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Abstract: The approximation of the frequency behavior of fractional-order, power-law, and double-
order filters can be performed by the same rational integer-order transfer function. This can be
achieved through the utilization of a curve fitting based approximation. Moreover, their implemen-
tation can be performed by the same core, by only changing the corresponding time constants and
scaling factors. The aforementioned findings are experimentally verified using a Field Programmable
Analog Array device.
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1. Introduction

Non-integer order filters can be categorized as follows: (a) fractional-order (FO) filters,
where the Laplacian operator is raised to a (non-integer) power, (b) power-law (PL) filters,
where, instead of employing non-integer forms of the Laplacian operator, the associated
integer-order transfer function (also known as the mother function) is raised to a power, and
(c) double-order (DO) filters, which combine the employment of the fractional Laplacian
operator and of the whole transfer function raised to a power. All these types of filters
offer design flexibility because of the extra degree(s) of freedom caused by the non-integer
order(s), which appear in their transfer functions. These include the scaling of the time
constants and the adjustment of the slope of the gain during the transition from the pass-
band to the stop-band of the filter [1].

A significant research effort has been devoted to realizing FO, PL, and DO filters, in
which various types of active elements have been utilized, including Operational Ampli-
fiers (Op Amps), Current Conveyors (CCIIs), Current Feedback Operational Amplifiers
(CFOAs) etc. [2–9]. These solutions do not offer programmability and, taking into account
the nowadays deamand for having available re-configurable structures, programmable
filters are preferable. In [10], FO filters were implemented and their programmability was
achieved using a Field Programmable Analog Array (FPAA) device. This device has also
been used in [11] for implementation of PL filters. In addition, a comparison of the behavior
of FO and PL filters, in terms of the realized cut-off frequency, was carried out in that work.
A programmable DO filter structure was introduced in [12], where the transconductance pa-
rameter of the Operational Transconductance Amplifiers (OTAs) was employed to achieve
adjustable frequency characteristics. This type of active element was also employed in [13]
for implementation of FO, and in [14] for implementation of PL filters.

The main contributions made in this work are the following: (a) all possible versions
of non-integer order filters (i.e., FO, PL, and DO) are considered and studied concerning
the effect of the location of the half-power frequency with regards to the pole frequency,

Electronics 2023, 12, 3427. https://doi.org/10.3390/electronics12163427 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163427
https://doi.org/10.3390/electronics12163427
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-6222-6448
https://orcid.org/0000-0002-0817-7228
https://orcid.org/0000-0002-3972-5434
https://doi.org/10.3390/electronics12163427
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163427?type=check_update&version=2


Electronics 2023, 12, 3427 2 of 13

(b) a common procedure for obtaining the approximation transfer function, independently
from the type and the order of the filter, is employed, through the deployment of a curve
fitting based approximation, and (c) an FPAA based versatile implementation, which is
capable of realizing all the aforementioned types of filter functions without any change of
the structure, is performed.

The work is organized as follows. The comparative study between the types of non-
integer filter functions is performed in Section 2, and the problem of the approximation of
their transfer functions by rational integer-order functions is discussed in Section 3. The
implementation of the generalized filter is demonstrated in Section 4, where the obtained
experimental results are also provided.

2. Non-Integer Order Filters
2.1. Low-Pass Filters

Starting from the conventional (i.e., integer-order) low-pass filter (LPF), with pole
frequency ω0 described by (1):

HLP(s) =
ω0

s + ω0
, (1)

its gain and phase responses are given by (2) and (3) as:

|HLP(ω)| = 1√(
ω
ω0

)2
+ 1

, (2)

∠HLP(ω) = − tan−1
(

ω

ω0

)
. (3)

The half-power frequency (ωh), also known as −3 dB frequency, is equal to the pole
frequency (ωh = ω0), while the phase at this frequency becomes equal to −π/4. The slope
of the transition from the pass-band of the filter to the stop-band is fixed and equal to
−20 dB/dec.

The corresponding fractional-order low-pass filter (FO-LPF) is described by the trans-
fer function in (4):

HFOLP(s) =
ωα

o
sα + ωα

0
, (4)

with 0 < α < 1 being the order of the filter. Setting sα = ωα[cos(0.5πα) + j sin(0.5πα)] in
(4), its magnitude and phase responses are provided by (5) and (6):

|HFOLP(ω)| = 1√(
ω
ω0

)2α
+ 2
(

ω
ω0

)α
cos( απ

2 ) + 1

, (5)

∠HFOLP(ω) = − tan−1


(

ω
ωo

)α
sin( απ

2 )(
ω
ω0

)α
cos( απ

2 ) + 1

 . (6)

The associated half-power frequency, as well as the phase at this frequency, are given by (7)
and (8) respectively:

ωh,FOLP

ω0
=

[√
1 + cos2(

απ

2
)− cos(

απ

2
)

]
1/α, (7)
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∠HFOLP(ωh,FOLP) = − tan−1

 sin( απ
2 )

2 cos( απ
2 ) +

√
1 + cos2( απ

2 )

 . (8)

It must be mentioned at this point that the half-power and the pole frequencies are different,
and their relative distance is determined by the order of the filter. In addition, the slope
of the transition from the pass-band of the filter to the stop-band is variable because it is
given by the formula −20 · α dB/dec.

The power-law low-pass filter (PL-LPF) is derived by raising the transfer function in
(1) to a non-integer power 0 < β < 1; therefore,

HPLLP(s) =
(

ω0

s + ω0

)β

. (9)

Setting s = jω in (9), the expressions of the gain and phase responses, as well as of the
half-power frequency and its associated phase, are summarized in (10)–(13):

|HPLLP(ω)| = 1[(
ω
ω0

)2
+ 1
]β/2 , (10)

∠HPLLP(ω) = −β · tan−1
(

ω

ω0

)
, (11)

ωh,PLLP

ω0
=
√

21/β − 1 , (12)

∠HPLLP(ωh,PLLP) = −β · tan−1
(√

21/β − 1
)

. (13)

The distance between the half-power frequencies is determined by the order of the filter
and this is true for the gradient between the pass-band and the stop-band of the filter,
which is equal to −20 · β dB/dec.

Generalizing the above, the double-order low-pass filer is described by (14):

HDOLP(s) =
(

ωα
0

sα + ωα
0

)β

, (14)

and, therefore, the derived expressions of the gain and phase responses are

|HDOLP(ω)| = 1[(
ω
ω0

)2α
+ 2
(

ω
ω0

)α
cos( απ

2 ) + 1
]β/2 , (15)

∠HDOLP(ω) = −β · tan−1


(

ω
ω0

)α
sin( απ

2 )(
ω
ω0

)α
cos( απ

2 ) + 1

 . (16)

Using (15) and (16), the half-power of the filter is given by (17):

ωh,DOLP

ω0
=

[√
21/β − sin2(

απ

2
)− cos(

απ

2
)

]1/α

, (17)
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while the phase at this frequency is given by (18):

∠HDOLP(ωh,DOLP) = −β · tan−1


(

21/β − 1
)

sin( απ
2 )

21/β cos( απ
2 ) +

√
21/β − sin2( απ

2 )

 . (18)

The variation in the half-power frequency with the order of an FO-LPF (α) and of a
PL-LPF (β), calculated using (7) and (12), respectively, are plotted in Figure 1a.

ω
h/

ω
0

0.01

0.1

1

10

order (α, β)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 FO
 PL

(a) (b)

Figure 1. Variation in the half-power frequency of (a) FO-LPF and PL-LPF as a function of the order
α, and (b) DO-LPF as a function of the orders (α, β).

The main difference between the fractional-order and power-law filters is the relative
position of the half-power frequencies ωh with respect to the pole frequency ω0. As the
order decreases with regards to its maximum value (which is equal to one), the cut-off
frequency of the fractional-order filter becomes smaller than that which corresponds to the
maximum value of the order (equal to ω0). The opposite situation holds in the case of the
power-law filter.

In the case of DO-LPF, the orders α and β can be considered as two degrees of freedom,
and the relationship between the cut-off frequency and the orders of the filter can be
illustrated in a three-dimensional graph, as shown in Figure 1b. By changing the orders α
and β, the cut-off frequency can be smaller or greater than the characteristic frequency ω0.
According to (17), for values of orders near to zero, the cut-off frequency is extremely large,
while, for values of order equal to one, it is equal to the characteristic frequency ω0.

Considering, for example, α = 0.3, 0.5, 0.7, the values of the half-power frequency of a
DO-LPF, calculated using (17), are summarized in Table 1. The corresponding values of the
slope are provided in Table 2.

The corresponding values of the half-power frequency in the case of FO-LPFs of orders
0.3, 0.5, and 0.7 are 0.069 rad/s, 0.268 rad/s, and 0.533 rad/s, respectively. In the case
of PL-LPFs the values are 3.013 rad/s, 1.732 rad/s, and 1.301 rad/s. The values of the
associated slopes are −6 dB/dec, −10 dB/dec, and −14 dB/dec in both types of filters.
Therefore, it is concluded that the cut-off frequency can be set using one of the orders of the
filter and, at the same time, the slope can be adjusted by using the other order, whereas, in
the FO-LPF and PL-LPF, the cut-off frequency and the slope are simultaneously determined
by the order.
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Table 1. Values of the half-power frequency of a DO-LPF with ω0 = 1 rad/s.

Cut-Off Frequency (rad/s)

Order (β) α = 0.3 α = 0.5 α = 0.7

0.2 179.852 24.063 10.345

0.3 14.952 5.702 3.901

0.4 3.401 2.445 2.226

0.5 1.202 1.354 1.513

0.6 0.541 0.862 1.130

0.7 0.284 0.598 0.893

0.8 0.165 0.440 0.733

0.9 0.103 0.338 0.619

1 0.069 0.268 0.533

Table 2. Values of the slope of the transition between the pass-band and the stop-band of a DO-LPF.

Slope (dB/dec)

Order (β) α = 0.3 α = 0.5 α = 0.7

0.2 −1.2 −2.0 −2.8

0.3 −1.8 −3.0 −4.2

0.4 −2.4 −4.0 −5.6

0.5 −3.0 −5.0 −7.0

0.6 −3.6 −6.0 −8.4

0.7 −4.2 −7.0 −9.8

0.8 −4.8 −8.0 −11.2

0.9 −5.4 −9.0 −12.6

1 −6.0 −10.0 −14.0

2.2. High-Pass Filters

Considering the integer-order high-pass filter (HPF), which has a pole frequency ω0
equal to the half-power frequency (ωh), with a transfer function given by (19):

HHP(s) =
s

s + ω0
. (19)

Its gain and phase responses, obtained from (19) by setting s = jω, are given, respectively,
by (20) and (21):

|HHP(ω)| =
ω
ω0√(

ω
ω0

)2
+ 1

, (20)

∠HHP(ω) =
π

2
− tan−1

(
ω

ω0

)
. (21)

The phase at this frequency becomes equal to +π/4, while the slope of the transition from
the pass-band of the filter to the stop-band is equal to +20 dB/dec.

The fractional-order high-pass filter (FO-HPF) is described by the transfer function
in (22):

HFOHP(s) =
sα

sα + ωα
0

, (22)
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and its magnitude and phase responses are

|HFOHP(ω)| =

(
ω
ω0

)α√(
ω
ω0

)2α
+ 2
(

ω
ω0

)α
cos( απ

2 ) + 1

, (23)

∠HFOHP(ω) =
απ

2
− tan−1


(

ω
ωo

)α
sin( απ

2 )(
ω
ω0

)α
cos( απ

2 ) + 1

 . (24)

Using (23) and (24), the half-power frequency, as well as the phase at this frequency, are
given by (25) and (26):

ωh,FOHP

ω0
=

[√
1 + cos2(

απ

2
) + cos(

απ

2
)

]
1/α, (25)

∠HFOHP(ωh,FOHP) =
απ

2
− tan−1

 sin( απ
2 )

2 cos( απ
2 ) +

√
1 + cos2( απ

2 )

 . (26)

The slope of the transition from the pass-band of the filter to the stop-band is +20 · α dB/dec.
The transfer function of the power-law high-pass filter (PL-HPF) is

HPLHP(s) =
(

s
s + ω0

)β

, (27)

and the corresponding expressions are summarized in (28)–(31):

|HPLHP(ω)| =

(
ω
ω0

)β

[(
ω
ω0

)2
+ 1
]β/2 , (28)

∠HPLHP(ω) = β ·
[

π

2
− tan−1

(
ω

ω0

)]
, (29)

ωh,PLHP

ω0
=

1√
21/β − 1

, (30)

∠HPLHP(ωh,PLHP) = β ·
[

π

2
− tan−1

(
1√

21/β − 1

)]
. (31)

The distance between the half-power and pole frequencies is determined by the order
of the filter; in addition, the gradient between the pass-band and the stop-band of the filter
is equal to +20 · β dB/dec.

Again, the main difference between the fractional-order and power-law filters concerns
the relative position of the half-power frequencies ωh with respect to the pole frequency
ω0. The results are the opposite ones to those derived in the case of the low-pass filters.
In particular, for the fractional-order high-pass filter, the following condition applies:
ωh,FOHP > ω0, while, for the power-law high-pass filter, ωh,PLHP < ω0 when 0 < α, β < 1.
In both cases, as the order approaches one, the cut-off frequencies of the filters approach
the characteristic frequency ω0. This is demonstrated in the plots of Figure 2a, while the
three-dimensional graph illustrating the relation of the cut-off frequency with the orders of
the DO-HPF filter can be seen in Figure 2b.
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Figure 2. Variation in the half-power frequency of (a) FO-HPF and PL-HPF as a function of the order
α, and (b) DO-HPF as a function of the orders (α, β).

3. Approximation of Non-Integer Order Filters

The approximation of the fractional-order transfer functions in (4) and (22) can be
performed by utilizing the Oustaloup, Continued Fraction Expansion, etc. tools because
they are based on the fractional Laplacian operator sα. This is not possible in the cases of
power-law and double-order transfer functions because of the existence of the power in the
overall transfer function.

This can be overcome using the curve-fitting-based method also utilized in [15], and
the resulting approximation transfer function has the form

H(s) =
Bnsn + Bn−1sn−1 + . . . + B1s + B0

sn + An−1sn−1 + . . . + A1s + A0
, (32)

with Ai and Bj (i = 0, 1, . . . , n− 1, j = 0, 1, . . . , n) being positive and real coefficients, and
n being the order of the approximation.

It must be mentioned at this point that the aforementioned approximation tool is
also applicable in the case of the transfer functions in (4) and (22) and, consequently, the
transfer function in (32) can be employed in all the cases of the filter presented in this work.
Therefore, the double-order filter transfer function could be considered as the generalized
form, where fractional-order and power-law filters are special cases with β = 1 and α = 1,
respectively.

Following this, and considering a fourth-order approximation in the range
[10−2, 10+2] rad/s, the coefficients of (32) in the case of the approximations of FO-LPF, FO-
HPF (i.e., β = 1), PL-LPF, PL-HPF (i.e., α = 1), and DO-LPF, DO-HPF with (α, β) = (0.7, 0.7)
transfer functions are summarized in Table 3. Using the values in Table 3, the gain and
phase responses, with their associated error plots, obtained using MATLAB, are demon-
strated in Figures 3 and 4. The values of the approximated half-power frequencies and
slopes, along with the corresponding theoretically predicted ones, are given in Table 4,
confirming the accuracy of the employed approximation.
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Table 3. Values of coefficients of (32) for realizing FO-LPFs and FO-HPFs of order equal to 0.7 (β = 1),
PL-LPFs and PL-HPFs of order equal to 0.7 (α = 1), and DO-LPF and DO-HPF of orders (α = 0.7,
β = 0.7).

Coefficient FO-LPF FO-HPF PL-LPF PL-HPF DO-LPF DO-HPF

A0 1 1 697.3 0.001434 4.044 0.2473

A1 15.36 15.36 1083 0.07309 49.47 6.332

A2 34.23 34.23 455.9 0.6538 83.03 20.53

A3 15.36 15.36 50.97 1.553 25.61 12.23

B0 0.9792 0.02077 697.3 1.528 × 10−5 3.979 0.01685

B1 12.58 2.786 595.2 0.005866 42.05 1.696

B2 17.11 17.11 112 0.1607 47.48 11.74

B3 2.786 12.58 4.09 0.8536 6.858 10.4

B4 0.02077 0.9792 0.01066 1 0.06816 0.9838
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Figure 3. (a) Gain and phase responses of the LPFs derived from (32) for (α, β) = (0.7, 1), (1, 0.7),
(0.7, 0.7), and (b) their associated error plots.

Table 4. Values of the half-power frequencies and slopes obtained from the plots in Figures 3 and 4.

Type of Filter Half-Power Frequency (rad/s) Slope (dB/dec)

Approximated Theoretical Approximated Theoretical

FO-LPF (α, β) = (0.7, 1) 0.532 0.533 −13.95 −14

PL-LPF (α, β) = (1, 0.7) 1.305 1.301 −14.1 −14

DO-LPF (α, β) = (0.7, 0.7) 0.895 0.893 −9.5 −9.8

FO-HPF (α, β) = (0.7, 1) 1.731 1.747 13.9 14

PL-HPF (α, β) = (1, 0.7) 0.7689 0.7689 14.2 14

DO-HPF (α, β) = (0.7, 0.7) 1.062 1.062 10.2 9.8
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Figure 4. (a) Gain and phase responses of the HPFs derived from (32) for (α, β) = (0.7, 1), (1, 0.7),
(0.7, 0.7), and (b) their associated error plots.

A possible implementation of the transfer function in (32) could be performed using
the functional block diagram in Figure 5, where the realized transfer function is

H(s) =
G4s4 + G3

τ1
s3 + G2

τ1τ2
s2 + G1

τ1τ2τ3
s + G0

τ1τ2τ3τ4

s4 + 1
τ1

s3 + 1
τ1τ2

s2 + 1
τ1τ2τ3

s + 1
τ1τ2τ3τ4

. (33)

1
τ1s

υin
G0

υout

1
τ2s

G4 G1

1
τ4s

G3 G2
+1

1
τ3s

1—1—1—1—

Figure 5. Follow -the-Leader Feedback (FLF) structure for implementing the rational integer-order
function in (32).

Equalizing the coefficients of (32) and (33), the resulting design equations are given
by (34):

τi+1 =
A4−i
A3−i

(i = 0 . . . 3) Gj =
Bj

Aj
(j = 0 . . . 4) . (34)

Assuming that ω0 = 1 rad/s, then, using the design equations in (34) and the data in Table 3,
the resulting values of time constants and scaling factors are provided in Table 5.
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Table 5. Values of time-constants and scaling factors of (33) for realizing FO-LPF and FO-HPF of
order equal to 0.7 (β = 1), PL-LPF and PL-HPF of order equal to 0.7 (α = 1), and DO-LPF and DO-HPF
of orders equal to (0.7, 0.7) .

Coefficient FO-LPF FO-HPF PL-LPF PL-HPF DO-LPF DO-HPF

τ1 65.090 ms 65.090 ms 19.621 ms 643.723 ms 39.050 ms 81.751 ms

τ2 448.886 ms 448.886 ms 111.803 ms 2.376 s 308.433 ms 595.848 ms

τ3 2.228 s 2.228 s 420.848 ms 8.944 s 1.678 s 3.242 s

τ4 15.363 s 15.363 s 1.554 50.966 s 12.232 s 25.608 s

G0 0.979 0.021 1 0.011 0.984 0.068

G1 0.819 0.181 0.550 0.080 0.850 0.268

G2 0.5 0.5 0.246 0.246 0.572 0.572

G3 0.181 0.819 0.080 0.550 0.268 0.850

G4 0.021 0.979 0.011 1 0.068 0.984

To conclude, the design steps that must be followed for implementing the filter func-
tions are as follows:

Step#1: Choice of the suitable transfer function (order(s) and pole frequency), to fulfill the
given specifications of the filter;
Step#2: Employment of the curve-fitting-based technique presented in detail in [15], to
obtain the approximation transfer function which has the form shown in (32);
Step#3: Employment of the design equations in (34), to obtain the values of time constants
and scaling factors;
Step#4: Realization of the required integration, summation, and scaling operations, using
suitable active elements/stages.

4. Experimental Results

The presented generalized structure was verified using an Anadigm FPAA AN231E04
device [16,17]. Using the Anadigm Designer® 2 EDA software, the resulting design is de-
picted in Figure 6. The frequency responses of the LPFs are demonstrated in Figure 7a. The
measured values of the cut-off frequencies were 2.606 krad/s for the FO-LPF, 6.826 krad/s
for the PL-LPF, and 4.427 krad/s for the DO-LPF, with the corresponding theoretical values
being 2.668 krad/s, 6.503 krad/s, and 4.464 krad/s, respectively. In the case of the HPFs,
the measurements were 8.804 krad/s, 3.887 krad/s, and 5.313 krad/s, with the values
predicted by theory being 9.37 krad/s, 3.844 krad/s, and 5.6 krad/s.

Figure 6. FPAA configuration for realizing FO, PL, and DO-LPFs and -HPFs.
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(a) (b)

Figure 7. Experimental frequency responses of the (a) FO (green), PL (red), and DO (blue) low-pass
filters, and (b) FO (green), PL (red), and DO (blue) high-pass filters.

The time-domain behavior of the filters was evaluated by stimulating the DO-LPF
and DO-HPFs of orders (α, β) equal to (0.7, 0.7). For this purpose, a 600 mVp–p sinusoidal
signal with frequency equal to the cut-off frequency was used, and the obtained waveforms
are demonstrated in Figure 8a,b. The values of the corresponding gains were −2.94 dB and
−2.84 dB, while the values of the phase differences between the output and the input of
the filters was −18◦, 17◦, close to the theoretically predicted ones of −21◦, 21.5◦.

(a) (b)

Figure 8. Experimental input and output waveforms of (a) DO-LPF and (b) DO-HPF of orders (α, β)
equal to (0.7, 0.7).

5. Conclusions

A generalized programmable structure with the capability of implementing non-
integer-order LPFs and HPFs, with orders in the range (0, 1), is introduced in this work.
The performed comparison shows that FO filters have the opposite effect in the half-power
frequency to that caused by the PL filters. Their enhanced version, named DO filters,
is versatile, in the sense that it could be programmed to offer the desired scaling of the
half-power frequency, according to the imposed specifications. In addition, due to the extra
degrees of freedom that are offered, the slope of the gradient between the pass-band and the
stop-band of the filter can be further adjusted, instead of being pre-determined by the order
of the filter, as happens in the case of FO and PL filters. The provided experimental results,
obtained using an FPAA device, confirm that the design offers flexibility and versatility,
and confirm the validity of the presented analysis.
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The following abbreviations are used in this manuscript:

DO Double-Order
DO-HPF Double-Order High-Pass Filter
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HPF High-Pass Filter
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