise the maximum value is adopted. This process is repeated for all
routes in the set.

2. Selection of the first node: The selection is performed randomly for the first node of
the first route. Otherwise, a node is chosen at random from the nodes already present
in the previous routes to increase connections between routes.

3. Selection of successive nodes: Successive nodes are selected from the adjacency
matrices of their predecessors on the condition that they are not already part of the
route. If such a node does not exist, then the route is reversed and the process is
repeated. If extending the route is still not possible, these two steps are repeated, and
the process randomly selects a node out of all possible nodes and attempts to add it to
the route. If this addition leads to a cycle in the route, it is abandoned and the process
starts from step 2.

4. In the case of successful route creation with the length specified in step 1, the route is
added to the route set and the process continues until the maximum number of routes
are created.

4.2.1. Route Modification Procedure to Achieve Feasibility

The above procedure produces route sets without circular paths, yet it does not ensure
that the resulting network is connected or that all nodes of the initial network are included.
To ensure the satisfaction of these constraints, we use the Feasibility Check and Make-
Small-Change methods by Fan et al. [2]. The former method checks whether all nodes are
included in a route set. Subsequently, the Make-Small-Change method modifies one route
at a time by either adding or removing a node. The method randomly selects a route from
the route set and modifies it depending on the length of the route, with three possible cases
discerned (minimum, maximum route length, or in-between).

4.2.2. Swarm Creation Process

The initial generation of solutions using the methods mentioned above creates the
specified number of total solutions. The steps of the process are as follows:

1. The initialization method is first executed to generate a set of routes with the value of
the random parameter selected with 50% probability, so that 50% of routes have the
maximum route length.

2. The feasibility of the route set generated in the previous step is checked using the
Feasibility Check method. If the route set is feasible, it is retained. Otherwise, the
Make-Small-Change procedure is executed until the route set becomes feasible or until
a predefined number of iterations is exhausted. If no feasible set of routes is obtained,
the process is repeated from step 1. Note that duplicate route sets are discarded, thus
ensuring a greater diversity of solutions.

3. Once a predetermined number of iterations has been completed and if the minimum
number of unique solutions has been generated, the solution-generation process
is terminated.

4. The desired number of solutions is retained based on their objective function value.

The purpose of Step 1 is to prioritize solutions featuring routes that have the maximum
number of nodes, since these are usually better, while also including solutions with shorter
routes, which nonetheless, may be of good quality. Finally, Step 4, although not necessary,
significantly improves the convergence speed, since it initializes the algorithm with a
higher-quality and more diverse solution set without duplicate solutions (Step 2).

4.3. Route Set Evaluation

The evaluation of solutions in the UTRP is inherently more intricate compared to con-
tinuous mathematical problems. This assessment relies on multiple criteria, each carrying
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varying degrees of significance, which may also reflect different planning perspectives. In-
deed, a route set must be evaluated with respect to the level of service offered to passengers.
The latter is captured through the following five indicators, in line with Chakroborty [37],
Kechagiopoulos and Beligiannis [31], and Fan et al. [2]:

• Average travel time (ATT): This criterion measures the average time required for
passengers to travel from their origin node to their destination node.

• Direct route percentage (d0): This criterion assesses the percentage of passengers who
can reach their destination by choosing the shortest route without any transfers.

• One-transfer route percentage (d1): This criterion quantifies the percentage of passen-
gers who can reach their destination by taking the shortest route with a single transfer.

• Two-transfer route percentage (d2): This criterion measures the percentage of passengers
who can reach their destination by selecting the shortest route with two transfers.

• Unsatisfied demand (dun): This criterion evaluates the percentage of passengers who
can reach their destination by utilizing the shortest route with more than two transfers.

These criteria are used to compute the following objective function:

FIT(r) = ω1· F1(r) + ω2· F2(r) + ω3· F3(r) (1)

where

r: set of routes to evaluate;
F1(r): The component associated with ATT;
F2(r): The component associated with d0, d1 and d2;
F3(r): The component associated with dun;
ω1, ω2, ω3: user-specified weights.

The goal in this case is to maximize the objective function (1). The computation of
each of these components is addressed next.

4.3.1. F1(r) Calculation

The value of F1(r) reflects the average detour cost per passenger, increasing as the
average travel time decreases. To compute F1(r), for each pair of nodes (i, j) of a set of
routes, the absolute minimum travel time between nodes i and j, Tmin

i,j , is calculated, based
solely on the road network, without considering the routes or possible transfer delays.
Subsequently, the corresponding in-vehicle travel time IVTi,j(r) for a passenger travelling
between the corresponding nodes using the route network is computed. The computation
of average travel time per passenger requires certain assumptions regarding passenger
behavior. Therefore, it is assumed that passengers possess complete information about
the transportation network and plan their route(s) ahead of time. To ensure comparability
with other studies, the travel time of each passenger is increased by 5 min for each transfer
required. The method assumes that the burden of transferring is considered beforehand by
passengers, enabling them to avoid transfers that lead to longer travel times, even if the
alternative path is not the shortest based on the road network [3].

Finally, Tmin
i,j is compared to the corresponding IVTi,j(r) to calculate indicator fi,j(r),

which accounts for the divergence from the shortest path:

fi,j(r) =
{

β1x + K1, 0 ≤ x ≤ xm
0, x > xm

(2)

where x = IVTi,j(r)− Tmin
i,j ,

xm: Largest acceptable value of x;
K1: A positive user-defined constant which indicates the upper bound of fi,j(r);
β1: A constant in the range −K1/xm ≤ β1 ≤ 0.
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Finally, F1(r) is calculated as follows:

F1(r) =
∑∀(i,j)∈S(r) di,j fi,j

∑∀(i,j)∈S(r) di,j
(3)

where
S(r): The set of origin-destination node pairs (i, j) for which passengers di,j, are served

by the route set r.

4.3.2. F2(r) Calculation

The second component F2(r) is computed using the share of total demand traveling
with zero, one or two transfers, respectively. It is computed as follows:

F2(r) = β2dT(r) (4)

where

K2 : A user-defined positive constant denoting the upper bound of F2(r);
β2: A constant in the range K2/α2 ≤ β2 ≤ 2K2/α2;
α2: The upper bound of dT(r);
dT(r): The weighted sum of transfer shares, calculated as follows:

dT(r) = a·d0(r) + b·d1(r) + c·d2(r) (5)

d0(r): Share of demand satisfied with no transfers using route set r;
d1(r): Share of demand satisfied with one transfer using route set r;
d2(r): Share of demand satisfied with two transfers using route set r;
a, b, c : User-defined constants which attribute importance to each component, with
a ≥ b ≥ c.

4.3.3. F3(r) Calculation

The third component F3(r) penalizes unsatisfied demand and is calculated as follows:

F3(r) = β3dun(r) + K3 (6)

where

K3: A user-defined positive constant denoting the upper bound of F3(r);
β3: A constant in the range −K3 ≤ β3 ≤ 0;
dun(r): The share of unsatisfied passengers, i.e., those that cannot reach their destination
with two or fewer transfers.

4.4. Computational Cost Savings Using Dynamic Programming

At each iteration, multiple solution evaluations are conducted, adding to the com-
plexity of the algorithm. To avoid repeating this computationally demanding process
for solutions that have already been explored, we store the objective function value, as
well as the evaluation results (d0, d1, d2, dun, ATT) for each set of routes encountered
during the search in a Hash table, using the set of paths as the key and the evaluation
results as the corresponding value. For the implementation of the table, the Java data
structure, HashMap, which has a data-retrieval speed of O(1), was used. Hence, during
the evaluation of a solution, a check is performed to determine if its corresponding results
already exist in the HashMap. If they do, the results are fetched from the Hash table rather
than recomputing them. Indicatively, it is reported that evaluation results using the array
were retrieved over 90% of the time. The percentage coincides with the computational cost
savings, as it is these calculations that influence the total execution time.
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4.5. Modification Procedure

Solutions are modified by either replacing or introducing modifications to individual
routes, similar to [7]. The corresponding procedures are described next.

4.5.1. Entire Route Replacement

Throughout the entire process of replacing routes, two sets of routes are initially
selected: the first set includes the route that will be replaced, while the second set includes
the route that will serve as the replacement. The steps are as follows:

1. A route from the first set of routes and a route from the second set of routes are
randomly selected.

2. The first route is replaced by the second route.
3. The feasibility of the route set is checked using the Feasibility Check procedure. If the

new set of routes is feasible, then the procedure terminates by returning true.
4. If no feasible set of routes is obtained, then all possible replacements from the second

route set are investigated until a feasible solution is obtained. If the routes of the
second set are exhausted, then the procedure is repeated from the first step, excluding
already-explored routes. The procedure terminates by returning “true” if a feasible
set of routes is obtained and “false” otherwise.

In the final step of the algorithm, a modified version of the aforementioned method is
employed. Instead of terminating upon finding a feasible set of routes, this variant explores
all possible combinations of swaps and stores the outcomes in a priority queue. By doing
so, the process retains the best-performing swap as the final result. Figure 2 provides an
illustrative example of the procedure’s implementation, demonstrating the replacement of
the yellow route from the first route set with the red route from the second set, resulting in
the formation of route set 3.
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4.5.2. Partial Route Modification

This process entails introducing modifications to the current particles by incorporating
route segments from other members of the population. Similar to the approach explained
earlier, two sets of routes are initially chosen: the first set encompasses the segment that will
be replaced, while the second set contains the route part that will serve as the replacement.
The procedure for this process is outlined below:

1. One route from the first solution and one route from the second are randomly selected.
2. The process searches for common nodes between the two routes. If there are multiple

shared nodes, one of them is randomly selected. If no common nodes exist, then
another route from the second route set is selected. If no common nodes are detected,
a new route is chosen from the first set of routes, and the procedure is repeated until a
common node is identified.
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3. The route segment following the shared node is replaced in the first route, on the
condition that a circular path is not created. All possible combinations are tested in
random order, i.e.,

(i) Case 1: The two routes in their initial state;
(ii) Case 2: Reversal of the first route;
(iii) Case 3: Reversal of the second route;
(iv) Case 4: Reversal of both routes.

Furthermore, it is verified that the number of nodes falls within the predefined min-
imum and maximum limits. If this criterion is not satisfied, another route selection is
executed, as described in the second step.

4. The feasibility of the route is checked using the Feasibility Check procedure. If the
new set of routes is feasible, the procedure terminates. If no feasible set of routes is
found, another route is selected, as described in Step 2.

In the last step of the algorithm, a variant of the method is used, where all possible
combinations are considered and only the best result is retained. An example implemen-
tation of the procedure is shown in Figure 3. The swap is performed between the yellow
route of set 1 and set 2, at the common node 5, where the part after node 5 in the former
(5-14-6-9-13-12-10) is replaced by the part after node 5 in the latter (5-7-14-6-9).
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4.6. Description of Proposed PSO Algorithm

The PSO algorithm is a stochastic optimization technique based on the behavior of
swarms proposed by Eberhart and Kennedy [40]. It simulates the social behavior of various
animal groups, such as insect colonies, animal herds, fish schools, and bird flocks. All these
living organisms collaborate with the aim of finding food, and each member of the swarm
adjusts its behavior based on the experiences gained from itself or other members of the
swarm. The design of the PSO algorithm is built upon two main ideas. The first idea draws
inspiration from evolutionary algorithms, which utilize a swarm to explore a large region
of the solution space in order to optimize a given objective function. The second idea is
derived from the behavior of living organisms and how they employ collective intelligence
and communication behaviors among themselves to organize and perform functions such
as searching for food and protecting themselves from predators.

The PSO algorithm involves creating an initial swarm of particles, where each particle
represents a potential solution. The selection of initial solutions is random and does
not affect convergence. Each particle has a position vector and a velocity vector, which
evolve over discrete time steps corresponding to algorithm iterations. At each time step, a
particle stores its position, previous velocity, and personal best position (pbest), with the
best objective function value achieved so far and the global best position (gbest) among all
particles in the swarm. The particle’s position corresponds to a solution, and its velocity
determines its next position in the solution space. The cognitive component is calculated
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based on the particle’s previous velocity and pbest position, while the social component is
calculated using the velocity and gbest position. After particle movement, gbest and pbest
are updated based on the new positions of the particle itself and other particles in the
swarm. This iterative process continues until a convergence criterion is met.

This implementation simulates the movement towards the personal and the global
best, while the velocity component was not implemented. The reason for this is that
the velocity component does not hold much significance in this particular problem. The
problem is discrete, and the nature of its solutions is such that it cannot be assumed that a
particle has a fixed direction towards a specific point. The following procedures comprise
the PSO algorithm.

• Best_of_Self: The particle moves towards the best solution it has found so far for
itself, approaching the pbest particle.

• Best_of_Swarm: The particle moves towards the best value achieved thus far, which is
the global optimum, thus approximating the gbest particle, which represents the global
maximum obtained so far. In the last iteration, this process is also performed using
routeSwapBest and routeSegmentSwapBest and, in that case, is called Best_of_Swarm_all.

The algorithm’s flowchart is depicted in Figure 4, highlighting two distinct loops: the
outer loop, which runs for a maximum of max_iter iterations, and the inner loop, which
iterates max_particle times, equivalent to the fish population size. During the final iteration,
the exhaustive procedures Best_of_Swarm_all and Best_of_Self_all are executed to further
refine the solutions. This step ensures convergence with a reduced number of iterations,
and, based on the conducted tests, it has been observed to enhance the quality of solutions.
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5. Computational Results
5.1. Benchmark Network and Parameter Settings

The proposed PSO algorithm utilizes a road network as input, which was initially
introduced by Mandl [5] and is based on an actual Swiss road network. This particular
road network has been extensively employed for evaluating optimization approaches and
is widely recognized as the standard benchmark for the UTRP problem. Mandl’s network
consists of 15 nodes and 21 links, with a total of 15,570 passenger trips. The demand
matrix exhibits symmetry, and the routes operate in both directions. In line with customary
practices in the literature, our investigation focuses on route configurations involving four,
six, seven, and eight routes for this specific network. All experiments were performed on a
3.7 GHz Intel® i7-8700 k with 32 GB DDR3 3000 MHz memory.

The following functions and parameter values were adopted. In term F1(r), xm = 20 min,
K1 = 10, and β1 = −0.5. Further, in term F2(r), β2 =10, a = 0.8, b = 0.15, c = 0.05. Last,
in term F3(r), K3 = 10, and β3 = −1 . After experimentation, the objective function
coefficients were set as ω2 = 1.0, ω3 = 1.0, with ω1 = 2.0. Moreover, a population of
200 solutions was used, with 100 iterations for the four-route case and 150 for the six-,
seven-, and eight-route cases.

5.2. Network Configurations and Comparison to State-of-the-Art

This section presents computational results and resulting network configurations for
all route-number scenarios investigated. Table 2 shows the best solution resulting from
PSO, while the corresponding routes are also shown in Figure 5.

Table 2. Best PSO routes for the 4-route case.

Route 1: 0 1 2 5 7 14 6 9

Route 2: 0 1 4 3 5 7 9 10

Route 3: 8 14 6 9 10 11 3 4

Route 4: 0 1 3 11 10 12 13 9
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In Table 3, we present a comparison with previous studies. To assess the consistency
of the algorithm, we conducted 40 experiments and calculated the mean and standard
deviation. In addition to presenting the solution with the best objective function value, we
also include the solution with the lowest average trip time (ATT) obtained, as we deem it
to be a solution of exceptional quality.

Table 3. Comparison between methods for 4-route case.

Study [5] [41] [37] [2] [15] [31] [29] [32] [17] [33] PSO
Best

PSO
Best ATT

PSO
Mean

PSO
Std

d0 (%) 69.94 72.95 86.86 93.26 93.7 91.84 88.76 89.15 85.28 91.52 94.41 93.51 94.2 0.49

d1 (%) 29.93 26.91 12 6.74 6.29 7.64 10.15 9.76 14.72 7.77 5.27 6.1 5.48 0.5

d2 (%) 0.13 0.13 1.14 0 0 0.51 1.09 1.09 0 0.71 0.32 0.39 0.31 0.11

dun (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ATT (mpu) 12.9 12.72 11.9 11.37 10.82 10.64 10.79 10.64 10.9 10.54 10.56 10.53 10.56 0.02

The results displayed in Table 3 reveal that PSO outperforms other population-based
algorithms, encompassing various GA implementations and swarm intelligence methods.
Particularly noteworthy is its ability to achieve a remarkably high percentage of direct
demand coverage, reaching nearly 94.5%, while maintaining a significantly low average
trip time. The mean execution time for PSO was 27 s.

Next, we present the results obtained for a six-route network. Table 4 and Figure 6
illustrate the best solution achieved for this particular case.

Table 4. Best PSO routes for the 6-route case.

Route 1: 4 3 1 2 5 7 14 6

Route 2: 0 1 4 3 5 7 9 13

Route 3: 0 1 3 5 14 6 9 12

Route 4: 8 14 6 9 10 11 3 4

Route 5: 13 12 10 11 3 5 14 8

Route 6: 0 1 2 5 7 9 10 12

In Table 5, we provide a comparison with previous studies. The results demonstrate
that the solution generated using PSO exhibits a lower average travel time and a higher
percentage of direct demand coverage compared to other solutions, as indicated in the
table. The solution with the lowest ATT is shown as well.

Table 5. Comparison between methods for the 6-route case.

Study [38] [41] [37] [2] [15] [31] [29] [32] [17] [33] PSO
Best

PSO
Best ATT

PSO
Mean

PSO
Std

d0 (%) 78.61 77.92 82.34 91.52 95.57 95.63 96.21 88.57 92.61 96.21 97.94 97.81 98.48 0.23

d1 (%) 21.39 19.62 15.86 8.48 4.43 4.37 3.66 10.34 7.39 3.66 2.06 2.18 1.52 0.23

d2 (%) 0 2.4 1.8 0 0 0 0.13 1.09 0 0.13 0 0 0 0

dun (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ATT (mpu) 11.86 11.87 11.41 10.48 10.28 10.23 10.22 10.68 10.4 10.22 10.19 10.18 10.29 0.04
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It is worth noting that for this benchmark, the share of direct trips reaches approxi-
mately 98%, surpassing the highest value achieved by other methods, which was 96.21%.
In this particular case, with a population size of 200 and 150 iterations, the average compu-
tational time was 437 s.

We next present the results obtained for a seven-route network. Table 6 displays
the best solution achieved for this case, while Table 7 provides a comparison with earlier
studies. Additionally, Figure 7 showcases the best route set obtained.

Table 6. Best PSO routes for the 7-route case.

Route 1: 13 9 7 5 3 4 1 2

Route 2: 4 3 11 10 9 6 14 8

Route 3: 11 3 1 2 5 7 14 8

Route 4: 0 1 2 5 14 6 9 13

Route 5: 9 13 12 10 11 3 1 0

Route 6: 6 14 7 5 3 4 1 0

Route 7: 0 1 2 5 7 9 10 12
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Table 7. Comparison between methods for 7-route cse.

Study [38] [41] [37] [2] [15] [31] [29] [32] [17] [33] PSO
Best

PSO
Mean

PSO
Std

d0 (%) 80.99 93.91 89.15 93.32 95.57 98.52 97.17 89.98 93.83 97.94 99.29 99.19 0.09

d1 (%) 19.01 6.09 10.85 6.36 4.43 1.48 2.83 8.54 6.17 2.06 0.71 0.81 0.09

d2 (%) 0 0 0 0.32 0 0 0 1.48 0 0 0 0 0

dun (%) 0 0 0 0 0 0 0 0 0 0 0 0 0

ATT (mpu) 12.5 10.7 10.15 10.42 10.27 10.13 10.16 10.61 10.17 10.12 10.1 10.11 0.01Electronics 2023, 12, x FOR PEER REVIEW 16 of 21 
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As depicted in Table 7, the solution generated by PSO exhibits a lower average travel
time and a higher percentage of direct demand compared to existing solutions.

In this case, as well, it is noteworthy that the share of direct trips is significantly
higher compared to existing approaches, reaching 99.29%. Importantly, no passenger has
to transfer twice in the obtained solution. The average run time for 150 iterations in this
case was 854 s.

Moving on, we also investigated route network configurations with eight routes. The
results for the transit network with eight routes are presented in Table 8, while Figure 8
displays the routes. Interestingly, in this particular case, not all routes reach the maximum
node number per route.
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As indicated in Table 9, the results obtained for the eight-route network demonstrate 
that PSO outperforms all previous approaches. It achieves a high percentage of direct de-
mand satisfaction and the lowest average travel time, specifically, 10.07 min. It is notewor-
thy that as the number of routes increases in the transit network, the average travel time 
decreases and the percentage of direct trips increases, which aligns with our intuition. 
However, it is worth mentioning that the improvement in solutions for the eight-route 
case is relatively small compared to the seven-route case. The average run time for this 
case was 1314 s over 150 iterations. 

6. Conclusions and Future Work 
In this study, an optimization algorithm based on PSO was developed and analyzed 

to effectively solve the UTRP. The effectiveness of the algorithm was validated by com-
paring the results obtained with relevant literature based on a set of experimental data for 
Mandl’s bus network in Switzerland. The study focused on various aspects of the prob-
lem, such as initialization, objective function, and computational cost reduction, leading 
to improved solutions for the UTRP. More specifically, 
• An initialization method was developed, ensuring high-quality initial solutions and 

a diverse range of solutions. 
• Significant emphasis was placed on evaluating route sets, selecting and shaping the 

objective function, and selecting its parameters through multiple trials to identify the 
parameters leading to the best possible solutions. 

• A method was devised to reduce the computational cost of the algorithm by 90% 
using dynamic programming. 

• Comparisons with recent metaheuristics on the UTRP demonstrated the effectiveness 
of the proposed algorithm, across all scenarios. More specifically, the algorithm 
achieved higher direct coverage shared under lower or similar average trip times 
compared to existing implementations. 
Future work can consider hybrid algorithmic designs and new metaheuristics. Evi-

dently, there are several new metaheuristics that have been applied in other fields, e.g., 

Figure 8. Route set obtained for the 8-route case.



Electronics 2023, 12, 3358 17 of 20

Table 8. Best PSO routes for the 8-route case.

Route 1: 6 14 7 5 3 4 1 2

Route 2: 13 12 10 11 3 1 0

Route 3: 13 9 6 14 5 2 1 0

Route 4: 12 10 9 7 5 2 1 0

Route 5: 0 1 4 3 5 7 9 13

Route 6: 0 1 2 5 14 8

Route 7: 8 14 6 9 10 11 3 4

Route 8: 8 14 7 5 2 1 3 11

Table 9 provides a comparative analysis of the results obtained for the eight-route case
with other relevant studies conducted on the UTRP.

Table 9. Comparison between methods for he 8-route case.

Study [38] [41] [37] [2] [15] [31] [29] [32] [17] [33] PSO
Best

PSO
Mean

PSO
Std

d0(%) 79.96 84.73 90.38 94.54 97.81 98.97 97.75 92.87 93.12 98.97 99.68 99.63 0.1
d1(%) 20.04 15.27 9.62 5.46 2.18 1.03 2.25 6.42 6.87 1.03 0.32 0.37 0.1
d2(%) 0 0 0 0 0 0 0 0.71 0 0 0 0 0
dun(%) 0 0 0 0 0 0 0 0 0 0 0 0 0

ATT (mpu) 11.86 11.22 10.46 10.36 10.18 10.09 10.13 10.46 10.24 10.08 10.07 10.08 0.01

As indicated in Table 9, the results obtained for the eight-route network demonstrate
that PSO outperforms all previous approaches. It achieves a high percentage of direct
demand satisfaction and the lowest average travel time, specifically, 10.07 min. It is
noteworthy that as the number of routes increases in the transit network, the average travel
time decreases and the percentage of direct trips increases, which aligns with our intuition.
However, it is worth mentioning that the improvement in solutions for the eight-route case
is relatively small compared to the seven-route case. The average run time for this case was
1314 s over 150 iterations.

6. Conclusions and Future Work

In this study, an optimization algorithm based on PSO was developed and analyzed to
effectively solve the UTRP. The effectiveness of the algorithm was validated by comparing
the results obtained with relevant literature based on a set of experimental data for Mandl’s
bus network in Switzerland. The study focused on various aspects of the problem, such as
initialization, objective function, and computational cost reduction, leading to improved
solutions for the UTRP. More specifically,

• An initialization method was developed, ensuring high-quality initial solutions and a
diverse range of solutions.

• Significant emphasis was placed on evaluating route sets, selecting and shaping the
objective function, and selecting its parameters through multiple trials to identify the
parameters leading to the best possible solutions.

• A method was devised to reduce the computational cost of the algorithm by 90% using
dynamic programming.

• Comparisons with recent metaheuristics on the UTRP demonstrated the effectiveness
of the proposed algorithm, across all scenarios. More specifically, the algorithm
achieved higher direct coverage shared under lower or similar average trip times
compared to existing implementations.

Future work can consider hybrid algorithmic designs and new metaheuristics. Ev-
idently, there are several new metaheuristics that have been applied in other fields, e.g.,
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for reliability-based design optimization [42–44], and have not been explored so far for
the UTRP. Such methods include the dragonfly optimizer, the grasshopper optimization
algorithm, the salp swarm algorithm, the ant lion optimizer, and the water cycle algo-
rithm [43,44], among others. Similarly, parallel implementations of PSO can be investigated
as well, to cut down on computational costs, while hybridization with single-solution
metaheuristics such as neighborhood search [45] is also considered promising. Moreover,
the use of reinforcement learning techniques to train agents or transit vehicles to make
routing decisions based on interactions with the environment can be exploited within the
PSO framework. Future research can consider a multi-objective perspective for the UTRP,
aiming to determine a set of non-dominated solutions for user and operator costs. In a
similar context, environmental considerations can be incorporated in the problem and
modelled as a separate objective. A new research direction also includes the introduction
of socially aware objectives [46] or transfer efficiency [47] in the UTRP to increase rider
comfort within multi-objective settings.
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