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Abstract: Measuring the radar cross-section (RCS) of a far-field (FF) target in engineering can be
challenging, especially when remote measurement is difficult. To overcome this challenge, an FF
RCS can be predicted by near-field (NF)-extrapolated transformation. However, due to the relative
error between the theoretical and measured electric field (E-field) values in a NF, the extrapolation
calculation of a FF can be carried out by correcting the NF amplitude. This paper proposes the use of
the state space method (SSM) to estimate the amplitude-only of NF E-fields for improving the prediction
accuracy of FFs. The simulation results demonstrate that the SSM can estimate NF amplitude, which
can be transformed into a FF, and which can lead to improved prediction accuracy when compared to
reference-FF-calculated and to circular-NF-to-FF-transform-(CNFFFT)-calculated RCSs.

Keywords: radar cross section (RCS); state space method (SSM); near-field-to-far-field transformation
(NFFFT); circular-near-field-to-far-field transform (CNFFFT)

1. Introduction
1.1. Background and Motivation

Direct measurements of the RCS of electrically electric large objects and of the radiation
pattern of large antennas is frequently very challenging, because a RCS requires a target
object to be lit by an incident wave that is considered to be a plane wave. The relationship
R ≥ 2D2/λ, where D is the target’s real maximum size and where λ is the operating
electromagnetic (EM) wavelength, is used to determine this distance in the FF. Assuming the
target size is D = 10 m and the wavelength is λ = 0.03 m, the FF measurement distance needs
to satisfy the criterion of 6666.67 m. In such conditions, constructing a test environment up
to the kilometer scale is considerably difficult, especially for large-size targets. Therefore,
predicting a FF RCS from an NF extrapolation is an important research area. Recent studies
have demonstrated that by processing the scattered EM field detected by a scanning probe
around the target in the NF region, NF-to-FF transformation [1–4] (NFFFT) technology can
predict the target’s RCS in other regions.

The scattering behavior of EM waves is dependent on frequency, and higher-frequency
measurements typically require the use of full-scale structures instead of scale models.
Consequently, measuring medium-sized parts, let alone full-scale structures, necessitates
outdoor radar ranging. The characterization of an object using scattered radiation is
commonly referred to as a backscattering problem, and numerous solution methods can
be found in the literature. The choice of a particular solution method depends on the
features of the object that are relevant to the application. In a previous study [5], the
coherent Doppler tomography (CDT) method was utilized, to determine FF RCSs from
NF measurements. This paper highlights the challenges associated with measuring the
backscattering properties of large specimens using EM waves, and it emphasizes the need
for full-scale structure measurements, due to the frequency-dependent scattering behavior
of EM waves. However, it is important to note that any measurement system is subject
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to both theoretical and practical errors, and the paper does not address the challenges
associated with NF inversion of FF RCSs.

In the paper [6], the circular-NF-to-FF transformation (CNFFFT) method is proposed
by the authors as a technique to predict FF RCSs, using NF measurements collected on a
circular path around a target. However, the CNFFFT algorithm requires measurements
over the full 360-degree range, which may not always be feasible. To address this issue,
the authors consider the CNFFFT algorithm as an azimuthal filtering process, and they
develop a formula capable of transforming data measured over a partial rotation. The
paper provides guidelines for the NF data support required to achieve the desired accuracy
in CNFFFT results below 360 degrees. The numerical simulations presented in the paper
demonstrate that the results of this partial rotation formulation are consistent with the
full-circle CNFFT results from previous studies.

1.2. Primary Contribution

The significant contributions of this article are as follows:

(1) From a fundamental perspective, the target’s incident and reception functions in the
NF testing environment are derived, using the dyadic Green’s function. This resolves
the theoretical derivation of the received signal in complex EM environments.

(2) By considering amplitude as a crucial intensity characteristic for predicting FFs,
the amplitude feature extraction of the NF signal is achieved, using the SSM. This
addresses the coefficient calculation for near-field-to-far-field transformations.

(3) Based on the solution approach of CNFFFT, the near-field-to-far-field transformation
kernel is derived and improved. This effectively resolves the prediction of RCSs from
the NF transformation to the FF.

In this paper, a novel approach to amplitude-only estimation in the NFFFT process
is introduced, which is based on the SSM. The proposed method is compared to the
CNFFFT algorithm. The theoretical framework is presented in Section 2, followed by the
experimental setup and analysis results in Section 3. Finally, the conclusion is provided in
Section 4.

2. Methods

RCS is a critical metric used to measure the amount of radar energy scattered by an
object, and it is essential in determining the detectability of the object. To achieve precise
RCS determination, radar data collection plays a crucial role. Monostatic radar measure-
ments offer the means to acquire NF RCS measurements, facilitating the prediction of RCS
values for scattering objects with unknown properties. This prediction is reliant upon
utilizing the obtained NF RCS measurements as a foundational reference. Nonetheless,
achieving precise and reliable results necessitates the deployment of a suitable conversion
algorithm that considers crucial factors, including antenna direction and the arbitrary
measurement location of the target. Furthermore, it is vital to ensure the fulfillment of
sampling requirements, to maintain the accuracy of RCS measurements. In a study con-
ducted by the authors [7], a method was proposed for accurately modeling the behavior
of NF scattering, which is utilized in this study. The method involves a radiation reflector
model and a multilevel-plane-wave decomposition approach. By decomposing the incident
waves into multiple plane waves with varying frequencies and velocities, and considering
the scattering waves as emanating from a set of reflectors, the intricate relationship of
NF scattering is effectively captured. The proposed method provides a comprehensive
framework for analyzing and comprehending the complex interactions between incident
waves and scattering objects in a NF region.

The model to this method comprises four key aspects:

(1) The representation of the object involves a hierarchical structure of recognized or
anticipated shapes of scattering centers.

(2) A model is established to illustrate the relationship between the incident wave and
the scattered wave.
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(3) The computation of the RCS necessitates solving a set of linear equations.
(4) Based on the results obtained from step (3), the RCS of the object is subsequently

calculated.

2.1. NF Linearized Scattering Model

The NF structure of the antenna under test (AUT) in relation to an unidentified test
object surface is depicted in Figure 1. Within this configuration, each scattering point is
associated with its specific propagation vector ki, which is oriented towards the center of the
corresponding facets. This implies that each scattering point can be treated as an individual
incident field Ei. The spatial domain in this study is represented by the three-dimensional
(3D) coordinates (x, y, z) with the distance vector r indicating the separation between the
scattering center point and the transmitting point. The distance vector of scattering center
and the i-th scattering point can be written as

r = xêx + yêy + zêz (1)

ri = xi êx + yi êy + zi êz (2)

where (êx, êy, êz) is the unit vector along itself direction.

TX

RX

inU

mU

ir
r

r
o

x

y

z

iE

sE

Figure 1. The design of the antenna configuration used for NF testing of the target.

The general bistatic scenario, as depicted in Figure 1, provides the basis for modeling
the linearized forward operator equations. These equations can then be adapted for the
monostatic case. In this setup, the equivalent current density distribution Js in free space
corresponds to the radar antenna operating in transmit mode. It has been normalized
concerning the excitation voltage U in at the antenna feed port. This normalization process
results in the following equation, as documented in [7].

Js(r) = U in(r)wT(r) (3)

where wT represents an transmitted impedance weighting formula determined by the
reference coordinate system.

The incident field Ei(r) at the scatterer, induced by the current distribution, can
be expressed using the dyadic Green’s function Gn(ri, r) of free space, as shown in the
following formula:

Ei(r) = − jkZF
4π

∫∫∫
VT

Gn(ri, r)Js(r)d
3r (4)

Gn(ri, r) =
(

Ī+
1
k2∇∇

)
exp(−jk‖ri − r‖)

‖ri − r‖ (5)
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Herein, the symbol VT in Equation (4) is determined by the spatial extent of the scatterer
during transmission. The symbol ZF represents the characteristic impedance of free space.
The scalar wave number k in equation (4) is the absolute value of the wave number vector k,
where k is defined as k = kx êx + ky êy + kz êz in Equation (5). The magnitude of k, denoted

as |k|, is calculated as
√

k2
x + k2

y + k2
z. The operator ∇ represents the gradient operator, and

Ī is the unit dyad. Additionally, ‖ri − r‖ denotes the norm of distance vector between the
target and the transmitting antenna under test (AUT). To simplify the computation, the
exponential term in Equation (5) can be evaluated using the provided Equation [8].

exp(−jk‖ri − r‖)
‖ri − r‖ =

∫ ∫ +∞

−∞

−j
2πkz

e−jkz |zi−z|e−jkx(xi−x)e−jky(yi−y)dkxdky (6)

where

kz =


√

k2 − k2
x − k2

y, f or k2 > k2
x + k2

y

−j
√

k2
x + k2

y − k2, f or k2 < k2
x + k2

y
(7)

In a similar manner, the dyadic Green’s function of a receiving field in free space can
be expressed as follows.

Gn′(ri, r′) =
(

Ī+
1
k2∇∇

)
exp(−jk‖ri − r′‖)

‖ri − r′‖ (8)

where the 3D distance vector in space between the source point and the receiving antenna
is denoted by r′. The NF scattering signal received by the antenna can be obtained by the
following expression.

Es(r′) =
∫∫∫

V

αiGn′(ri, r′)Ei(r)κ̄(r′)d3r′ (9)

where V in Equation (9) is determined by the spatial extent of the scatterer, the coefficient
αi represents the magnitude of the i-th component, the polarization phase term κ̄(r′) =
exp(jk · r′) is utilized to relocate the phase reference center of the target scattering function
from the radar receiving antenna to the center of the target. By utilizing this term, the
phase alignment can be adjusted, thereby facilitating the accurate localization of the target
scattering characteristics. The polarization phase term plays a crucial role in ensuring that
the phase reference center of the target scattering function is properly aligned with the
radar receiving antenna. This alignment is essential for achieving a precise and reliable
localization of the target’s scattering properties. The phase adjustment provided by this
term allows for a more accurate analysis and interpretation of the scattering behavior,
leading to enhanced understanding and characterization of the target’s EM response.

The voltage measured Um at the receiving antenna can be expressed as a function of
the scattering field and the weighting function wR(r′) of the receiving impedance, based
on the Born approximation [9] and reciprocity, resulting in

Um =
∫∫∫
VR

wR(r′)Es(r′)d3r′ (10)

where VR in Equation (10) is determined by considering the spatial extent of the scatterer
as observed by the receiving system.

To optimize the error between the actual measured voltage and the theoretically
derived receiving field voltage, the amplitude αi correction can be estimated using an
objective function constructed from the E-field values, which will be discussed in the
Section 2.2.
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2.2. Estimation of Magnitude

The auto-regressive moving average model [10,11], which has both auto-regressive
and moving average structures can be stated as follows in terms of linear systems and
control theory:

Ei(n + 1) = AEi(n)

Es(n) = ΨEi(n) + Θε(n)
(11)

where the n-th component of the Ei(r) and Es(r′), respectively, is Ei(n) and Es(n). A ∈
CM×M denotes the open-loop matrix, Ψ ∈ CM×1 and Θ ∈ C1×M are the coefficient of
regressors, white noise with no time dependence and a mean of zero is represented by the
function ε(n).

To compute the triplet (A, Ψ, Θ), the SSM is used to construct a Hankel matrix H based
on N measurements. It can be expressed as

H =


Es(1)
Um

Es(2)
Um

· · · Es(L)
Um

Es(2)
Um

Es(3)
Um

· · · Es(L+1)
Um

...
...

...
...

Es(N−L+1)
Um

Es(N−L+2)
Um

· · · Es(N)
Um

 (12)

where Es(N)
Um

represents the normalization under the same measured voltage, the component
Es(N) represents a specific portion of the field Es(r′), the value in brackets corresponds
to the largest integer that is less than or equal to the provided value. The length of
the correlation window is denoted as L, and in order to determine the value of N, it
is heuristically set to be equal to half of the window length, i.e., N = [L/2]. Subspace
decomposition techniques utilize the eigen-structure of Hankel matrices to estimate the
parameters of linear time-invariant(LTI) signal models [12].

To extract the relevant signal components, the application of the singular value decom-
position (SVD) to the matrix H leads to a decomposition of the form H̃ = UsnΣsnV∗sn, where
the subscript ’sn’ to denote the signal component corrupted by noise, the left-unitary matrix
Usn and the conjugate transpose of the right-unitary matrix V∗sn are orthogonal matrices,
and Σsn is a diagonal matrix with singular values on the diagonal. The SVD allows us to
analyze the contributions of each singular value to the overall signal representation and
identify the dominant signal components.

Furthermore, the matrix H can be further factorized by employing the balanced
coordinate transformation, as described in the work by reference [13]

H̃ = Ω̃Γ̃ (13)

where the finite-rank observability matrix is denoted as Ω̃ = UsnΣ1/2
sn , and the control-

lability matrix is represented by Γ̃ = Σ1/2
sn V∗sn. This transformation allows for a more

refined decomposition of H into its constituent parts, providing a more comprehensive
understanding of the underlying signal structure. By applying the balanced coordinate
transformation, the matrix H can be expressed as a product of matrices that capture the
specific characteristics and relationships within the signal data. This factorization technique
enhances the interpretability and analytical capabilities of the signal processing algorithm.

Additionally, the open-loop matrix A can be derived by employing the observability
matrix Ω̃, which captures the relationships of the system.

A = (Ω̃∗−r`Ω̃−r`)
−1

Ω̃∗−r`Ω̃−r1 (14)

where the matrices Ω̃−r` and Ω̃−r1 are modified versions of matrix Ω̃, with the final
and first rows removed, respectively. By utilizing the observability matrix, the necessary
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information about the system’s observability can be extracted, enabling the calculation of
the open-loop matrix A. Furthermore, the eigenvalues of matrix A can be computed as

λ{A} = {λ1, λ2, · · · , λM} (15)

In engineering applications that involve linear transformations or LTI systems, a
sequence of input vectors corresponds to a sequence of output vectors. Each input vector is
considered as the input to an LTI system, and the associated eigenvalue can be interpreted
as the amplification factor of the linear system input. By considering the eigenvalue as its
gain, the estimation of signal amplitude can be achieved, and this can be accomplished by
employing Equation (14).

αi = −
log|λi|

∆ϕ
(16)

where ∆ϕ represents the angular difference between the azimuth of the target and the
increment angle of EM wave radiation.

2.3. Near-Field-to-Far-Field Transformation

To obtain scattering data in the FFs, complex processing is necessary for the radiation
field at each angle. Suppose the FF distance vector is denoted as rFF, and the convolution
kernel function K(rFF) of the FF transform is convolved with the NF scattering signal for
all transmission and reception angles. This convolution process yields the scattering signal
of the FF E-field, which is expressed by [14].

Es(rFF) = Es(r′) ∗K(rFF) (17)

where the interaction between the incident plane wave and the scattering object in the FF
region is described by an equation that involves the convolution operation, represented by
the asterisk symbol. This equation captures the scattering phenomena and allows for the
analysis of the scattered field in the FF region. Mathematically, it can be expressed as

Es(rFF) =
∫∫∫

V

αiGn(rFFi , rFF)Ei(rFF)κ̄(rFF)d3rFF (18)

where V in (18) represents the integration volume of FF target, the vector rFFi represents
the i-th coordinate vector in the FF region, κ̄(rFF) = exp(−jk · rFF) represents the FF
polarization phase term, the magnitude αi can be obtained by performing the inverse
Fourier Transform (IFT) on Equation (9), resulting in

αi =
F−1[Es(r′)]

Gn′(ri, r′)Ei(r)
(19)

The incident E-field in the FF region for the target can be acquired using the FF dyadic
Green function Gn(rFFi , rFF), serving as

Ei(rFF) = −
jkZF
4π

∫∫∫
VT

Gn(rFFi , rFF)Js(rFF)d3rFF (20)
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Next, substitute Equations (19), (20) into Equation (18), we have

Es(rFF) = F

[
F−1[Es(r′)]

Gn′(ri, r′)Ei(r)
Gn(rFFi , rFF)Ei(rFF)

]

= F

[
Gn(rFFi , rFF)Ei(rFF)

Gn′(ri, r′)Ei(r)
F−1[Es(r′)

]]
= F

[
ωiF−1[Es(r′)

]]
(21)

where the Fourier Transform (FT) is denoted by the symbol F[·]. In this case, ωi represents
the NF-to-FF ratio, and the relationship between them can be formulated as follows:

ωi =
Gn(rFFi , rFF)Ei(rFF)

Gn′(ri, r′)Ei(r)
(22)

Subsequently, the convolution kernel function described in Equation (17) can be
expressed as

K(rFF) = F[ωi] (23)

3. Simulation, Analysis and Calibration Discussion

To assess the rationality of the proposed method based on the existing research foun-
dation [15,16], a target model for FEKO simulation is established, as depicted in Figure 2,
with a frequency of 2 GHz. The simulation process is configured within a monostatic envi-
ronment, where equal integration volumes are employed for transmission and reception,
regardless of whether it is in the NF or FF conditions. Specifically, in both the NF and FF,
VT = VR. Using the method proposed in this paper, the following three experiments are
conducted to compute the NF and FF results through simulation and analysis.

Figure 2. The geometry model of test target.

(1) The E-fields and RCS values are computed at different distances in the NF, which the
magnitudes are extracted based on the proposed SSM estimation method, and the
E-fields and RCS values in the FF are derived.

(2) The RCS values transitioning from the NFs to the FF are calculated, along with the
E-fields and RCS values simulated independently in the FF. A comparison is made
between the RCS corrected with the NF magnitude extracted by SSM and the NFFFT
predicted RCS values without extracting the NF magnitude, and the error is calculated.
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(3) The E-fields and RCS values simulated independently in the FF serve as reference
data for comparison. The NFFFT corrected with the NF magnitude extraction and the
classic CNFFFT calculations are contrasted.

3.1. Experiment 1

At the position of the target point source depicted in Figure 1, the complex model
phenomenon of multiple zeros and peaks in the monostatic reflectivity arrangement of
point scatterers necessitates the sampling of the complex signal of the target response.
This ensures that each point scatterer is associated with a randomly generated complex
reflectance coefficient following a normal distribution. To obtain experimental results of
RCS at different distances in the NF, it is necessary to construct the NF scattering data
of the target. The target size is set to 2 m, and the frequency is set to 2GHz, consistent
with the FEKO configuration, based on the proposed NF model theory method in this
paper. The distances are defined as NF1 = 1 m, NF2 = 10 m, NF3 = 25 m, and NF4 = 50 m.
Multiple scattering centers can be employed for integration and summation to acquire the
NF E-field scattering data for the target. The RCS values are then calculated based on the
NF computation formula as follows:

σNF = lim
r→∞

4πr2 |Es(r′)|2∣∣∣Ei(r)
∣∣∣2 (24)

The NF scattering E-fields and RCSs are simulated for four distinct scattering distances,
taking into account the HH and VV polarization modes. The distances, denoted as NF1,
NF2, NF3, and NF4, are arranged in increasing order from short to long. Figure 3 illustrates
the NF scattering E-fields, while Figure 4 displays the corresponding RCSs. It is evident
from the figures that as the distance increases, the values of the E-fields decrease, and the
RCSs exhibit corresponding variations.

0 100 200 300

Azimuth(°)

-50

-40

-30

-20

-10

E
-F

ie
ld

(d
B

V
/m

)

1m_HH

10m_HH

25m_HH

50m_HH

0 100 200 300

Azimuth(°)

-45

-40

-35

-30

-25

-20

-15

-10

E
-F

ie
ld

(d
B

V
/m

)

1m_VV

10m_VV

25m_VV

50m_VV

(a) (b)

0 100 200 300

Azimuth(°)

-50

-40

-30

-20

-10

E
-F

ie
ld

(d
B

V
/m

)

1m_HH

10m_HH

25m_HH

50m_HH

0 100 200 300

Azimuth(°)

-45

-40

-35

-30

-25

-20

-15

-10

E
-F

ie
ld

(d
B

V
/m

)

1m_VV

10m_VV

25m_VV

50m_VV

(a) (b)

Figure 3. (a) NF E-Field in HH polarization mode; (b) NF E-Field in VV polarization mode.

Based on the theory presented in Section 2, the NF amplitude is extracted using the
SSM method to achieve optimal FF transformation. The construction of the Hankel function
relies on the NF scattering field at the corresponding distance. For computational simplicity,
the voltage parameter in Equation (10) can be replaced with the E-field. The numerator
of the Hankel function is computed using FEKO, while the denominator corresponds to
actual measurement values. The main SVD extraction process enables accurate estimation
of the amplitude.
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Figure 4. (a) NF RCS in HH polarization mode; (b) NF RCS in VV polarization mode.

To perform the near-field-to-far-field transformation, the kernel specified in
Equation (23) is employed to convert the NF E-field into the FF RCS. The FF input voltage
U in(rFF) is approximated by the NF excitation voltage U in(r), and Ei(r) is obtained using
Equation (4). Subsequently, the kernel is derived by substituting the distance of the NF into
the dyadic Green function presented in Equations (5) and (8), followed by applying the FT.
Finally, the FF RCS can be computed by substituting the near-field-to-far-field kernel into
Equation (17), leading to

σFF = 4π
|Es(rFF)|2∣∣∣Ei(rFF)

∣∣∣2 (25)

Figures 5 and 6 present the FF E-field and RCS, respectively. In these figures, the NF
simulated data are depicted by the red line, while the FF results obtained using FEKO
are represented by the black line. The blue line in both figures corresponds to the results
of the near-field-to-far-field transformation, which the FF distance in the transformation
simulation procedure is set to 1000 m. Notably, the near-field-to-far-field transformation
exhibits superior accuracy compared to the FF RCSs, not only in the HH polarization mode
but also in the VV mode.
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Figure 5. The E-Field comparison of the NF, FF, and near-field-to-far-field transformations: (a) HH
polarization mode; (b) VV polarization mode.
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Figure 6. The RCS comparison of the NF, FF, and near-field-to-far-field transformations: (a) HH
polarization mode; (b) VV polarization mode.

3.2. Experiment 2

In Section 3.1, the near-field-to-far-field transformations are simulated by the principles
outlined in this paper. To accurately represent the NF characteristics of the target, the NF
data transformed into the FF domain are simulated using FEKO software. The simulation
involved configuring the relevant NF parameters, including three distances NF1 = 1 m,
NF2 = 10 m, and NF3 = 25 m.

Furthermore, the predicted results obtained from Section 3.1 are refined by incorporat-
ing the amplitude estimation derived from the SSM method. This additional step aimed
to improve the accuracy of the predictions. To evaluate the effectiveness of the proposed
approach, a comprehensive analysis is conducted by comparing the errors between the
theoretical simulations and the FEKO simulations.

In order to observe the impact of the NF-to-FF transformation, the FF results are
obtained in both HH and VV polarization modes. Figure 7 illustrates the simulation results,
showcasing different data sets. The NF1 data are represented by the red lines, the NF2
results are depicted by the black lines, and the NF3 results are also displayed using green
dotted lines. Additionally, the blue lines represent the predicted results obtained through
the simulation using FEKO. The comparison of these results allows for an assessment of
the accuracy and efficacy of the proposed approach.
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Figure 7. The NF data and FF data were simulated using FEKO: (a) HH mode; (b) VV mode.

The analysis of the figures depicted in Figures 3–6 leads to the conclusion that as the
distance separating the target and the measurement device increases, the NF RCSs exhibit
a closer resemblance to the FF RCSs. This observation is attributed to the relationship
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between the square of the NF distance and the NF scattering field, which allows for the
approximation of the NF E-field and RCS to the FF RCS.

To distinguish between the results obtained from NFFFT and the simulation performed
in FEKO, the NF amplitude estimated by SSM is utilized to adjust the NF data simulated
in FEKO. As a result, corrected values for the FF reference are obtained. A comparison
is subsequently made between these corrected values and the data predicted by NFFFT,
as derived in this paper. The error is calculated to assess the advantages of the proposed
method in this study.

Err = 10 log 10
(
‖σ1 − σ2‖2

2

)
(26)

A strong correlation is evident between the RCS acquired from the near-field-to-far-
field transformation and the amplitude correction line, as illustrated in Figures 8 and 9 for
various polarization modes in relation to the E-field. The effectiveness of the SSM method
in estimating amplitudes is confirmed by conducting error calculations, which establish a
high level of agreement with the theoretical framework put forth in this investigation.
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Figure 8. The comparison of the NF, near-field-to-far-field transformations prediction, FF reference
correction and error in HH mode: (a) E-Field; (b) RCS.

0 100 200 300

Azimuth (°)

-50

-40

-30

-20

-10

E
-F

ie
ld

(d
B

V
/m

)

NF_VV Correction

Error

0 100 200 300

Azimuth(°)

-100

-80

-60

-40

-20

0

20

R
C

S
(d

B
s

m
)

NF_VV

Prediction

Correction

Error

(a) (b)

Prediction

Figure 9. The comparison of the NF, near-field-to-far-field transformations prediction, FF reference
correction and error in VV mode: (a) E-Field; (b) RCS.

3.3. Experiment 3

To further validate the effectiveness of the method proposed in this paper, the CNFFFT
method is introduced for comparison under the same parameter configuration. According
to the introduction of CNFFFT in reference [2], the algorithm filters the data based on the
rotation angle around the target along a circular path. It predicts the FF RCS using the
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collected NF measurement results and also improves the ability to transform data that
are not measured within a complete 360-degree rotation. This is particularly useful in
scenarios where it is impractical to collect data with a complete rotation. Therefore, a
direct comparison with the method proposed in this paper can be made. The CNFFFT
convolution kernel, as described in the literature, operates on similar principles to the
near-field-to-far-field transformation kernel presented in this paper. Both kernels play
crucial roles in the FF transformation process.

In this experimental setup, the FF reference E-field and RCS are carefully configured
for both HH and VV polarization modes, specifically to showcase the transformation
outcomes of the CNFFFT approach. These results are then juxtaposed with the corrected
signals derived from Section 3.2, as illustrated in Figures 10 and 11. The reference signal
originating from the FF is represented by the red line, while the signal generated by CNFFFT
is depicted by the blue line. Notably, the trends exhibited by these two lines are remarkably
similar. On the other hand, the green line corresponds to the signal projected by the near-
field-to-far-field transformation utilizing the amplitude extracted through the SSM method,
as expounded in this paper. Upon careful examination of the figure, it becomes evident
that the prediction accuracy achieved by this approach surpasses that of both the reference
and CNFFFT signals.
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Figure 10. The NFFFT derived from the estimation of NF amplitude in HH mode compare with the
reference of FF and CNFFFT: (a) E-Field; (b) RCS.
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Figure 11. The NFFFT derived from the estimation of NF amplitude in VV mode compare with the
reference of FF and CNFFFT: (a) E-Field; (b) RCS.

In summary, the proposed method outlined in this paper effectively enhances the
precision of FF RCS prediction based on NF measurements.
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3.4. Calibration Discussion

Real-world applications introduce a range of challenges that can influence the perfor-
mance of the NFFFT method. These challenges encompass factors such as measurement
noise, environmental interference, and the complexity of the measurement setup.

The pivotal role of calibration in the successful application of the NFFFT method is
highlighted. Calibration ensures the proper characterization of the measurement system
and setup, leading to precise transformation results. The significance of calibration and the
potential impact of calibration errors on the final FF results are discussed. Additionally, dif-
ferent calibration techniques that can be employed to improve the transformation process’s
precision are explored.

In real-world scenarios, measurement artifacts may arise as a result of imperfections
in the measurement equipment or environmental conditions. These artifacts can negatively
affect the NFFFT, resulting in inaccuracies in the final results.

Drawing from the insights obtained through our research, practical recommendations
are provided for researchers and practitioners to effectively apply the NFFFT method in
real-world settings. These recommendations encompass best practices for measurement
setup, calibration procedures, data preprocessing, and result validation.

4. Conclusions

The present study encompasses a comprehensive investigation into radar signal pro-
cessing, with a specific focus on the estimation of the NF magnitude and its subsequent
application in the inversion of the RCS from NFs to FFs. Theoretical values for the inci-
dent and scattered E-fields of the target, as well as the received field voltage, are derived
and analyzed.

To bridge the gap between theoretical values and practical measurements, a novel
approach utilizing the SSM is introduced to estimate the NF magnitude. This technique
proves to be instrumental in accurately predicting the FF inversion, thereby mitigating
discrepancies between theoretical expectations and actual measurements. The effectiveness
of estimating the NF magnitude is demonstrated through a series of simulation experi-
ments, which highlight the improvements in the accuracy of FF RCSs achieved through
this approach.

The contributions of this work are threefold. Firstly, a comprehensive scattering model
for NF targets is derived, providing a solid theoretical foundation for subsequent analyses.
Secondly, the utilization of the SSM technique for the estimation of the NF magnitude
is proposed, offering a robust and efficient method for amplitude-only estimation in the
NF-to-FF transformation process. This contribution enhances the accuracy of FF inversion,
leading to more reliable RCSs predictions. Lastly, a detailed derivation of the NF inversion
for FF RCS is presented, further solidifying the theoretical framework and providing
valuable insights into the underlying principles of the transformation process.

Overall, this study significantly advances our understanding of radar signal processing,
particularly in the context of NF-to-FF transformation and RCS estimation. The derived
theoretical models, coupled with the proposed SSM-based approach, contribute to the
improvement of accuracy and reliability in predicting FF RCSs from NF measurements. The
methods presented in this paper reveal certain aspects that demand further investigation
in future research. One such aspect is the utilization of the discrete Fourier transform for
(inverse)-Fourier transforms required in CNFFFT, which warrants additional discussion.
These findings have implications for a wide range of applications in radar systems and
signal processing, paving the way for further advancements in the field.
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