
Citation: Alwabel, A. A Novel

Container Placement Mechanism

Based on Whale Optimization

Algorithm for CaaS Clouds.

Electronics 2023, 12, 3369.

https://doi.org/10.3390/

electronics12153369

Academic Editor: Mehdi Sookhak

Received: 5 July 2023

Revised: 31 July 2023

Accepted: 5 August 2023

Published: 7 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Container Placement Mechanism Based on Whale
Optimization Algorithm for CaaS Clouds
Abdulelah Alwabel

Department of Computer Sciences, Prince Sattam Bin Abdulaziz University, AlKharj 1194, Saudi Arabia;
a.alwabel@psau.edu.sa

Abstract: Advancements in container technology can improve the efficiency of cloud systems
by reducing the initiation time of virtual machines (VMs) and improving portability. Therefore,
many cloud service providers offer cloud services based on the container as a service (CaaS) model.
Container placement (CP) is a mechanism that allocates containers to a pool of VMs by mapping
new containers to VMs and simultaneously considering VM placements on physical machines. The
CP mechanism can serve several purposes, such as reducing power consumption and optimizing
resource availability. This study presents directed container placement (DCP), a novel policy for
placing containers in CaaS cloud systems. DCP extends the whale optimization algorithm, an
optimization technique aimed at reducing the power consumption in cloud systems with a minimum
effect on the overall performance. The proposed mechanism is evaluated against established methods,
namely, improved genetic algorithm and discrete whale optimization using two criteria: energy
savings and search time. The experiments demonstrate that DCP consumes approximately 78% less
power and reduces the search time by approximately 50% in homogeneous clouds. In addition,
DCP saves power by approximately 85% and reduces the search time by approximately 30% in
heterogeneous clouds.

Keywords: cloud computing; CaaS; container placement; CP; energy efficiency

1. Introduction

Containerization is a relatively new technology for virtualizing applications in a
lightweight manner and has led to significant utilization in cloud application manage-
ment [1]. Cloud computing has become an efficient paradigm that offers computational
abilities on a pay-per-usage basis [2]. Advancements in container technology can improve
the efficiency of cloud systems by reducing the initiation time of virtual machines (VMs)
and improving portability [3]. Consequently, popular cloud service providers, such as
Amazon and Google, offer cloud services based on the container as a service (CaaS) model.

The term container refers to multi-tenant deployment techniques involving process
isolation on a shared kernel to package an application and run it with isolated depen-
dencies [4]. A container wraps a piece of software together with objects needed for the
execution (i.e., runtime, libraries, and code) and permits easy deployment on any type
of machine, whether physical machines (PMs) or VMs. Container technology exploits
virtualization at the operating system (OS) level to take advantage of the flexibility and
portability of software. A traditional VM requires all OS resources to be occupied [5],
whereas a container can share the same OS kernel [6]. Therefore, a container consumes
fewer resources and has a shorter deployment time because it is lightweight. However, it
requires designing a feasible placement policy with optimal energy consumption under the
adopted container-based cloud computing architecture [7].

Using containers with cloud computing promises to improve the portability between
different cloud providers, which can help avert the risk of vendor locks [8]. Docker [9] and
Kubernetes [10] are some of the most popular container solutions. They are built around

Electronics 2023, 12, 3369. https://doi.org/10.3390/electronics12153369 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153369
https://doi.org/10.3390/electronics12153369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4718-5578
https://doi.org/10.3390/electronics12153369
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153369?type=check_update&version=1

Electronics 2023, 12, 3369 2 of 19

container engines in which a container acts as a portable means to package applications,
resulting in the need to manage dependencies between containers in multi-tier applications.
Figure 1 illustrates a cloud-based container architecture used to employ both VMs and
container technology to provide specific requirements for each application. However, the
VM layer can be eliminated while still providing a container for applications.

Container placement (CP) is a mechanism that allocates a list of containers to a pool of
VMs by mapping new containers to VMs and simultaneously considering VM placements
on the PMs [11]. The CP mechanism can help reduce power consumption and optimize
resource availability. This paper presents directed container placement (DCP), a novel
policy for CP in CaaS cloud systems. DCP employs an optimization technique with the
aim of reducing power consumption in cloud systems with minimal effect on the overall
performance. The mechanism is evaluated using two criteria: energy savings and search
time. The remainder of this paper is organized as follows. Section 2 reviews the related
work in the literature. Section 3 formulates the CP problem and Section 4 details the
proposed mechanism. The experimental results are presented and discussed in Section 5.
Section 6 summarizes the study and outlines future research directions.

VM2VM1

PM Hardware

Host OS

Hypervisor

Guest OS1

Container Engine Container Engine

Guest OS2

Container1

B ins/Libs

Container2

B ins/Libs

Container3

B ins/Libs

Appa Appb Appc

Figure 1. Container with VM architecture.

2. Literature Review

Cloud computing is a demanding technique. Over time, people are opting for digi-
tization with the increasing use of smart applications and cloud services for everything.
Therefore, clouds are moving to micro-clouding services to increase energy efficiency and
minimize the burden on cloud data centers, owing to the increase in utilized resources.
A container-based VM solution is a lightweight version that has recently been used to
improve the performance of cloud services. This section highlights the contributions of
previous studies with regards to the energy consumption, performance-aware, resource
utilization and quality-aware mechanisms of container-based cloud systems as summarized
in Table 1.

Electronics 2023, 12, 3369 3 of 19

Table 1. Summary of reviewed papers.

Authors Research Domain Summary

Piraghaj et al. [12] Power consumption Framework for finding efficient size of VMs to host containers
with minimum wastage of resources at VM

Kaur et al. [13] Task selection and scheduling
CoESMS, a multi-objective function for reducing energy consump-
tion by studying different limitations like CPU, memory, and
worker budget

Shi et al. [14] VM selection and placement optimization Algorithm (called TMPSO) based on two phases to obtain energy-
aware container consolidation in cloud data centers

Zhang et al. [15] Energy and performance Algorithm (called IGA) for efficiently searching the optimal
CP solution

Al-Moalmi et al. [16] Power consumption and resource utilization Algorithm (called WOA) for power and resource utilization of
containers and VM placements in CaaS environment

Zhang et al. [17] Bi-objective optimization problem FF-IGA algorithm for quick container positioning and enhancing
the container managing cycle

Zhou et al. [18] Container placement Scheduling framework to leverage online primal-dual framework
with a learning-based scheme for obtaining dual solutions

Boza et al. [19] Lack of performance in cloud application Performance-aware strategy for analyzing the performance of con-
tainer applications with regards to runtime and initialization time

Luo et al. [20] Power consumption
Task-planning algorithm for energy balancing of terminal devices
to improve the life cycle of WSNs without expanding the post-
ponement of tasks

Khan et al. [21] Migration cost and consuming power

Combination of the migration (CPER) and the planned energy–
performance-aware allocation (EPC-FU) methods to overcome
migration cost, consume less power, examine energy-saving ca-
pacities, and present several workload types in data centers with
containers

Nand et al. [22] Resource optimization
Multi-resource bin filler algorithm (called RACC) that influences
a deep learning method called fit-for-packing for attributing the
near-optimal number of containers on PMs

Alahmad et al. [23] Application service availability Availability-aware container scheduling techniques to improve
the accessibility of application services at end of cloud data center

Mseddi et al. [24] Mobility/computation Low-complexity, particle swarm optimization-based, meta-heuristic,
and greedy heuristic algorithm developed for fog computing

Mendes et al. [25] Resource and financial incentives Docker swarm strategy for improving CPU and memory utiliza-
tion over Spread and Binpack strategies

Zhong et al. [26] Cost and performance Resource utilization optimization and elastic instance pricing

Benomar et al. [27] Virtualization OpenStack-built middle-ware policy in which containers are
positioned/achieved at the fog stages

Zhao et al. [28] Load-balancing and application performance Heuristic algorithms and methodology for different complex situ-
ations, for example, NP-hard

Nardelli et al. [29] Container deployment problem EVCD to regulate CP on computer-generated machines, which can
be attained freely on demand while enhancing QoS measurements

Santos et al. [30] QoE

Autonomic system (called ACTS) that vertically and horizontally
measures a group of mixed containerized services exposed to var-
ious workloads with adaptation decisions depending on several
high-level QoE metrics

2.1. Energy-Aware Mechanisms

The authors in [12] studied the CaaS environment model as a power optimization
problem. Their proposed model also outperformed the energy efficiency issue in terms
of CaaS via container association and reduced the number of active servers. They pro-
posed an algorithm with correlation-aware placement, which showed that overload and
underload threshold algorithms performed better than other algorithms when the selected
container was larger with regards to migration. However, this work lacks studying and
analyzing the proposed mechanism on different cloud environments, such as overloaded
and underloaded data centers.

The authors in [13] proposed a container-based edge service management system
(CoESMS), a multi-objective function for reducing energy consumption by studying differ-
ent limitations, such as the CPU, memory, and worker budget. The results showed that
the performance of the projected method was significantly improved, with a reduction
in energy utilization of 21.75% and a decrease of 11.42% in service level agreement (SLA)

Electronics 2023, 12, 3369 4 of 19

violations. General simulations were executed on the capacity traces obtained from Planet
Lab. This work, however, can be further improved by considering resource utilization and
throughput metrics in the mechanism.

An energy-alert model for merging optimized cloud containers was proposed in [14].
The algorithm was based on two phases and called multi-type particle swarm optimization
(TMPSO). The results showed that the proposed algorithm could provide results in a more
effective and efficient method, specifically for handling massive requests. The algorithm
also showed additional energy savings compared with current approaches. This work can
be extended by optimizing container consolidation during runtime.

The researchers in [15] presented the improved genetic algorithm (IGA), an enhanced
genetic algorithm that works more efficiently in terms of energy savings for the CP problem.
It operates more efficiently than the existing conventional GA, First-Fit, and particle swarm
optimization (PSO). In conventional GA, a defect occurs, in which the variety of the
population cannot be a guarantee as the utilization of resource VMs becomes complex. This
problem was solved using IGA by optimizing the CP using a nonlinear energy consumption
model. The results demonstrated that this technique can reduce the overall severe energy
consumption. The proposed work, however, does not provide nor optimize the search time
to find the best solution.

As it is becoming popular for data centers to use container services, deploying this
service through cloud computing raises the hurdle of power consumption and resource
utilization. In [16], the researchers proposed discrete whale optimization (DWO), which is
a method to report the issue of the container and location of VM in CaaS situations, along
with the idea of enhancing resource utilization and reducing power consumption based on
the whale optimization algorithm (WOA) proposed by [31].

The authors planned a procedure built on WOA to solve the double phases of posi-
tioning as a single optimization issue. The results showed the superiority of the proposed
technique over the evaluation approaches for a group of test situations. Therefore, the
algorithm could be utilized to hold a greater number of containers or VMs because it
decreased the number of PMs utilized. However, the proposed work can be extended to
reduce the search time to find the best possible solution to reduce power consumption in
CaaS cloud systems.

The authors in [17] developed a method for balancing the optimal performance service
for the initial container placement in CaaS and the optimal power consumption. They
designed a metric for the isolation application of UTS4 (a container-placing solution) based
on anti-affinity limitations. This positioning optimization problem was then transformed to
obtain the best solution for placement, along with low energy consumption and low UTS4.
Additionally, a nonlinear power-consumption model was proposed. To find the placement
solution, an algorithm was proposed and named the first-fit-based IGA algorithm (FF-
IGA), which quickly places containers as an evolution of IGA to enhance the container
management cycle. The results illustrated the effectiveness of the proposed algorithm
and metric model by minimizing power consumption. However, mangy genetic-based
approaches, including this work, endure a search time overhead, which negatively affects
the overall performance of the systems.

2.2. Performance-Aware Mechanisms

The authors in [18] proposed a scheduling framework to leverage the online primal-
dual framework with a learning-based scheme for obtaining dual solutions. It permits a
job to state its job limit, inter-container, and selected cloud containers that influence the
new scheduling algorithm strategy. They implemented a primal-dual model that shows the
primal answer based on its double constraints in online and offline algorithms. The offline
scheduling algorithm contains a new parting oracle to distinguish violated dual constraints.
The online scheduling algorithm influences the online model based on a learning structure
to obtain dual results. The results showed that the proposed scheduling frameworks were

Electronics 2023, 12, 3369 5 of 19

more efficient and attained a close-to-ideal combined job estimation. However, the focus of
this paper is on a different problem, which makes it out of the scope of this paper.

The authors in [19] targeted the problem of complexity in the operations of micro
service storage. As cloud storage is increasing day by day, clouds are using these micro
service containers to implement their applications. The aforementioned authors examined
the initialization and runtime containerized performance applications together and reported
that the default placement approach delivered by orchestrators is usually incomplete. Their
performance-aware technique outperformed the default placement approach as shown in
various experiments on multiple services. The performance placement strategy was varied
up to 2x and 2.21x for the 50th and 99th percentiles, respectively.

The authors in [20] studied containers on a multi-cloud to multi-fog architecture
and its related applications, attempting to address the task of personal cloud building. In
addition, a task-planning algorithm built on energy balance was suggested to improve
the lifetime of wireless sensor networks (WSNs) without expanding the postponement of
tasks. They estimated the execution of virtual systems and containers under high-level
concurrence, and the end effect proved that containers were improved compared with
virtual devices. In addition, they created power expenses and task planning for the fog
nodes and terminal devices (TDs). The proposed algorithm could efficiently stabilize the
power of the TDs in a system while minimizing the service latency, which resulted in
improving the performance of the system. Although this work managed to moderately
consume power, it was not the main focus of the work to reduce power consumption.

In [21], to overcome the migration cost and consume less power, the authors suggested
a combination of migration (CPER) and planned energy–performance-aware allocation
(EPC-FU) methods to examine energy-saving capacities and the presentation of several
workload types in data centers with containers. For a million containers, the overall
top method bounded migrations to approximately 1.9% of the containers, of which the
migrating cost recovered was 61.89%. The results showed that if more performance- and
energy-effective hosts are migrated compared to containers that run for a long time, the
economic feasibility of data centers is increased. However, the execution time of the
proposed approach can negatively affect the QoS of CaaS cloud systems.

2.3. Resource Utilization Mechanisms

The authors in [22] proposed a learning approach called deep reinforcement to
combine each of the functioning containers along with the various resource needs of at least
the quantity of physical machinery. They presented and executed a multi-resource bin-filler
algorithm (called RACC) that influences a deep learning method, called fit-for-packing,
for attributing the near-optimal number of containers on physical machinery. The results
showed that RACC attained an improved job slowdown compared with baseline algorithms.
In addition, RACC expressed a considerable improvement in resource utilization. This
work, however, does not consider power consumption as an evaluation metric of the
proposed mechanism.

The authors in [23] proposed availability-aware container-scheduling techniques to
improve the accessibility of application services at the end of a cloud data center. They
planned to use physical computing and VMs for scheduling purposes with limitations
because they have high availability values. The UML model was used for the computation.
The CloudSim simulator was used to execute and integrate the strategies. The Docker
container and the proposed strategy were compared in this study. Based on the results, other
strategies had lower service availability than the proposed availability-aware strategy. In
addition, this strategy obtained suitable host CPU utilization compared to other strategies.

In [24], to address the high computation cost, the authors combined container assign-
ment and task provisioning in an active fog computing situation. Both the movement and
irregular differences in the core function load were considered. The expansion problem of
the number of appeals aided by the fog computing platform was expressed using integer
linear programming. The results showed that the PSO-based algorithm achieved the best

Electronics 2023, 12, 3369 6 of 19

results; however, the execution time was much longer than that of a greedy algorithm,
which achieved up to 30% worse outcomes with no execution duration. In fact, this work
focuses on the fog environment rather than cloud systems.

According to [25], the micro-cloud problem discussed in cloud computing is primarily
moving towards micro storage. Thus, resources for devices are limited, with a lack of
financial incentives for both the owner of the applications and the provider. By introduc-
ing a small overhead in arrangement times, their proposed solution accomplished the
assignment of more requests, with an effective allocation of 83% in contradiction to 57% of
prevalent answers, as measured on an arrangement of memory-concentrated workloads
and a real CPU. However, this approach suffers from a drawback of causing an overhead
of scheduling time.

The authors in [26] presented a heterogeneous task allocation strategy (HATS) for
convenient and low-cost container orchestration via resource utilization optimization.
HATS provided three features: (a) HATS initializes CP for optimal use by task packing;
(b) using multiple auto-scaling algorithms, the authors proposed a pricing model of an
elastic instance to adapt the cluster size with regards to the workload variation in runtime;
and (c) they presented a rescheduling approach that uses the check pointing method of the
container for permitting the cleaning of the VM of underused instances to save costs while
maintaining task growth.

In [27], an OpenStack-built middleware policy was presented, in which containers
can be positioned/achieved at the fog stages. The authors presented an S4T platform to
provide an extension of the cloud for app designers and infrastructure executives. They
presented a system proficient in handling distant containers that can collaborate and travel
between various nodes without seeing the real outline of the structure. S4T offers a facility
completely in agreement with OpenStack and cooperates with many of its facilities (e.g.,
Neutron and Keystone).

The conventional fog processing architecture is for a single data hub and several fog
joints. It is incapable of adjusting to existing advancements in personal clouds. In [28],
heuristic algorithms and answers were developed for different situations and many prob-
lems emerged as NP-hard problems. The planned method was applied and used for
estimation on the de facto PaaS platform, namely, CloudFoundary. The results showed
that the network load could be minimized by up to 60% with no harmful effect on its
balance. On a large scale, they experimented with 2400 applications, achieving savings
of approximately 90% in network traffic by removing 50% of the load balance. However,
these two studied are not applicable for cloud systems because they were developed for
fog systems.

2.4. Quality-Aware Mechanisms

The authors in [29] proposed a method called the elastic provisioning of VMs for
container deployment (EVCD), which is an overall design for the placement of containers for
cloud systems. EVCD regulates container placement on computer-generated machines that
can be attained free on demand while enhancing the quality of service (QoS) measurements.
In addition, it offers a standard next to which another container distribution heuristic
can be matched. Accordingly, they estimated and emphasized the disadvantages of two
well-known heuristics used to describe container placement.

The authors in [30] proposed an autonomic containerized service scaler (ACTS) system
that vertically and horizontally measured a group of mixed containerized services exposed
to various workloads to obtain results for several high-level QoE metrics. They employed
ACTS in a few digitized facilities of the Shared Services of the Ministry of Health (SPMS)
community corporation. The results showed that the proposed method could sufficiently
adjust the configuration of all services as a direct response to modifications in its workload.
The results also reduced cost and proved the capability of ACTS to retain the QoE system
of measurement under restrictive standards pre-settled during SLAs. However, both EVCD
and ACTS do not provide a means to reduce power consumption on CaaS cloud systems.

Electronics 2023, 12, 3369 7 of 19

3. Problem Formulation

Server consolidation harnesses virtualization by sharing hardware to place multiple
VMs on the same PM; therefore, fewer running PMs lead to greater power savings [32].
This section describes the objective model and corresponding constraints for the problem
of placing containers efficiently to reduce power consumption. The power consumption of
various PMs in data centers is calculated mainly based on the CPU, memory, disk storage,
and networking, with the CPU consuming the most power [33]. CP refers to the containers
hosted by VMs when VMs are placed on PMs in CaaS cloud systems [16]. This paper
proposes a novel CP mechanism that improves the utilization of running PMs in cloud
systems, leading to power savings.

Assuming that C is the set of containers to be assigned to V, V is the set of VMs to be
run on P. Moreover, P is the set of available PMs in the CaaS data center. Let the resource
specification of pmi be defined as (pmcpu

i , pmmem
i), which represent the total processing and

memory capacities, respectively, of pmi. Let the tuple (vmcpu
j , vmmem

j) denote the processing
and memory capacities, respectively, of vmj. The resource requirements for the container
ck are denoted by (ccpu

k , cmem
k), which represent the processing and memory capacities,

respectively, of ck for ck ∈ C. ck can be assigned to vmj as follows:

ccpu
k ≤ vmavl.cpu

j , ∀ ck ∈ C , vmj ∈ V (1)

and

cmem
k ≤ vmavl.mem

j , ∀ ck ∈ C , vmj ∈ V (2)

where vmavl.cpu
j and vmavl.mem

j denote the available processing and memory powers, respec-
tively, of vmj. This implies that containers can be placed on the same VM as long as the
total processing or memory power of the containers does not exceed that of the VM. This
can be formulated as assign(ck, vmj), a function that returns true if vmj hosts ck or false
otherwise, and is expressed as follows:

assign(ck, vmj) =

true, i f equations

(1) and (2) are true

f alse, otherwise

(3)

Moreover, vmj is hosted on pmi as follows:

vmcpu
j ≤ pmavl.cpu

i , ∀ vmj ∈ V, pmi ∈ P (4)

and
vmmem

j ≤ pmavl.mem
i , ∀ vmj ∈ V, pmi ∈ P (5)

where pmavl.cpu
i and pmavl.mem

i denote the available processing and memory, respectively,
of pmi. Let allocate(vmj, pmi) be a function that returns true if vmj can be allocated to pmi
or false otherwise. It can be expressed as follows:

allocate(vmj, pmi) =

true, i f equations

(4) and (5) are true

f alse, otherwise

(6)

This study adopts a linear server energy consumption model for containerized-based
cloud systems [21]. The power consumption of pmi is denoted by pwr(pmi) and is calcu-
lated as follows:

pwr(pmi) = pmidle
i + (pmmax

i − pmidle
i)× utl(pmi) (7)

Electronics 2023, 12, 3369 8 of 19

where pmmax
i is the power consumed by the PM when it runs at full utilization level and

pmidle
i is the power consumed by the PM when it is idle. An idle PM can consume an

average of 70% of the power consumed by a machine at full utilization [34]. utl(pmi)
denotes the current utilization level of pmi, which is calculated as follows:

utl(pmi) =
pmcpu.used

i

pmcpu
i

(8)

where pmcpu.used
i denotes the total CPU power used for pmi. In other words, this refers

to the total processing power of all VMs hosted on pmi. Let Ecp denote the total energy
consumed by PMs using a particular CP in the CaaS cloud system, which is given as follows:

Ecp =
p

∑
i=1

pwr(pmi) (9)

Therefore, a power-saving CP mechanism should aim at minimizing Ecp.

4. Proposed Mechanism
System Model

Figure 2 illustrates two mechanisms, namely, A and B, that can be adopted in CaaS
cloud systems. Mechanism A does not focus on power consumption; therefore, it distributes
the VMs around two different PMs, whereas Mechanism B places the three VMs on one
PM if the PM can host all the VMs. Mechanism B can help reduce the overall power
consumption provided that the second PM is in a power-saving mode. However, CP
mechanisms can affect the overall performance of CaaS clouds because the overhead of
finding an appropriate solution for CP can delay the processing of jobs in CaaS systems [35].
Therefore, the optimal mechanism should involve a trade-off between reducing the energy
consumption and improving the system performance.

PM 1

VM 1 VM 2

C 1 C 2 C 3 C 4 C 5 PM 2

VM 3

C 6 C 7

PM 1

VM 1 VM 2

C 1 C 2 C 3 C 4 C 5

VM 3

C 6 C 7

Placement A

Placement B

Figure 2. Different Placement Mechanisms.

This section presents the proposed DCP mechanism that extends the DWO mech-
anism [16], which is a container placement mechanism designed to improve resource
utilization and reduce power consumption in CaaS-based cloud systems. DWO adopts
the WOA [31], which is a meta-heuristic optimization algorithm that imitates the social
behavior of humpback whales. A group of Humpback whales (i.e., search agents) make a
spiral shape around the prey and then swim up to hunt the prey (i.e., a solution) inside the
circles. Three phases are used by the humpback whale: (i) encircling, (ii) spiral bubble-net
feeding, and (iii) searching for prey. The position of the prey is unknown; therefore, the
current best search agent can be any position near the prey in the search space. Other search
agents then update their positions according to the current search agent [16].

Electronics 2023, 12, 3369 9 of 19

The algorithm employs a search process that commences with a randomly generated
population of solutions (a matrix of solutions), which then evolves over successive genera-
tions. The solutions are always combined to form the next generation of solutions, allowing
the matrix to be enhanced over the course of generations. However, the main difference
between the current work and recently published papers in the literature (particularly the
DWO mechanism [16]) is that the proposed DCP mechanism utilizes a heuristic approach
to direct (hence, the name of the mechanism) the search process in the mechanism. This
approach plays a vital role in reducing the overall power consumption of CaaS cloud
systems with an acceptable overhead time.

The workflow of the DCP policy is depicted in Figure 3, which contains two phases:
initialization and search. The initialization phase uses the number of PMs (p), VMs (v), and
containers (c) as the input parameters. The mechanism also obtains the number of possible
solutions (NW) and total number of iterations (iterN) to search for the best solution. The
mechanism sets a as a double random number ∈ [2, 0] that is linearly decreased from 2 to
0 [31]. The number of iterations t is set as zero. t is an iteration counter from one to iterN.
Moreover, c f1 and c f2 are the coefficient vectors that are employed to determine how to
update current solutions [31]. Those vectors are calculated as follows:

c f1 = 2a · rand− a (10)

c f2 = a · rand (11)

Start
End

Get

p: pm number

v: vm number

c: container number

NW: solution number

iterN: number of iterations

Esr < Ebs

Repair

mechanism

t++

yes

Init ialize NW

matrix

Init ialize bs as a

best solution

t > 0 ?

Select sr from

NW

no

yes r++

NW < r ?

t = 1

Update a,cf1,cf2
sr = bs ?

no

Update sr

no yes

sr feasible

sol ution?

no

yes

iterN < t ?

r = 1

yes

Return bs

Set

a, cf1, cf2
t = 0, r =0

Set b = sr

no

no

yes

Figure 3. DCP flowchart.

Next, the policy initializes the solution matrix (NWmatrix) , which is a matrix of
NW possible solutions, and each solution can be implemented using the CP mechanism
in a cloud system. It randomly assigns containers to the VMs and allocates VMs to the
PMs. Furthermore, the policy in the next step employs a repair mechanism that repairs
the solutions in the NWmatrix because the random allocation of containers to VMs can
overload some VMs with containers, i.e., the CPU or RAM requirements of the containers
are greater than those of a VM that hosts those containers. Similarly, some PMs can be
overloaded with VMs. Overloaded VMs or PMs must be repaired by migrating containers
and VMs from overloaded VMs and PMs, respectively.

The repair mechanism employs a two-factor approach to identify the most suitable
containers (or VMs) for migration. Next, an appropriate candidate VM (or PM) is selected
as the new host for these containers (or VMs) [16]. This approach aims to decrease the total
power consumption by improving resource utilization. The first factor is the overloaded
factor OF(he, ge), which is a function employed to select a guest element ge. The guest

Electronics 2023, 12, 3369 10 of 19

element can be a container or VM to be migrated from an overloaded hosting element he,
which can be a VM or PM. The overloaded factor can be calculated as follows:

OF(he, ge) =

∣∣∣∣∣hecpu − gecpu

hecpu
− heram − geram

heram

∣∣∣∣∣ (12)

ge is a generic term that refers to either containers or VMs, and he is a generic term
that refers to either VMs or PMs. The second factor is the selection factor SF(he, ge), which
is a function employed to select the VM (or PM) that is the most suitable candidate among
all available choices. It can be calculated as follows:

SF(he, ge) =

∣∣∣∣∣hecpu + gecpu

hecpu
− heram + geram

heram

∣∣∣∣∣ (13)

Both Equations (12) and (13) are utilized to minimize the idle fragmentation of re-
sources and help to efficiently harness the available resources to the maximum extent
possible with an aim to improve resource utilization.

The repair mechanism fixes one solution at a time as shown in Algorithm 1. The
mechanism input is a list of he. If he is overloaded, the mechanism retrieves all ge elements
to select the elements to be migrated. The mechanism selects the ge element with the
minimum OF. Subsequently, it removes it from the current he and adds it to the migration
list as illustrated in lines 3–14 in the algorithm. Furthermore, the mechanism selects an
appropriate destined host (desHe) for each ge in the migration list, geMigrateList. The
desHe with the least SF is selected to host ge provided that desHe can host it as given in
Equation (3) or Equation (6) if it is a VM or PM, respectively.

In the next step, DCP initializes the best solution (bs) by creating a solution that
allocates VMs to the PMs based on the first-fit (FF) heuristic. The best solution initialization
mechanism is presented in Algorithm 2. DCP employs the FF approach with the aim of
reducing power consumption by stacking more VMs, which improves resource utilization.
In contrast to other mechanisms based on the WOA, such as [36] and [16], DCP does
not choose the best solution among the NW solutions in the solution matrix. Rather, it
constructs a solution that can direct the search process, resulting in a reduced search time.
The next step is to select the first solution sr in the NWmatrix and compare it with bs in
terms of energy consumption, according to Equation (9). If sr consumes less energy, it is
selected as the new bs.

The search phase begins by updating the parameters a, c f1, and c f2 as mentioned in
the initialization phase. Subsequently, if the current solution is not the same as the best
solution, sr is updated using the aforementioned parameters and bs, as explained in the
WOA. Otherwise, DCP chooses the next solution in the matrix and continues the search
process. The feasibility of the updated solution of sr is checked to determine if it needs
repair by sending it to the repair mechanism. Next, sr is evaluated if it consumes less
energy than bs; subsequently, bs becomes sr as explained in the previous stage. The search
phase then selects the next solution sr in the solution matrix to repeat the same steps in this
stage until the last solution in the matrix.

The entire search phase undergoes iterN iterations, and each iteration is supposed to
generate better solutions with bs being updated. Finally, DCP generates the optimal solution
bs, which preserves the optimal energy in the CaaS cloud system under consideration.

Electronics 2023, 12, 3369 11 of 19

Algorithm 1 Repair mechanism.

1: input: heList
2: foreach ohe in heList do
3: while ohe.isOverloaded == true do
4: geList← ohe.getGeList()
5: OF = maximumValue
6: migGe← null
7: foreach ge in geList do
8: OFtmp = OF(he, ge) //Equation (12)
9: if OFtmp < OF then

10: OF = OFtmp
11: migGe← ge
12: end if
13: ohe.removeElement(migGe)
14: geMigrateList.add(migGe)
15: end for
16: end while
17: end for
18: foreach ge in geMigrateList do
19: SF = maximumValue
20: desHe← null
21: foreach he in heList do
22: if he.canHost(ge) == true then
23: SFtmp = SF(he, ge) //Equation (13)
24: if SFtmp < SF then
25: SF = SFtmp
26: desHe = he
27: end if
28: end if
29: end for
30: desHe.addElement(ge)
31: geMigrateList.remove(ge)
32: update(heList, desHe)
33: end for

Algorithm 2 Best solution initialization.

1: input: pmList, vmList, contList
2: output: bs
3: foreach continer in contList do
4: foreach vm in pvmList do
5: if assign(cont, vm) == true then
6: vm.assign(cont)
7: end if
8: end for
9: end for

10: foreach vm in vmList do
11: foreach pm in pmList do
12: if allocate(vm, pm) == true then
13: pm.allocate(vm)
14: end if
15: end for
16: end for
17: bs.setSolution(vmList, pmList)
18: return bs

Electronics 2023, 12, 3369 12 of 19

5. Performance Evaluation
5.1. Experimental Setup

The experiments in this study are performed on a computer with a 2.8 GHz Intel
Core i7 processor and 16 GB of RAM with a MacOS Mojave OS. The experiments are
conducted in the Java programming language. Two sets of experiments are conducted to
evaluate the DCP policy. The first and second sets test the DCP policy in homogeneous and
heterogeneous cloud systems, respectively.

Each experiment tests the mechanism for different container numbers: 100, 200, 300,
400, 500, 600, 700, 800, 900, and 1000. The DCP policy is based on the WOA, which
produces solutions randomly; therefore, each experiment is run ten independent times for
each number of containers, i.e., for number of containers = 100, the experiment is run ten
times, then another ten times when the number of containers = 200 and so on. The total
number of runs in each experimental set is 100. The reported results are the averages of the
corresponding run results for each number of containers.

Two state-of-the-art container placement mechanisms are implemented for comparison
to comprehensively evaluate the performance of DCP. The first is the IGA mechanism [15],
which is a gene-based mechanism that utilizes different exchange mutation operations
to determine the optimal solution. The second mechanism is the DWO mechanism [16],
which is based on the WOA for solving the optimization problem of container-to-VM and
VM-to-PM placement strategies. Both mechanisms are discussed in Section 2. They were
selected because they both focus on energy consumption aspects in CaaS cloud systems. In
addition, they both are evolution-based approaches, which make them suitable mechanisms
to compare DCP with.

The search space for DCP, IGA, and WOA is set as 100. The number of solutions
generated for IGA and WOA is set as 120 in each run. However, the number of solutions
for the DCP policy is reduced to 30 because it decreases both the power consumption and
execution time as demonstrated later in this section through the experiments.

The cloud system infrastructure in this simulation comprises PMs, VMs, and contain-
ers. The hardware specifications and power consumption values of the PMs are collected
from the SPECpower benchmarks [37] as listed in Table 2. pidle refers to the power con-
sumed by a PM when it is idle, whereas pmax refers to the power consumed under full
utilization. The number of available PMs is set as 1000. Various types of VMs are listed
in Table 3, which represent several VM instances from Amazon [21]. Eight different types
of containers are simulated in these experiments, each of which contains different CPU
and RAM capabilities as summarized in Table 4. The cloud infrastructure values remain
constant throughout the experiments.

Table 2. PM types.

PM Type Model No. of Cores CPU (GHz) RAM (GB) pidle (watt) pmax (watt)

1 Fujitsu Primergy TX1310 M5 6 3.2 16 15.6 58.9

2 ProLiant DL20 Gen10 Plus 8 3.2 16 21.7 82.8

3 Uniwide RC2212 20 2.2 768 127 291

4 LTechKorea LKG-2212-C 32 2.9 512 96.6 377

5 Inspur NF5280M5 56 2.7 192 48.6 410

6 ProLiant DL325 Gen10 Plus 64 2.2 128 53.2 269

Electronics 2023, 12, 3369 13 of 19

Table 3. VM types.

VM Type Instance Model No. of Cores MIPS (GHz) RAM (GB)

1 t2.nano 1 1.0 0.5

2 t1.micro 1 1.0 0.613

3 t2.micro 1 1.0 1.0

4 m1.small 1 1.0 1.7

5 m2.medium 2 2.0 3.75

6 m3.meduim 3 3.0 3.75

Table 4. Container types.

Container Type MIPS (GHz) RAM (GB)

1 0.256 0.128

2 0.512 0.128

3 1.0 0.128

4 0.256 0.256

5 0.512 0.256

6 1.0 0.256

7 0.512 0.512

8 1.0 0.512

5.2. Experiment I

The first experiment investigates the effectiveness of the DCP mechanism in a ho-
mogeneous cloud system. The simulated cloud system comprises PMs with the same
hardware and power specifications. The hardware and power consumption values used in
this experiment are those of the “Fujitsu Primergy TX1310 M5” model as listed in Table 2.
Furthermore, one VM type is employed for this experiment, which is “m3.mediu” as listed
in Table 3. Eight different types of containers are randomly employed as listed in Table 4.

The DCP mechanism outperforms both the IGA and DWO mechanisms in terms of
power consumption. The average power consumption of the system is approximately
3100 W, 14,200 W, and 15,500 W for DCP, IGA, and DWO, respectively, as illustrated in
Figure 4. Overall, the power consumed by the PMs for DCP decreases by approximately
78% compared with IGA; note that IGA yields better results on average than DWO. The
effectiveness of the DCP mechanism improves as the number of containers increases as
shown in Figure 5.

The DCP mechanism employs a resource utilization approach that aims to reduce
the number of active PMs for placing VMs on PMs, leading to more power preservation.
Therefore, more containers to run leads to a higher number of PMs. Table 5 lists the
number of running VMs and PMs for each mechanism for each set of number of containers.
For example, the DCP mechanism consumes approximately 800 W when the number of
containers is 100, achieving approximately 53% and 70% power savings compared to IGA
(1700 W) and DWO (2660) mechanisms, respectively. This is because the number of active
PMs for DCP is six compared with 8 and 12 for the IGA and DWO mechanisms, respectively.
The power savings increase sharply to more than ten-fold when the number of containers
is 1000; to elaborate, the IGA and DWO mechanisms consume 30,000 W and 28,000 W,
respectively, whereas DCP consumes approximately 5600 W.

Electronics 2023, 12, 3369 14 of 19

Figure 4. Power consumption in homogeneous environment.

Figure 5. Power consumption per container number Set in homogeneous.

Table 5. Number of VMs and PMs in Homogeneous Environment.

DCP IGA DWO

Cont # VM # PM # VM # PM # VM # PM #

100 22 6 10 8 23 12

200 42 11 19 17 44 28

300 62 16 32 28 65 42

400 84 21 47 42 87 53

500 104 26 62 56 108 70

600 126 32 81 72 130 83

700 146 37 103 92 151 88

800 167 42 119 105 172 102

900 187 47 155 133 194 124

1000 210 53 172 149 218 137

Electronics 2023, 12, 3369 15 of 19

The search times for each mechanism are shown in Figure 6. The DCP mechanism
outperforms its counterparts in terms of performance. The results show that the DWO
mechanism behaves poorly in terms of searching for the optimal solution as the number of
containers increases. Although the IGA mechanism yields far better outcomes in terms of
search time than DWO, it does not meet the performance of the DCP mechanism because
DCP requires approximately 17 s on average to find the optimal solution, whereas this
figure doubles to approximately 36 s for IGA. The search time for DWO is approximately
213 s on average. Overall, DCP demonstrably improves the performance of the container
placement mechanisms by approximately 50%.

Figure 6. Search time in homogeneous environment.

5.3. Experiment II

The second experiment investigates the behavior of the DCP mechanism in hetero-
geneous cloud systems. In such an environment, PMs have various hardware and power
consumption specifications, which is a more realistic assumption than that of homogeneous
cloud systems. The power consumption results are depicted in Figure 7. The average
power consumption for the DCP mechanism is approximately 1500 W, whereas the power
consumption for the IGA and DWO mechanisms is approximately 33,000 W and 10,000 W,
respectively. DCP saves power by approximately 85% compared to the other mechanisms.
The effectiveness of the DCP mechanism improves as the number of containers increases as
shown in Figure 8.

Table 6 lists the numbers of active VMs and PMs for each mechanism according to each
container number set. Note that both DCP and DWO achieve better power consumption
figures comparable to those for the same mechanisms from the first experiment because
these mechanisms can find better solutions to reduce power consumption when different
PM and VM specifications are employed. The greater the number of hosted containers,
the greater the effectiveness of DCP. When the number of containers is 1000, the power
consumed by DCP is 2700 W, whereas DWO consumes approximately 14,300 W.

The search time for DCP is approximately 21 s on average, whereas the average
time required to find the optimal solution for IGA is approximately 69 s and that for IGA
is approximately 212 s. DWO preserves power better than IGA but at the expense of

Electronics 2023, 12, 3369 16 of 19

performance. DCP manages to reduce power consumption and improve performance in
comparison with other mechanisms. Figure 9 presents the average search time for each
mechanism. More containers lead to more searching, resulting in more time being required
to find the best solution. For example, DCP requires, on average, approximately 1 s to
find the best solution when the number of containers is 100; however, the time required
increases to just more than 50 s when the number of containers is 1000.

Figure 7. Power consumption in heterogeneous environment.

Figure 8. Power consumption per container number set in heterogeneous environment.

Electronics 2023, 12, 3369 17 of 19

Figure 9. Search time in heterogeneous environment.

Table 6. Number of VMs and PMs in heterogeneous environment.

DCP IGA DWO

Cont # VM # PM # VM # PM # VM # PM #

100 41 2 11 10 39 12

200 87 2 30 28 81 22

300 127 3 56 52 120 34

400 170 3 116 104 163 47

500 213 6 179 154 203 49

600 256 6 220 186 237 63

700 306 8 333 264 292 76

800 340 9 385 297 332 76

900 386 10 433 329 372 76

1000 428 10 484 356 414 73

This section demonstrates that the proposed mechanism can save energy in both
homogeneous and heterogeneous cloud systems. DCP can perform better in heterogeneous
systems because the mechanism employs a resource utilization approach that focuses on
reducing the number of active PMs. However, the mechanism does not focus on reducing
the number of active VMs compared with other related mechanisms. Furthermore, the per-
formance of DCP is better than that of the alternatives because it reduces the time required
to find the optimal solution in both homogeneous and heterogeneous environments.

6. Conclusions

CP mechanisms are critical in CaaS cloud systems with regards to energy savings. This
study presents the DCP mechanism, a novel CP policy that significantly reduces power
consumption. DCP extends the WOA technique to find the best solution in a relatively short
time. DCP is evaluated and compared with the IGA and DWO mechanisms in two different
cloud systems: homogeneous and heterogeneous. The experiments demonstrate that DCP

Electronics 2023, 12, 3369 18 of 19

consumes approximately 78% less power while reducing the search time by approximately
50% in homogeneous clouds. In addition, DCP saves power by approximately 85% while
reducing the search time by approximately 30% in heterogeneous clouds.

Considering the scope for future research, the DCP mechanism can be improved as
follows. First, it can consider more optimization objectives, such as high availability and
low resource wastage. Furthermore, DCP can be extended to reduce the number of VMs
assigned to containers. Second, the evaluation conducted in this study uses simulations
with randomly generated containers, VMs, and PMs. Therefore, the proposed mechanism
can be further tested on real systems. Third, the DCP policy is a static placement mechanism.
Thus, it can be extended to be a dynamic mechanism with the aim of rescheduling containers
during runtime. Finally, the DCP mechanism can be extended and evaluated for cloud
systems integrated with fog systems.

Funding: This project was supported by the Deanship of Scientific Research at Prince Sattam Bin
Abdulaziz University under research project No. 2018/01/9371.

Data Availability Statement: No data were used to support this study.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Pahl, C.; Brogi, A.; Soldani, J.; Jamshidi, P. Cloud container technologies: A state-of-the-art review. IEEE Trans. Cloud Comput.

2019, 7, 677–692. [CrossRef]
2. Buyya, R.; Ranjan, R.; Calheiros, R.N. Modeling and simulation of scalable Cloud computing environments and the CloudSim

toolkit: Challenges and opportunities. In Proceedings of the 2009 International Conference on High Performance Computing &
Simulation, Leipzig, Germany, 21–24 June 2009; pp. 1–11. [CrossRef]

3. Morabito, R. Virtualization on Internet of Things Edge Devices With Container Technologies: A Performance Evaluation. IEEE
Access 2017, 5, 8835–8850. [CrossRef]

4. Randal, A. The Ideal Versus the Real: Revisiting the History of Virtual Machines and Containers. ACM Comput. Surv. 2020,
53, 1–31. [CrossRef]

5. Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Neugebauer, R.; Pratt, I.; Warfield, A. Xen and the art of
virtualization. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles-SOSP ’03, New York, NY,
USA, 19–22 October 2003; p. 164. [CrossRef]

6. Bernstein, D. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud Comput. 2014, 1, 81–84. [CrossRef]
7. Piraghaj, S.F.; Dastjerdi, A.V.; Calheiros, R.N.; Buyya, R. Efficient Virtual Machine Sizing for Hosting Containers as a Service

(SERVICES 2015). In Proceedings of the 2015 IEEE World Congress on Services, New York, NY, USA, 27 June–2 July 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 31–38. [CrossRef]

8. Linthicum, D.S. Moving to Autonomous and Self-Migrating Containers for Cloud Applications. IEEE Cloud Comput. 2016, 3, 6–9.
[CrossRef]

9. Merkel, D. Docker Lightweight Linux Containers for Consistent Development and Deployment J. Linux. 2014, 239, 2.
10. Hightower, K.; Burns, B.; Beda, J. Kubernetes: Up and Running: Dive into the Future of Infrastructure, 1st ed.; O’Reilly Media Inc.:

Sebastopol, CA, USA , 2017; p. 272.
11. Hussein, M.K.; Mousa, M.H.; Alqarni, M.A. A placement architecture for a container as a service (CaaS) in a cloud environment.

J. Cloud Comput. 2019, 8, 7. [CrossRef]
12. Piraghaj, S.F.; Dastjerdi, A.V.; Calheiros, R.N.; Buyya, R. A Framework and Algorithm for Energy Efficient Container Consolidation

in Cloud Data Centers. In Proceedings of the 2015 IEEE International Conference on Data Science and Data Intensive Systems,
Sydney, NSW, Australia, 11–13 December 2015; IEEE; Piscataway, NJ, USA, 2015; pp. 368–375. [CrossRef]

13. Kaur, K.; Dhand, T.; Kumar, N.; Zeadally, S. Container-as-a-Service at the Edge: Trade-off between Energy Efficiency and Service
Availability at Fog Nano Data Centers. IEEE Wirel. Commun. 2017, 24, 48–56. [CrossRef]

14. Shi, T.; Ma, H.; Chen, G. Energy-Aware Container Consolidation Based on PSO in Cloud Data Centers. In Proceedings of the
2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE; Piscataway, NJ, USA, 2018;
pp. 1–8. [CrossRef]

15. Zhang, R.; Chen, Y.; Dong, B.; Tian, F.; Zheng, Q. A Genetic Algorithm-Based Energy-Efficient Container Placement Strategy in
CaaS. IEEE Access 2019, 7, 121360–121373. [CrossRef]

16. Al-Moalmi, A.; Luo, J.; Salah, A.; Li, K.; Yin, L. A whale optimization system for energy-efficient container placement in data
centers. Expert Syst. Appl. 2021, 164, 113719. [CrossRef]

17. Zhang, R.; Chen, Y.; Zhang, F.; Tian, F.; Dong, B. Be Good Neighbors: A Novel Application Isolation Metric Used to Optimize the
Initial Container Placement in CaaS. IEEE Access 2020, 8, 178195–178207. [CrossRef]

http://doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.1109/HPCSIM.2009.5192685
http://dx.doi.org/10.1109/ACCESS.2017.2704444
http://dx.doi.org/10.1145/3365199
http://dx.doi.org/10.1145/945445.945462
http://dx.doi.org/10.1109/MCC.2014.51
http://dx.doi.org/10.1109/SERVICES.2015.14
http://dx.doi.org/10.1109/MCC.2016.122
http://dx.doi.org/10.1186/s13677-019-0131-1
http://dx.doi.org/10.1109/DSDIS.2015.67
http://dx.doi.org/10.1109/MWC.2017.1600427
http://dx.doi.org/10.1109/CEC.2018.8477708
http://dx.doi.org/10.1109/ACCESS.2019.2937553
http://dx.doi.org/10.1016/j.eswa.2020.113719
http://dx.doi.org/10.1109/ACCESS.2020.3025338

Electronics 2023, 12, 3369 19 of 19

18. Zhou, R.; Li, Z.; Wu, C. Scheduling Frameworks for Cloud Container Services. IEEE/ACM Trans. Netw. 2018, 26, 436–450.
[CrossRef]

19. Boza, E.F.; Abad, C.L.; Narayanan, S.P.; Balasubramanian, B.; Jang, M. A case for performance-aware deployment of containers.
In Proceedings of the WOC 2019—Proceedings of the 2019 5th International Workshop on Container Technologies and Container
Clouds, Part of Middleware 2019, Davis, CA, USA, 9–13 December 2019; pp. 25–30. [CrossRef]

20. Luo, J.; Yin, L.; Hu, J.; Wang, C.; Liu, X.; Fan, X.; Luo, H. Container-based fog computing architecture and energy-balancing
scheduling algorithm for energy IoT. Future Gener. Comput. Syst. 2019, 97, 50–60. [CrossRef]

21. Khan, A.A.; Zakarya, M.; Buyya, R.; Khan, R.; Khan, M.; Rana, O. An energy and performance aware consolidation technique for
containerized datacenters. IEEE Trans. Cloud Comput. 2019, 9, 1305–1322. [CrossRef]

22. Nanda, S.; Hacker, T.J. RACC: Resource-Aware Container Consolidation using a Deep Learning Approach. In Proceedings of the
First Workshop on Machine Learning for Computing Systems, New York, NY, USA, 12 June 2018; pp. 1–5. [CrossRef]

23. Alahmad, Y.; Daradkeh, T.; Agarwal, A. Availability-Aware Container Scheduler for Application Services in Cloud. In Proceedings
of the 2018 IEEE 37th International Performance Computing and Communications Conference, IPCCC 2018, Orlando, FL, USA,
17–19 November 2018. [CrossRef]

24. Mseddi, A.; Jaafar, W.; Elbiaze, H.; Ajib, W. Joint Container Placement and Task Provisioning in Dynamic Fog Computing. IEEE
Internet Things J. 2019, 6, 10028–10040. [CrossRef]

25. Mendes, S.; Simão, J.; Veiga, L. Oversubscribing micro-clouds with energy-aware containers scheduling. In Proceedings of the
ACM Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; Part F1477, pp. 130–137. [CrossRef]

26. Zhong, Z.; Buyya, R. A Cost-Efficient Container Orchestration Strategy in Kubernetes-Based Cloud Computing Infrastructures
with Heterogeneous Resources. ACM Trans. Internet Technol. 2020, 20, 1–24. [CrossRef]

27. Benomar, Z.; Longo, F.; Merlino, G.; Puliafito, A. Cloud-based Enabling Mechanisms for Container Deployment and Migration at
the Network Edge. ACM Trans. Internet Technol. 2020, 20, 1–28. [CrossRef]

28. Zhao, D.; Mohamed, M.; Ludwig, H. Locality-Aware Scheduling for Containers in Cloud Computing. IEEE Trans. Cloud Comput.
2020, 8, 635–646. [CrossRef]

29. Nardelli, M.; Hochreiner, C.; Schulte, S. Elastic Provisioning of Virtual Machines for Container Deployment. In Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering Companion, New York, NY, USA, 22–26 April
2017; pp. 5–10. [CrossRef]

30. Santos, G.; Paulino, H.; Vardasca, T. QoE-aware auto-scaling of heterogeneous containerized services (and its application to
health services). In Proceedings of the 35th Annual ACM Symposium on Applied Computing, New York, NY, USA, 30 March–3
April 2020; pp. 242–249. [CrossRef]

31. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
32. Berl, a.; Gelenbe, E.; Di Girolamo, M.; Giuliani, G.; De Meer, H.; Dang, M.Q.; Pentikousis, K. Energy-Efficient Cloud Computing.

Comput. J. 2010, 53, 1045–1051. [CrossRef]
33. Beloglazov, A.; Buyya, R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient

dynamic consolidation of virtual machines in Cloud data centers. Concurr. Comput. Pract. Exp. 2012, 24, 1397–1420. [CrossRef]
34. Kusic, D.; Kephart, J.O.; Hanson, J.E.; Kandasamy, N.; Jiang, G. Power and performance management of virtualized computing

environments via lookahead control. Clust. Comput. 2008, 12, 1–15. [CrossRef]
35. Ahmad, I.; AlFailakawi, M.G.; AlMutawa, A.; Alsalman, L. Container scheduling techniques: A Survey and assessment. J. King

Saud Univ.-Comput. Inf. Sci. 2022, 34, 3934–3947. [CrossRef]
36. Vhatkar, K.N.; Bhole, G.P. Optimal container resource allocation in cloud architecture: A new hybrid model. J. King Saud

Univ.-Comput. Inf. Sci. 2022, 34, 1906–1918. [CrossRef]
37. Lange, K.D. Identifying Shades of Green: The SPECpower Benchmarks. Computer 2009, 42, 95–97. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNET.2017.2781200
http://dx.doi.org/10.1145/3366615.3368355
http://dx.doi.org/10.1016/j.future.2018.12.063
http://dx.doi.org/10.1109/TCC.2019.2920914
http://dx.doi.org/10.1145/3217871.3217876
http://dx.doi.org/10.1109/PCCC.2018.8711295
http://dx.doi.org/10.1109/JIOT.2019.2935056
http://dx.doi.org/10.1145/3297280.3297295
http://dx.doi.org/10.1145/3378447
http://dx.doi.org/10.1145/3380955
http://dx.doi.org/10.1109/TCC.2018.2794344
http://dx.doi.org/10.1145/3053600.3053602
http://dx.doi.org/10.1145/3341105.3373915
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1093/comjnl/bxp080
http://dx.doi.org/10.1002/cpe.1867
http://dx.doi.org/10.1007/s10586-008-0070-y
http://dx.doi.org/10.1016/j.jksuci.2021.03.002
http://dx.doi.org/10.1016/j.jksuci.2019.10.009
http://dx.doi.org/10.1109/MC.2009.84

	Introduction
	Literature Review
	Energy-Aware Mechanisms
	Performance-Aware Mechanisms
	Resource Utilization Mechanisms
	Quality-Aware Mechanisms

	Problem Formulation
	Proposed Mechanism
	Performance Evaluation
	Experimental Setup
	Experiment I
	Experiment II

	Conclusions
	References

