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Abstract: The types of road surfaces on which intelligent connected cars operate are complicated and
varied, and current research lacks the achievement of real-time and reasonably high accuracy for road
surface categorization. In this research, we provide a deep learning-based technique for classifying
and identifying road surfaces that makes use of an improved (VGGNet-16) model, in conjunction
with a transfer learning strategy, to gather data from the road surface in front of the car using an
on-board camera. To accurately classify data based on obtained road surface photos, the dataset is
first preprocessed, then pretrained weights are frozen, and the network is initialized using transfer
learning parameters. In order to explore the accuracy analysis of the various models regarding
the identification of six types of road surfaces, comparisons were made via the VGG16, AlexNet,
InceptionV3, and ResNet50 models, using the same parameter values. The experimental findings
demonstrate that the improved VGGNet-16 model, combined with the transfer learning approach,
achieves 96.87% accuracy for the classification and recognition of pavements, demonstrating the
improved network model’s superior accuracy for these tasks. Additionally, the driving recorder
of the vehicle may be used as the sensor to complete pavement detection, which has significant
financial advantages.

Keywords: image classification; pavement classification recognition; VGGNet-16 transfer learning;
deep learning

1. Introduction

Safety has been the top priority in the development of intelligent connected vehicles,
due to the rising numbers of personal vehicles and traffic accidents, while autonomous
driving technology offers a very good chance of lowering traffic accidents, easing traffic
congestion, etc. It is a very well-supported field of study in terms of imaging and image
processing; recognizing the state of the road may significantly lower the frequency of
accidents. The extraction of road surface state data is impacted by elements such as light
levels and bumps due to vehicle motion, which leads to huge errors in the dataset. Driving
conditions are affected by the weather, and the adhesion coefficient of the car varies when
driving on different road surfaces. Although the traditional image recognition classification
methods can extract textural information regarding the road surface features in order
to classify the road surface, the accuracy rate will be low due to the influence of data
acquisition, and the adaptability will also be relatively low, so there are still many areas in
road surface recognition that need improvement.

Traditional machine learning is employed in many current pavement condition recog-
nition and detection techniques, such as the support vector machine (SVM) [1], KNN [2],
the parsimonious Bayes technique [3], decision trees [4], and the artificial neural network
(ANN), which are used to categorize the extracted pavement data in terms of dryness and
humidity. Numerous researchers in the field of machine learning have studied pavement
identification extensively and have produced numerous findings. Liu et al. [5] used SVM
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to study pavements in wet conditions, and selected kernel functions and classifiers ap-
plicable to pavement recognition to enable recognition in wet conditions. However, the
method’s accuracy rate was low, while the matrix operation occupied a large amount of the
training time and was relatively inefficient. Li [6] developed an icy road surface detection
system by acquiring the texture and color of a high-speed road surface, extracting texture
features from the acquired road surface, and applying an SVM classifier to identify the icy
road sections. The accuracy of the identified road image achieved 80.4 percent, but the
relatively large amount of effort required to acquire the image at the terminal can cause
the preparation of surface recognition to become complicated, making it less efficient. Jian
Wan [7] proposed an experimental system for determining slippery road surfaces using
machine vision, with an accuracy of 70% to 80%. When selecting image color features and
describing features, it was difficult to ensure their computation in real time. Li et al. [8]
proposed obtaining the average construction depth of pavement texture parameters, based
on tilt photography technology combined with positioning technology, to achieve real-time
feedback on the skid resistance of the pavement, but the accuracy of its recognition was
affected by the lack of light on the acquired pavement images, which needed to be en-
hanced at the time of image acquisition and for other work. Uriana, Bai et al. [9] proposed
a comprehensive model for automatic pavement damage detection and recognition using a
deep learning approach. The accuracy level of this model achieved 97% for localization and
92.4% for classification, showing that the accuracy of the classification part of their model
algorithm needs to be improved. Yang et al. [10] designed a residual neural network-based
algorithm for pavement wet conditions, achieving an accuracy of 85.4% for recognition.
Compared to the classification functions of deep learning, the accuracy and classification
speed of the selected classifier of SVM needs to be improved. With the rising popularity
and development of deep learning in recent years, the processing of image data has been
continuously improving, with higher speed and accuracy than traditional machine learning.
Deep learning has also achieved much in terms of object recognition and target detection,
as well as in the aerospace and medical fields [11–15]. The convolutional neural network
is one of the most representative algorithms in the field of deep learning [16]; there are
four classical networks in the field of convolutional neural network image classification,
comprising AlexNet, VGGNet, Google Inception Net, and ResNet. The VGGNet network
model used in this paper was proposed by Simonyan and Zisserman of Oxford University
in 2014, who presented a deep convolutional neural network [17]. It is clear from the
literature [18] that the VGGNet-16 model is more suitable for tuning parameters, and
the model in question can be constructed using the appropriate improvements. Zhang
et al. [19] employed a machine learning method to evaluate the roughness of the road
surface. The category of road roughness was estimated from the inertial sensor on the
vehicle, then the dynamic model of the vehicle suspension system and the mathematical
simulation of the road roughness curve were combined to verify the success of the method,
which provided some features for the machine learning. The accuracy of the roughness
classification of the road surface in this paper was only 90%, showing that there is room
for improvement in terms of real-time performance. Llopis-Castelló et al. [20] identified
and classified a variety of road surface issues, adopting a lightweight convolutional neural
network, and achieved their highest accuracy of 92.35% through 1000-iteration pre-training;
they also classified the different conditions of urban road surfaces. The method described
in their paper can greatly reduce the cost and time required for a visual assessment of
road surface conditions. Doycheva et al. [21] trained a large amount of data on GPU to
solve the problem that the CPU could not analyze pavement images in real time. In their
paper, an automatic road condition detection method was proposed, wherein a real-time
noise removal, background correction, and pavement condition detection method was
employed by the graphics processing unit, and the description values of classification were
calculated using wavelet transform. This method can be used for real-time image pre-
processing and analysis. Georgios M. Hadjidemetriou and Symeon E. Christodoulou [22]
designed a road management system to ensure effective on-road function and the safety
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of passengers in vehicles. This paper introduces a vision-based system that uses low-cost
technology to detect damaged areas of the road surface, then uses image entropy and image
processing power to identify video frames, with an accuracy of 89.2%. The system can
improve the efficiency of road repair for the transportation department and save significant
costs. After hyperparameter tuning and validation of the VGGNet-16 model, this paper
proposes to combine transfer learning [23] with the improved VGGNet-16 model to obtain
a network model suitable for pavement condition identification. Real-time classification
and recognition of dry asphalt pavement, wet asphalt pavement, and snow and ice on
the pavement were performed on the pavement test dataset and compared with VGG16,
AlexNet, InceptionV3, and ResNet50 models [24–27], using the images acquired by the
vehicle camera as inputs and classifying the different pavement types. This can provide
pre-scanning data for the subsequent control of dynamics information warnings.

The rest of the paper is organized as follows. In Section 2, the relevant literature and
the applications of the VGGNet-16 model are introduced, the training process of transfer
learning is explained, the improvement method is discussed, and the network model of
the proposed VGGNet-16 transfer learning method is constructed. The pre-processing and
empirical validation sections of our dataset are given in Section 3, as well as a comparison
of parallax, weight analysis, and accuracy. A discussion of the results obtained in Section 3
is given in Section 4. In addition, we show the subsequent work design flow chart of this
paper’s recognition classification algorithm in Figure 1.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 19 
 

 

and analysis. Georgios M. Hadjidemetriou and Symeon E. Christodoulou [22] designed a 
road management system to ensure effective on-road function and the safety of passen-
gers in vehicles. This paper introduces a vision-based system that uses low-cost technol-
ogy to detect damaged areas of the road surface, then uses image entropy and image pro-
cessing power to identify video frames, with an accuracy of 89.2%. The system can im-
prove the efficiency of road repair for the transportation department and save significant 
costs. After hyperparameter tuning and validation of the VGGNet-16 model, this paper 
proposes to combine transfer learning [23] with the improved VGGNet-16 model to obtain 
a network model suitable for pavement condition identification. Real-time classification 
and recognition of dry asphalt pavement, wet asphalt pavement, and snow and ice on the 
pavement were performed on the pavement test dataset and compared with VGG16, 
AlexNet, InceptionV3, and ResNet50 models [24–27], using the images acquired by the 
vehicle camera as inputs and classifying the different pavement types. This can provide 
pre-scanning data for the subsequent control of dynamics information warnings. 

The rest of the paper is organized as follows. In Section 2, the relevant literature and 
the applications of the VGGNet-16 model are introduced, the training process of transfer 
learning is explained, the improvement method is discussed, and the network model of 
the proposed VGGNet-16 transfer learning method is constructed. The pre-processing and 
empirical validation sections of our dataset are given in Section 3, as well as a comparison 
of parallax, weight analysis, and accuracy. A discussion of the results obtained in Section 3 is 
given in Section 4. In addition, we show the subsequent work design flow chart of this 
paper’s recognition classification algorithm in Figure 1. 

Pose 
correction

Image 
processing

Camera 
Image Data

Fusion estimation method based 
on passive and active recognition

Camera 
Module

Pavement classification 
information extraction

Deep learning 
recognition model

Estimation of pavement adhesion coefficient 
based on vehicle dynamics response

Passive method

Active method

More accurate pavement 
adhesion coefficient results

Design flow of pavement adhesion coefficient estimation system based on the visual information and the vehicle dynamic response

Precise early 
warning area

Select 
prompt area

Unproces
sed area

Automotive braking and driving 
control For vehicle stability

Vehicle dynamic control

 
Figure 1. A design flowchart of the pavement adhesion coefficient estimation system. 

The research in this paper addresses the primary task of designing a roadway adhe-
sion coefficient estimation system, based on visual information and the vehicle’s dynamic 
response. The design flowchart of the system is shown in Figure 1, above. First, we divide 
the roadway obtained from the onboard vision sensor into three zones, which comprise 

Figure 1. A design flowchart of the pavement adhesion coefficient estimation system.

The research in this paper addresses the primary task of designing a roadway adhesion
coefficient estimation system, based on visual information and the vehicle’s dynamic
response. The design flowchart of the system is shown in Figure 1, above. First, we divide
the roadway obtained from the onboard vision sensor into three zones, which comprise
the precise warning cueing zone, the selective warning cueing zone, and the unprocessed
cueing zone. According to our recognized road ahead prompts for safety warnings, we then
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load the road surface information obtained by the on-board vision sensor into the domain
controller after position correction and image pre-processing, using the deep learning
model in this paper to assess the road ahead of the vehicle for the extraction of classification
information. Then, based on the dynamic response of the vehicle’s passive estimation of
the road surface adhesion coefficient and passive and active recognition using the Fusion
estimation method, the fused road surface attachment coefficient estimation will yield more
accurate estimation results, so that the stability of the vehicle can be further controlled
while also improving driving safety.

2. Materials and Methods

VGGNet-16 is a model proposed by the Visual Geometry Group at the University of
Oxford [28], which achieved excellent results in the ImageNet Image Classification and
Localization Challenge 2014 ILSVRC-2014, placing second in the classification task and
first in the localization task. VGG represents a good successor to AlexNet, with effective
discriminative features, and the network is much deeper.

The main principle of the VGGNet model is to use smaller convolution kernels, with
the aim of reducing the number of parameters raised. This is achieved by an increase in
convolutional layers and a reduction in the weight space. The main body of the model has
the following structures: the VGGNet-16 and the VGGNet-19 [29,30].

VGGNet-16 is derived from the AlexNet model [31]; the main body of the VGGNet-16
network model [32–34] consists of five groups of convolutional layers and three groups
of completely connected layers with a SoftMax activation function. Each group of convo-
lutional layers is separated by a maximum pooling layer and the activation functions of
all its hidden layers use the ReLU function. The VGGNet-16 uses a convolutional kernel
size of (3 × 3) and a maximum pooling layer size of (2 × 2). The use of tiny convolutional
kernels is preferable to using large convolutional kernels because such multilayer nonlinear
layers can increase the depth of the network model. The use of narrow convolutional
kernels in VGGNet-16 is intended to both increase the depth of the network model and
improve the training results, while preserving the perceptual domain. The first two layers
of the completely connected layer of VGGNet-16 have 4096 neurons, which generate a large
number of feature parameters at the end of training. Therefore, the number of neurons is
reduced in subsequent refinements to improve the network model, and this improvement
helps to prevent overfitting of the model and can reduce the weight space of the model. The
structure diagram of the VGGNet-16 network model is shown in Figure 2. The parameter
information is given in Table 1.

Table 1. The parameter information.

ConvNet Configuration

A A-LRN B C D(VGGNet-16) E(VGGNet-19)
11 weight layers 11 weight layers 13 weight layers 16 weight layers 16 weight layers 19 weight layers

Input (RGB image)

Conv3-64 Conv3-64 LRN Conv3-64
Conv3-64

Conv3-64
Conv3-64

Conv3-64
Conv3-64

Conv3-64
Conv3-64

MaxPool

Conv3-128 Conv3-128 Conv3-128
Conv3-128

Conv3-128
Conv3-128

Conv3-128
Conv3-128

Conv3-128
Conv3-128

Maxpool

Conv3-256
Conv3-256

Conv3-256
Conv3-256

Conv3-256
Conv3-256

Conv3-256
Conv3-256
Conv1-256

Conv3-256
Conv3-256
Conv3-256

Conv3-256
Conv3-256
Conv3-256
Conv3-256
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Table 1. Cont.

ConvNet Configuration

Maxpool

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv3-512
Conv3-512

Maxpool

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv1-512

Conv3-512
Conv3-512
Conv3-512

Conv3-512
Conv3-512
Conv3-512
Conv3-512

Maxpool
FC4096
FC4096
FC1000
SoftMax
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The activation functions of the six network models described in the above table are all
ReLU activation functions, of which the D structure is the “VGGNet-16” and the E structure
is the “VGGNet-19” used in this paper. The difference between the two networks is that
there are three additional convolutional layers; also, the Leaky ReLU activation function is
used in this paper instead of the ReLU function in the original model, as will be explained
in detail in the next sections.

2.1. VGGNet-16 Network Model Training Process

For pavement classification discrimination in the transfer learning used in this paper,
the corresponding dataset, T, can be expressed as:

T =
{
(x1, y1), (x2, y2), . . . , (xN , yN)

}
(1)

where N is the total number of training datasets, and x, y are the input and output of each
image. Different pavement states will correspond to different labeled outputs. The training
process of the improved algorithmic network model, based on VGGNet-16, is as follows:
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(1) The VGGNet-16 network reads the virtual pavement training dataset (x, y) and inputs
the xi of each image in the virtual dataset into the input layer of the network model.
After propagating the designed network forward, the output result obtained in the
output layer of the model is called the predicted output, ŷ;

(2) The predicted output, ŷ, is then compared with the desired output, y. In classifica-
tion problems, the cross-entropy loss function J(y, ŷ) is often used to represent the
difference between the predicted and desired outputs.

y = (y1, y2, . . . , yN)
T (2)

ŷ = (ŷ1, ŷ2, . . . , ŷN)
T (3)

J(y, ŷ) = −∑N
i=1 [yi In(ŷi)] = −yT · In(ŷ) (4)

In the above equation, N denotes the total number of neurons in the output layer, i.e.,
the total number of categories in the dataset labels.

(3) The J obtained from the data image input to the neural network is often a large
number, which means that there is a certain deviation between J and 0. This deviation
is passed from the output layer to the input layer through the backpropagation (BP)
algorithm [35], in which the weights and biases in the network model are finely
adjusted, based on the gradient, to reduce the value of J.

(4) Then, according to the parameter gradient obtained via the backpropagation algo-
rithm, the convolutional neural network model will update the parameters in the
model, based on this gradient descent method, as a way to reduce the value of the
loss function. The process of updating the parameters of the model parameter θ(w,b)
is as follows.

θk+1 = (θk)− α
∂J
∂θ

(θk) (5)

In the above equation, θk is the value of the parameter obtained at the kth iteration in
the model training, and α is the learning rate of the parameter θ.

(5) At this point, one learning or training process of the neural network model is now
complete. The next step is to repeat the forward and backward propagation process
as many times as necessary until the end of training.

2.2. Transfer Learning Process

As more and more machine learning application scenarios have emerged, one after
another, in recent years, and the existing supervised learning techniques that perform better
require a large volume of labeled data, which is a huge task, transfer learning [36] has
received more and more research attention. In this paper, we propose a combination of
transfer learning and an improved VGGNet-16 network model for the classification and
recognition of pavement types. The selected improved VGGNet-16 model was extensively
trained on the training dataset, then the subsequent test and validation sets were subjected
to transfer learning with the improved model. We show the flow of transfer learning in
Figure 3.

2.3. Improvement of the Activation Function

The different introduction methods of activation functions in the network model have
a profound impact on the training of the model. In the VGGNet-16 model, the activation
function of all its hidden layers uses the ReLU function as the activation function, which is
mathematically defined as:

f (x) = max(0, x). (6)
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VGGNet-16.

First, the input pavement data will generate numerous negative values after the
convolution operation, then the ReLU function will modify the negative values to 0. This
loses some of the feature information from the dataset. The Leaky ReLU activation function
outputs a different value from the ReLU function, depending on the input value. If the
input feature information is positive, the Leaky ReLU function output is the same as the
ReLU function. If the input feature information is negative, the Leaky ReLU function
outputs a slightly negative value, defined by αz (where α is a tiny value; this value is
defined as 0.02 in this paper, which is the feature input value). Its mathematical definition
is as follows:

f (x) ==

{
x, x > 0

αx, x ≤ 0
. (7)

Under the same conditions, the Leaky ReLU activation function is used to replace the
ReLU function, and the accuracy of the training and test sets is improved by 3.27% and
4.35%, respectively. In Section 3.4, we will show the effects of two activation functions on
the performance of the network model.

2.4. Introduction of Residual Structure

In the original model of the VGGNet-16 network presented in this paper, the residual
structure is missing. As the network deepens, the training errors first decrease and then
increase; their errors are not due to overfitting but to the difficulty of training due to the
deeper layers of the network. In order to solve the above problem, this paper constructs a
residual block class containing two convolutional layers, a Leaky ReLU activation function,
and a BN algorithm [36] before the activation function to normalize the input data. The
residual structure is shown in Figure 4. The convolution and pooling layers in VGGNet-16
can extract the low-level features of the image, while the inclusion of a residual structure can
learn higher-level features. The inclusion of the residual structure allows for the learning
of higher-level feature representations and is intended to address the impact of gradient
disappearance and network depth on learning performance. To some extent, the inclusion
of the three residual structures can avoid the loss of features in the convolutional layer
when performing image information transfer, and new image features can be learned on
the basis of the input features to prevent gradient disappearance due to the deep network
layers of VGGNet-16.

2.5. Fill Dropout Inactive Layer

Srivastava et al. proposed a dropout inactive layer in 2012. In the forward propagation
process of a training dataset, some neurons are randomly selected so that the activation
values of neurons must be suspended according to a certain probability, to enhance the
generalization ability of the network model and avoid overfitting of the network.
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2.6. Model Building for VGGNet-16 Transfer Learning

The proposed VGGNet-16 transfer learning-based pavement recognition system takes
the approach of obtaining pavement information from the vehicle vision sensors, classifying
and recognizing it as follows.

(1) Image acquisition: Based on the vehicle vision sensor used to detect the road surface
traveled by the car in real time, the characteristic information of the road surface is
accepted and released in the domain controller after pre-processing measures such as
light enhancement.

(2) VGGNet-16 transfer model construction: In this paper, we introduce the Leaky ReLU
activation function to replace the ReLU activation function in the original model and
fill in the residual structure and dropout inactive layer, etc., to improve the network
structure of VGGNet-16 and adjust the parameters. The pre-trained model is then
saved from the input layer to the Block4_conv3 layer. The ConvBNLR module con-
sists of a convolutional layer and a normalization layer with a Leaky ReLU activation
function, where the convolutional kernel size is set to the feature matrix with a step
size of 1. The overall model consists of two ConvBNLR modules, three residual
modules, a Maxpooling layer for image size reduction, and a sufficiently connected
layer to output three classifications using the Softmax function for classification. The
improved VGGNet-16 model reduces the number of parameters in the network model
by successive stacks of convolutional kernels with the size of the convolutional kernel,
while ensuring the same perceptual field. Then, it increases the number of nonlinear
units in the model by adding a residual structure after the VGG module using jump
connections, which solves the gradient disappearance and improves the performance
of the network’s deep learning. The parameters of the original model of VGGNet-16
are concentrated in the fully connected layer, in order to prevent overfitting, im-
prove the classification accuracy of the pavement, and accelerate the convergence of
the network model. After freezing the pre-trained weights, a global average pool-
ing layer, a flattened layer, two dropout inactive layers, and three fully connected
layers are added in turn. The input data training set is standardized by uniform
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size [0.5, 0.5, 0.5] processing, using the Leaky ReLU function after the connection layer
and the last classifier using the Softmax function (for the output category of 3 classes
of pavement), outputting 3 categories and labeling the categories as 0 for wet asphalt
pavement, 1 for dry asphalt pavement, 2 for snow and ice pavement, 3 for concrete
pavement output, 4 for gravel pavement output, and 5 for jointed pavement output.
The modified VGGNet-16 network model and the technical flow of this research paper
are shown in Figure 5.
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(3) Pavement recognition decision: This is calculated according to the pavement acquisi-
tion image, combined with the data pre-training weights, based on a deep learning
transfer model, which is used to complete the construction of the pavement classifica-
tion recognition model.

The road surface recognition system consists mainly of in-vehicle vision sensors and
intelligent driving domain controllers, the detection process of which is illustrated in
Figure 6.
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3. Results
3.1. Data Image Processing

Due to the large size and complex calculation cost of the training dataset required
to obtain the vehicle dynamics model, we used a virtual road dataset using high-fidelity
data image acquisition. The acquired dataset was enhanced with random inversion, ran-
dom cropping, random mirroring, and the two-dimensional gamma function proposed in
the literature [37], to complete the description of the uniformity calibration process and
Gaussian distribution noise [38] on the road dataset. The data preprocessing description
and validation set are shown in Table 2. In the image preprocessing stage, the virtual
pavement dataset was acquired for random mirroring, cropping, and filling. However, in
the dataset, the pavement’s state was obscured by some tree guard rails, causing the created
dataset to have color shading, which made the different pavement states appear to have
similar features and made the convolutional neural network training model much more
difficult; therefore, we must perform a calibration process on these datasets. We used the
two-dimensional gamma function proposed in the above literature to complete the uniform
mapping of the road surface dataset and, finally, used the optimized network structure to
classify and output the classes to which the different pavement states belonged. Figure 7
shows the effect of the processed image.
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Table 2. Pavement classification and recognition dataset.

Type of Pavement Dataset Display Number of
Images/Times

Number of
Training

Sets/Times

Number of
Validation
Sets/Times

Number of
Test

Sets/Times

Wet asphalt
pavement

Electronics 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

  

Figure 7. Results of shaded light uniformity calibration for the roadway dataset. 

Adding a mean Gaussian distribution noise from 0 to the pixel points on the input 
images of the dataset is one way to prevent overfi ing. Subtle changes to the input images 
of the training set may degrade the accuracy, so adding noise in the processing of the data 
images can make the CNN less sensitive to subtle changes in the images and, thus, en-
hance the generalization ability of the model. We show the results of this treatment in 
Figure 8. 

  

Figure 8. Noise-processing results for the road surface dataset. 

Table 2. Pavement classification and recognition dataset. 

Type of Pavement Dataset Display 
Number of 

Images/Times 

Number of 
Training 

Sets/Times 

Number of 
Validation 
Sets/Times 

Number of 
Test 

Sets/Times 

Wet asphalt pavement 

 

1200 1000 500 150 

Dry asphalt pavement 

 

1500 800 400 150 

1200 1000 500 150

Dry asphalt
pavement

Electronics 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

  

Figure 7. Results of shaded light uniformity calibration for the roadway dataset. 

Adding a mean Gaussian distribution noise from 0 to the pixel points on the input 
images of the dataset is one way to prevent overfi ing. Subtle changes to the input images 
of the training set may degrade the accuracy, so adding noise in the processing of the data 
images can make the CNN less sensitive to subtle changes in the images and, thus, en-
hance the generalization ability of the model. We show the results of this treatment in 
Figure 8. 

  

Figure 8. Noise-processing results for the road surface dataset. 

Table 2. Pavement classification and recognition dataset. 

Type of Pavement Dataset Display 
Number of 

Images/Times 

Number of 
Training 

Sets/Times 

Number of 
Validation 
Sets/Times 

Number of 
Test 

Sets/Times 

Wet asphalt pavement 

 

1200 1000 500 150 

Dry asphalt pavement 

 

1500 800 400 150 1500 800 400 150



Electronics 2023, 12, 3370 11 of 18

Table 2. Cont.

Type of Pavement Dataset Display Number of
Images/Times

Number of
Training

Sets/Times

Number of
Validation
Sets/Times

Number of
Test

Sets/Times

Snow and ice on
roads
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Adding a mean Gaussian distribution noise from 0 to the pixel points on the input
images of the dataset is one way to prevent overfitting. Subtle changes to the input images
of the training set may degrade the accuracy, so adding noise in the processing of the data
images can make the CNN less sensitive to subtle changes in the images and, thus, enhance
the generalization ability of the model. We show the results of this treatment in Figure 8.
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3.2. VGGNet-16 Model Parameter Settings and Training Results

Table 3 shows the parameter settings of the transfer learning model based on VGGNet-16.

Table 3. Network model hyperparameter values.

Parameters Numerical Values

C 3 × 3
Padding 2 × 2

Stride 1
Dropout 0.5
Epoch 100

Batch size 8
Adam (α, β1, β2 ) 1 × 10−3, 0.9, 0.9

3.3. Pavement Output Results, Based on In-Vehicle Vision Sensors

In this paper, it has been determined that the modified model can be used for pave-
ment classification recognition; therefore, an experimental vehicle was used for pavement
acquisition and the final classification was output by the modified VGG-Net-16 transfer
learning model. Figure 9 shows the vehicle from which we conducted the pavement
experiments, along with the outputs of the pavement classification and CNN.

In summary, the network outputs regarding six kinds of pavement identification and
classification are shown, namely, dry asphalt pavement, wet pavement, snowy pavement,
concrete pavement, mountain gravel pavement, and buttress pavement. The gravel pave-
ment and buttress pavement are two kinds of complex pavement, and the recognition
effect is shown in the above figure. For complex pavement wear conditions, the gravel
road surface and connecting pavement images were treated in the pre-processing stage
by adding noise due to complex conditions, such as pavement wear and tear, resulting
in low recognition accuracy in different weather lighting conditions. The model in the
pre-processing training stage acted as the dataset for light-enhancement processing; the
first subsection of this chapter has a detailed description of the pre-processing work nec-
essary, while this section shows the output results for the six kinds of pavement. The
classification accuracy reached 96.87%. With relatively high accuracy and modest weight
space, this model is easier to deploy using domain controllers. This model provides feed-
forward information about the road surface in front of the vehicle as it travels and can also
serve as a reference for additional classification tasks that require real-time feedforward
information acquisition.

3.4. Accuracy of the Improved Network Model Versus the Original Model

We replaced the original activation function with the Leaky ReLU activation function,
residual structure, and dropout layer for the purposes of this paper. A comparison of the
accuracies of the two activation functions is shown in Table 4. To verify the high recognition
accuracy of the modified VGGNet-16 transfer learning model, different models were tested,
and the test results are shown in Table 5. The addition of a residual structure improved
the accuracy by 3.43% and 2.79% on the training and test sets, respectively, under the
same conditions. The dropout layer that was used improved the accuracy by 3.08% and
3.41%, respectively.

Table 4. Comparison of model accuracy by different activation functions.

Activation Function Training Set Accuracy Test Set Accuracy

Using ReLU activation function 94.98% 90.52%
Using Leaky ReLU activation function 98.23% 94.57%
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Figure 9. Output from a pavement classification network based on in-vehicle vision sensors. In-
structions: (a) Vision sensors and domain controllers. (b) Demonstration of installation position of
experimental vehicle and vision sensor.

Table 5. Performance effects of the original and modified structures.

Model Structure Weighted
Space

Number of Trainable
Parameters

Training Set
Accuracy

Test Set
Accuracy

No dropout layer 91.3 11.6 95.17 93.46
Residual-free structure 89.3 11.4 94.82 94.08

Improvements to VGGNet-16 91.2 11.8 98.25 96.87

3.5. Model Performance Comparison Test

In order to further validate the accuracy and recognition of the proposed combined
transfer learning and improved VGGNet-16 model for pavement classification presented in
this paper, it was compared with four other classical network models under the same test
conditions, as well as the training loss curve of the improved VGGNet-16 model. In this
paper, as can be seen from Figures 10 and 11, the accuracy curve of the VGGNet-16 transfer
learning model (VGGNet-16 transfer) converged after about 45 epochs, con-verging faster
among the models compared and allowing less time to train a better model. The loss curve
of the model reached 0.4 after 100 epochs and the LOSS curve steadily decreased as the
number of training batches increased. In this paper, the dropout layer was added to the
model improvement, and the curves show that the improved VGGNet-16 model curve was
relatively stable.
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3.6. Model Performance Comparison Test

To further illustrate the effectiveness of the improved model based on VGGNet-16
combined with transfer learning for classifying pavement discrimination built in this paper,
it was compared with four different classical convolutional neural networks under the
same dataset and hardware configuration, and the accuracy is shown in Figure 9 above. In
the model validation accuracy curve, the improved transfer learning model VGGNet-16
in this paper has a gradual smoothing trend after 45 epochs, and its convergence speed
was faster compared with the other four models. It is also possible to train a more efficient
model in a relatively short period of time.

As shown in Table 6, the VGGNet-16 transfer incorporates the residual structure
and Leaky ReLU activation function with better performance, thus achieving 98.25% and
96.87% accuracy in the training and validation sets, respectively, compared to AlexNet,
ResNet50, InceptionV3, and VGGNet-16. The accuracies of 98.25% and 96.87% on the
training and validation sets, respectively, are 1.5, 0.4, 2.08, and 0.68 higher than those
of AlexNet, ResNet50, InceptionV3, and VGGNet-16, respectively, indicating that the
pavement classification is better than that of the other models. In terms of the weight space
and the number of training parameters, the VGGNet-16 transfer model does not stack too
many layers to improve the accuracy, but freezes the weights, performs transfer learning,
and changes the parameters of the fully connected layer neurons for training; therefore, the
weight space of VGGNet-16 transfer is 91.2 MB.The average training time for the validation
set of the VGGNet-16 transfer model is 51.86 ms. The Adam optimizer chosen for this
optimization is a gradient-descent algorithm-based optimizer that combines the ideas of
momentum method and adaptive learning rate and can converge more rapidly onto the
optimal solution. The core idea of the Adam optimizer is to optimize the model more
efficiently during training by updating the parameters, based on the first-order moment
estimates and second-order moment estimates of the gradients, while adaptively adjusting
the learning rate. Compared to the original VGGNet-16 model, its accuracy, weight space,
and average time are all improved.

Table 6. Comparison table of model parameters.

Five Network
Models

Weighted
Space

Number of Training
Parameters

Training Set
Accuracy/%

Test Set
Accuracy/%

Time Taken
for Test/sec

AlexNet 164 21.6 95.28 95.37 63.17
ResNet50 180 23.5 97.46 96.47 58.15

InceptionV3 167 21.8 91.19 94.79 52.84
VGGNet-16 256 33.6 95.83 96.19 56.74

VGGNet-16 transfer 91.2 11.8 98.25 96.87 51.86

In summary, the proposed VGGNet-16 model combined with transfer learning, i.e.,
VGGNet-16 transfer, exhibited the best comprehensive performance for pavement classifi-
cation and recognition, and is, thus, more suitable for deployment in domain controllers or
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other devices than other classical networks. The speed can meet the real-time requirements
for pavement recognition and the reliability and adaptability are also better.

4. Conclusions

(1) In this paper, by introducing the Leaky ReLU activation function to replace the activa-
tion function in the original model, adding three residual structures and
two dropout inactive layers to improve the VGGNet-16 model with parameter adjust-
ment, we propose a model combining transfer learning and the improved VGGNet-16
model for pavement classification recognition. After extensive training, the accuracy
of recognition can reach 96.87%, which effectively solves the problem of low efficiency
and accuracy of traditional machine learning for pavement recognition; it senses the
type of pavement in advance and plays an important early warning role for safety.

(2) In this paper, five models are compared; the improved VGGNet-16 model shows a
larger improvement in accuracy compared to the remaining four models, but there
is still some room for improvement in terms of training time. At the same time, this
paper provides poorer results on the training set for the recognition of muddy roads
or unpaved roads, which is a direction to explore to achieve continued optimization
of the network.

To add to the second point above, in this paper, 6 kinds of road surface recognition
are employed in the dataset training. However, non-paved muddy road recognition is not
very effective at the data processing level, due to inconsistent light exposure conditions.
With the use of data light enhancement, we know that the vehicle vision sensor used to
collect information will have the biggest impact. The first issue is that the light is uniformly
different, but in the muddy road data by light enhancement, the image is still unclear. The
light distribution is not uniform; if the same comparison of the image in the dark were
made instead, the recognition would be very good. We also utilized different sections
of muddy roads for surface recognition. However, in the collected image data, the color
difference between the muddy road and the outside world is not obvious and there are few
rutted tracks. The recognition effect would be better when the muddy road contains many
rutted tracks and the road color difference from the surroundings is more obvious. In terms
of the recognition of road surface, there are two typical errors regarding these features: the
first is that the difference between the recognized road surface color and the surrounding
color is great, even after pre-processing, but there are still deviations that will lead to
recognition error. The second is that the identification of individual unpaved surfaces
will be disrupted by numerous elements, including ruts, pavement integrity issues, and
additional damage to the original fabric of the pavement, which will lead to identification
errors. By increasing the number of layers of the network, it should be possible to achieve
improved recognition accuracy; however, increasing the number of layers will increase
the weight of the network and the average training time, which is not in line with the
characteristics of real-time recognition, accuracy, and efficiency. This will be addressed in
follow-up studies. Other researchers may wish to address the problem of finding meth-
ods to perform accurate recognition for unpaved complex pavements without changing
the model.

(3) Future work will combine the method proposed in this paper with the vehicle-based
three-degree-of-freedom dynamics simulation to verify the adhesion coefficient of the
driving road surface, propose a fusion strategy based on dynamics information and
visual information, and design a study on the recognition of early warning cues and
the recognition of road surface types and adhesion coefficients.

To add to the third point above, the main aim of this paper was to use the vehicle
vision sensor to pre-empt perception of the vehicle driving road surface, but the accuracy of
this perception only reaches 96.87%, and cannot reach 100% accuracy regarding recognition
of the road surface. However, combined with the three-degree-of-freedom dynamic vehicle
model, the system can use the real-time data of the wheel speed sensor through the Carsim
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program to verify the current road surface adhesion information visually. The fusion
strategy of visual and kinetic information can verify the adhesion coefficient of the road
surface more accurately, which is estimated using a single method in the previous literature;
thus, there is a relatively large error and the estimation does not happen in real time.
The visual information has the advantage of being taken in real time and can be used
as feed-forward information in the fusion strategy, while the kinetic information can be
used as back-end validation information. In future work, this can be used to estimate the
slip rate and adhesion coefficient of the feed-forward information and can also correct the
feed-forward information.
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