
Citation: He, C.; Yan, B.; Xu, S.;

Zhang, Y.; Wang, Z.; Wang, M.

Research and Hardware

Implementation of a

Reduced-Latency

Quadruple-Precision Floating-Point

Arctangent Algorithm. Electronics

2023, 12, 3472. https://doi.org/

10.3390/electronics12163472

Academic Editors: Tania Cerquitelli,

Giovanni Malnati and Genoveva

Vargas-Solar

Received: 24 July 2023

Revised: 9 August 2023

Accepted: 14 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Research and Hardware Implementation of a Reduced-Latency
Quadruple-Precision Floating-Point Arctangent Algorithm
Changjun He † , Bosong Yan †, Shiyun Xu, Yiwen Zhang, Zhenhua Wang and Mingjiang Wang *

Key Laboratory for Key Technologies of IoT Terminals, Harbin Institute of Technology, Shenzhen 518055, China;
21s052009@stu.hit.edu.cn (C.H.); ybs5250057an@163.com (B.Y.); 21s052011@stu.hit.edu.cn (S.X.);
21s152128@stu.hit.edu.cn (Y.Z.); 21s152132@stu.hit.edu.cn (Z.W.)
* Correspondence: mjwang@hit.edu.cn
† These authors contributed equally to this work.

Abstract: In the field of digital signal processing, such as in navigation and radar, a significant
number of high-precision arctangent function calculations are required. Lookup tables, polynomial
approximation, and single/double-precision floating-point Coordinate Rotation Digital Computer
(CORDIC) algorithms are insufficient to meet the demands of practical applications, where both high
precision and low latency are essential. In this paper, based on the concept of trading area for speed,
a four-step parallel branch iteration CORDIC algorithm is proposed. Using this improved algorithm,
a 128-bit quad-precision floating-point arctangent function is designed, and the hardware circuit
implementation of the arctangent algorithm is realized. The results demonstrate that the improved
algorithm can achieve 128-bit floating-point arctangent calculations in just 32 cycles, with a maximum
error not exceeding 2 × 10−34 rad. It possesses exceptionally high computational accuracy and
efficiency. Furthermore, the hardware area of the arithmetic unit is approximately 0.6317 mm2, and
the power consumption is about 40.6483 mW under the TSMC 65 nm process at a working frequency
of 500 MHz. This design can be well suited for dedicated CORDIC processor chip applications. The
research presented in this paper holds significant value for high-precision and rapid arctangent
function calculations in radar, navigation, meteorology, and other fields.

Keywords: quadruple-precision; arctangent; reduced-latency; CORDIC; circuit construction

1. Introduction

With the rapid development of information technology, scientific computing has
permeated almost all fields of science and engineering, finding extensive applications in
energy surveys, game rendering, meteorology and oceanography, finance and insurance,
and computer-aided design, among others. Scientific computing in these fields often
involves a considerable number of floating-point transcendental function computations,
such as trigonometric functions (sine and cosine), inverse tangent functions, exponen-
tial functions, etc. These functions cannot be directly represented and computed using
a finite number of basic mathematical operations, such as addition, subtraction, multi-
plication, division, and square root. Instead, they require mathematical transformations
or iterative approximation methods to obtain approximate results. Moreover, different
domains have varying requirements for numerical precision during the computation pro-
cess. In modern digital communication systems, common modulation techniques like
orthogonal frequency-division multiplexing and quadrature amplitude modulation use
signal phase as a modulation parameter, making phase extraction techniques increasingly
important. Phase detection can be achieved using the arctangent function. Additionally,
arctangent calculations are frequently encountered in applications such as digital frequency
modulation and demodulation, navigation communication, motor control, and image
processing. As their applications become more widespread, there is an increasing demand
to efficiently and accurately implement floating-point arctangent functions in hardware.

Electronics 2023, 12, 3472. https://doi.org/10.3390/electronics12163472 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163472
https://doi.org/10.3390/electronics12163472
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0000-4279-5946
https://doi.org/10.3390/electronics12163472
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163472?type=check_update&version=1


Electronics 2023, 12, 3472 2 of 23

Previously, the main focus of optimizing floating-point arctangent was at the software level,
aiming to enhance operational efficiency through code optimization. Over time, significant
progress has been made in software optimization efforts, but it has now reached a point of
diminishing returns, with limited room for further improvement. Conversely, hardware-
level optimization offers more significant potential for improvement compared to software.
Utilizing hardware for calculating transcendental functions like arctangent will consume a
certain amount of chip area, but it significantly enhances computational efficiency. With the
advancement of IC manufacturing processes, the benefits of hardware-level optimization
undoubtedly outweigh the drawbacks.

Compared to the software level, the computation of the arctangent function is not
easily implementable in hardware. There are no simple function modules that can be
directly called; instead, hardware algorithms for the corresponding complex functions
must be designed. In the early hardware algorithms, the main methods used for function
computation were lookup tables [1,2] and polynomial approximation [3,4]. The principle
of lookup tables is straightforward, where input values correspond one-to-one with the
computed results of transcendental functions. The hardware structure can be simple and
easily implemented within a small range of angle values [5]. However, when computing
large angle values, a substantial amount of storage units is required, leading to inefficient re-
source utilization. On the other hand, the principle of polynomial approximation involves
expanding the target function into a Taylor series within its domain, transforming the
transcendental function into a series of power exponents, and approximating the function
values numerically. But the use of Taylor series expansions involves a significant amount
of multiplication and division, resulting in a large consumption of hardware resources [6].
Moreover, in order to accelerate computation speed, polynomial approximation often uti-
lizes fourth or fifth-order Taylor series convergence, leading to insufficient precision due
to the limitations of the order. Later, a combined approach that combines lookup tables
with polynomial approximation was proposed [7]. This method effectively improves the
efficiency of transcendental function computation, resulting in shorter operational cycles for
the entire system. However, it requires the design of dedicated multipliers and adders, lead-
ing to a substantial increase in hardware circuit complexity and a significant increase in chip
area. In summary, the aforementioned methods have drawbacks such as low computational
efficiency, complex hardware resource requirements, and low computational precision.

To address the aforementioned issues, the Coordinate Rotation Digital Computer
(CORDIC) algorithm was proposed in Reference [8]. This algorithm approximates the
target angle by rotating a predetermined fixed angle repeatedly. Since the fixed rotation
angle is only dependent on the base and the number of rotations, computations of complex
functions can be decomposed into simple shift and addition operations [9]. Furthermore,
the output precision of CORDIC is directly related to the number of iterations, offering
adjustable output precision and a simple hardware implementation. To extend the range of
basic functions that can be resolved, the unified CORDIC algorithms were introduced in
Reference [10], unifying circular, hyperbolic, and linear rotations into the same CORDIC
iteration equation. This laid a solid theoretical foundation for designing a versatile CORDIC
processor. In recent years, numerous researchers have made significant efforts to improve
CORDIC algorithms by enhancing computational accuracy, expanding angle coverage, re-
ducing the number of iterations, and minimizing resource consumption. In Reference [11],
a new micro-rotation angle set was used to achieve faster convergence and reduce the
number of adders. However, its hardware implementation was challenging and did not
achieve the desired precision. In Reference [12], the TCORDIC algorithm was proposed,
combining low-latency CORDIC with Taylor algorithms, utilizing sign prediction, com-
pressed iteration, and parallel iteration techniques to reduce latency and errors at the
boundary. However, it increased power consumption and area usage. In Reference [13],
the addition and subtraction operations in the CORDIC algorithm were executed in parallel
using dedicated adders and subtractors, reducing latency but increasing resource consump-
tion. In Reference [14], a hardware implementation method that divides resources between



Electronics 2023, 12, 3472 3 of 23

addition and subtraction operations was proposed, but it added hardware overhead and
latency. Reference [15] presented a radix-4 CORDIC algorithm using a pipelined architec-
ture, effectively balancing latency and hardware complexity. In Reference [16], the number
of CORDIC iterations and bit-width were chosen based on the relationship derived from
software-based simulation, reducing area and latency. However, its maximum operating
frequency was limited, and precision was not improved. In Reference [17], an efficient
CORDIC architecture based on the Ladner Fischer adder was proposed, but it consumed
a significant amount of resources and was challenging to implement. In Reference [18],
an approximation and lookup table strategy were utilized to increase data throughput
but resulted in increased circuit area. In Reference [19], a scheme with dual-iteration
sign prediction and multiplexer compression was proposed to reduce latency and control
area, but precision improvement was not achieved. In Reference [20], a new hybrid algo-
rithm for sine and cosine functions minimized the number of steps, reducing hardware
volume and potential computation delay but significantly increasing the occupied ROM
area. Reference [21] proposed a two-step branch CORDIC algorithm, where two branches
execute different operations at each step, reducing computation cycles compared to the
traditional CORDIC algorithm. In Reference [22], a CORDIC algorithm with rotation gain
compensation was introduced, achieving a good trade-off between approximation error
and resource consumption. However, its gain compensation had constant errors, limit-
ing the precision of the algorithm. In Reference [23], a prediction circuit was included
to select the most suitable predefined angle for iteration, reducing the number of itera-
tions, but it only focused on phase and did not consider amplitude, and the maximum
displacement count remained unchanged. In Reference [24], the Z-path was transformed
into a lookup table to reduce circuit area consumption, but it did not improve calculation
accuracy and speed. In Reference [25], resource consumption was reduced using a rough
approximation method based on the traditional CORDIC algorithm, but output precision
was compromised. In Reference [26], angle interval folding, optimal predefined angle
selection, and omission of certain predefined angles were employed to narrow the iteration
range and unify vector rotation direction. This achieved low resource consumption and
short computational cycles but lacked sufficient precision improvement. Reference [27]
proposed a low-latency hybrid CORDIC algorithm, further optimizing the computation
cycle, significantly reducing the number of iterations. The comparative outcomes of the
aforementioned research findings are illustrated in Table 1.

From the analysis of the above literature, it can be observed that the current research
on floating-point arctangent functions still exhibits drawbacks such as low computational
precision, a high number of iterations, and slow execution efficiency. Moreover, to the best
of our knowledge, there is currently no existing 128-bit floating-point arctangent arithmetic
unit in this field. Therefore, these issues are addressed in this paper by studying the
computational strategy for high-precision floating-point arctangent functions, thus filling
the research gap in this area. The main contributions of this paper are as follows:

1. An improved CORDIC algorithm is proposed, utilizing a four-step parallel branch
iteration strategy to reduce the number of iterations in the arctangent algorithm and
decrease the output latency;

2. The improved CORDIC algorithm is applied to the calculation of a 128-bit high-
precision floating-point arctangent function, resulting in improved computational
precision while reducing computational complexity;

3. The 128-bit high-precision floating-point arctangent algorithm is implemented in
hardware, making it suitable for the design of dedicated chips for high-precision
CORDIC algorithms.

The organization of this paper is as follows: In Section 2, the fundamental CORDIC
algorithm is introduced and improved. A four-step parallel branch iteration CORDIC
algorithm is proposed and applied to the calculation of a quad-precision floating-point
arctangent function. In Section 3, the hardware circuit implementation and optimization of
the quad-precision floating-point arctangent function are presented. In Section 4, the cir-



Electronics 2023, 12, 3472 4 of 23

cuit simulation results are compared and analyzed with the standard calculations from
Python’s bigfloat package, and FPGA and ASIC implementations of the hardware circuit
are performed. Finally, conclusions are presented in Section 5.

Table 1. The comparative outcomes of the aforementioned research findings.

Paper [8] [10] [11]

CORDIC appears Unified CORDIC Algorithms New micro-rotation angle set
Simple calculation Extended Increased rate of convergence

—— —— Complex circuit

[12] [15] [16]

TCORDIC Radix-4 CORDIC Software-assisted
Low latency and error Balanced latency and hardware Reduced latency and area

Large area —— Poor accuracy

[17] [18] [19]

Innovation Ladner Fischer Approximate calculation Double symbol prediction
Advantage Efficient Improved throughput Reduced latency

Disadvantage Complex Large area Poor accuracy

[21] [22] [23]

Two-step branch CORDIC Rotational gain compensation Anticipation circuit
Reduced latency Balanced error and area Reduced iterations

Poor accuracy Precision limitation Complex

[25] [26] [27]

Rough approximation Angular interval folding Low latency hybrid CORDIC
Less resource consumption Short computing cycle Reduced iterations

Poor accuracy Poor accuracy ——

2. CORDIC Algorithm and Improvement
2.1. IEEE 754 Floating-Point Standard

For floating-point computation, the Institute of Electrical and Electronics Engineers
(IEEE) proposed the IEEE-754 floating-point standard in 1985, and the latest version was
released in 2008 [28]. The IEEE-754 standard defines floating-point numbers as composed
of three parts: the sign bit, exponent part, and mantissa part, represented in scientific
notation as shown in Equation (1).

(−1)S × 2E−bias × 1.M (1)

Here, S represents the sign bit, E represents the value of the exponent part, bias is a
fixed offset value, M represents the value of the mantissa part, and 1.M is the actual value
used for computation, composed of the mantissa part value M and 1 hidden bit of precision.
Floating-point numbers of different precisions have different bias values, as well as varying
widths for the exponent and mantissa parts, resulting in different ranges for representing
fixed-point numbers. The parameters of different precision floating-point numbers are
shown in Table 2.

Table 2. The composition of floating-point numbers of different precision.

Component Float (32 bits) Double (64 bits) Quadruple-Precision (128 bits)

S 1 bit 1 bit 1 bit
E 8 bits 11 bits 15 bits
M 23 bits 52 bits 112 bits

Bias 127 1023 16,383



Electronics 2023, 12, 3472 5 of 23

With the rapid development of integrated circuits, high-performance processors in-
creasingly rely on high-speed and high-precision floating-point computations. Conse-
quently, single-precision and double-precision floating-point calculations are no longer
sufficient to meet the requirements. Therefore, this paper focuses on studying floating-
point arctangent computation under quad-precision conditions. The format of normalized
quad-precision floating-point numbers is illustrated in Figure 1.

S ME

127 126 112 0111

1 bit 15 bits 112 bits

Figure 1. Format for quad-precision floating-point numbers.

Furthermore, based on the different values of E and M, IEEE-754 classifies floating-
point numbers into various types, as shown in Table 3. In the subsequent arctangent
computation, it is essential to perform the detection and handling of exceptions and special
inputs according to the specified floating-point number types listed here.

Table 3. Floating-point numbers of different types.

Type E M Comment

0 0 0 0 has a sign determined by the sign bit S
Subnormal 0 6= 0 Supplement the precision bit with 0

∞ 15’h7fff 0 (−1)S ×∞
NaN 15’h7fff 6= 0

Finite number 15’h0000 < E < 15’h7fff 1023 (−1)S × 2E−16383 × 1.M

2.2. Basic CORDIC Algorithm

In Reference [8], the CORDIC algorithm was first proposed. Its principle involves
rotating the initial vector in different directions by specific angle values within a given
coordinate system to iteratively approach the target vector infinitely. In the polar coordinate
system, the iterative formula of the CORDIC algorithm is given by Equation (2), where
(X,Y,Z) represents the intermediate iteration values of the three channels, γ is the rotation
factor and γ ∈ {−1, 1}, and it determines the rotation direction for each iteration. The value
of γ can be either 1 for counterclockwise rotation or −1 for clockwise rotation. θi represents
the rotation angle for each iteration, satisfying Equation (3). During the hardware circuit
implementation, each value of θi is pre-stored in a lookup table with a specific precision.

Xi+1 = Xi − γiYi2−i

Yi+1 = Yi + γiXi2−i

Zi+1 = Zi − γiθi

(2)

θi = tan−12−i (3)

In vector mode, the goal of iteration is Y → 0, which is to rotate the initial vector
(X0, Y0) to align with the x axis. Upon completion of the iteration, the final iteration
values for the three channels are given by Equation (4). In this equation, Pn represents the
correction term during the iteration process, which satisfies Equation (5).

Xn = 1
Pn

√
X2

0 + Y2
0

Yn = 0
Zn = Z0 + tan−1( Y0

X0
)

(4)

Pn =
n−1

∏
i=0

cos(tan−12−i) =
n−1

∏
i=0

1√
1 + tan2θi

=
n−1

∏
i=0

1√
1 + 2−2i

≈ 0.607253 (5)



Electronics 2023, 12, 3472 6 of 23

Therefore, by initializing (X0, Y0, Z0) with the appropriate values (x, y, 0) for the three
channels, the final values of Z at the end of the iteration represent the result of the arctangent
function arctan(y/x).

Through analysis, it can be observed that, for quad-precision floating-point number
computations, the traditional CORDIC algorithm faces a bottleneck. This is because each
iteration’s rotation factor needs to wait for the result of the previous iteration for prediction,
limiting the algorithm to a single-step iteration. In other words, only one iteration can be
performed in each clock cycle, yielding 1-bit precision. Consequently, to achieve 113-bit
precision, it would require 113 clock cycles, resulting in slow computation speed. Therefore,
the following sections focus on addressing this issue and proposing improvements to the
traditional CORDIC algorithm.

2.3. Four-Step Parallel Branching Iteration CORDIC Algorithm for Four-Precision Floating-Point
Arctangent Function

In order to address the issue of slow computation speed in the traditional CORDIC al-
gorithm, a four-step parallel branching iterative CORDIC algorithm suitable for arctangent
functions is proposed in this paper. The algorithm is designed by taking into account both
the complexity of circuit design and the efficiency of computation.

Unlike the method in Equation (2) where each of the three channels (X, Y, Z) un-
dergoes only one iteration based on the rotation factor, we adopt the concept of trading
area for time and serial to parallel conversion. By performing four iterations in parallel
within one clock cycle, the overall computation efficiency is improved fourfold. Below is
the derivation of the four-step parallel branching iterative formula for the three channels
(X, Y, Z). For channel X, after four iterations, we substitute the results into Equation (2)
successively, leading to Equation (6):



Xi+1 = Xi − γiYi2−i

Xi+2 = Xi+1 − γi+1Yi+12−(i+1)

= Xi − γiYi2−i − γi+1Yi2−(i+1) − γi+1γiXi2−(2i+1)

Xi+3 = Xi+2 − γi+2Yi+22−(i+2)

= Xi+1 − γi+1Yi+12−(i+1) − γi+2(Yi+1 + γi+1Xi+12−(i+1))2−(i+2)

= Xi − γiYi2−i − γi+1(Yi + γiXi2−i)2−(i+1) − γi+2[Yi + γiXi2−i + γi+1(Xi − γiYi2−i)2−(i+1)]2−(i+2)

= Xi − γiYi2−i − γi+1Yi2−(i+1) − γi+1γiXi2−(2i+1) − γi+2Yi2−(i+2)

− γi+2γiXi2−(2i+2) − γi+2γi+1Xi2−(2i+3) + γi+2γi+1γiYi2−(3i+3)

Xi+4 = {1 + γi+3γi+2γi+1γi2−(4i+6) − [16γi+1γi + 8γi+2γi + 4(γi+2γi+1 + γi+3γi)

+ 2γi+3γi+1 + γi+3γi+2]2−(2i+5)} · Xi − [(8γi + 4γi+1 + 2γi+2 + γi+3)2−(i+3)

− (8γi+2γi+1γi + 4γi+3γi+1γi + 2γi+3γi+2γi + γi+3γi+2γi+1)2−(3i+6)] ·Yi

(6)

Similarly, for both channel Y and channel Z, Equations (7) and (8) can be derived.



Electronics 2023, 12, 3472 7 of 23



Yi+1 = Yi + γiXi2−i

Yi+2 = Yi+1 + γi+1Xi+12−(i+1)

= Yi + γiXi2−i + γi+1Xi2−(i+1) − γi+1γiYi2−(2i+1)

Yi+3 = Yi+2 + γi+2Xi+22−(i+2)

= (Yi+1 + γi+1Xi+12−(i+1)) + γi+2(Xi+1 − γi+1Yi+12−(i+1))2−(i+2)

= Yi+1 + [Xi − γiYi2−i − γi+1(Yi + γiXi2−i)2−(i+1)]γi+22−(i+2) + γi+1Xi+12−(i+1)

= Yi + γiXi2−i + γi+1Xi2−(i+1) − γi+1γiYi2−(2i+1) + γi+2Xi2−(i+2)

− γi+2γiYi2−(2i+2) − γi+2γi+1Yi2−(2i+3) − γi+2γi+1γiXi2−(3i+3)

Yi+4 = {1 + γi+3γi+2γi+1γi2−(4i+6) − [16γi+1γi + 8γi+2γi + 4(γi+2γi+1 + γi+3γi)

+ 2γi+3γi+1 + γi+3γi+2]2−(2i+5)} ·Yi + [(8γi + 4γi+1 + 2γi+2 + γi+3)2−(i+3)

− (8γi+2γi+1γi + 4γi+3γi+1γi + 2γi+3γi+2γi + γi+3γi+2γi+1)2−(3i+6)] · Xi

(7)


Zi+1 = Zi − γiθi
Zi+2 = Zi+1 − γi+1θi+1 = Zi − γiθi − γi+1θi+1
Zi+3 = Zi+2 − γi+2θi+2 = Zi − γiθi − γi+1θi+1 − γi+2θi+2
Zi+4 = Zi+3 − γi+3θi+3 = Zi − (γiθi + γi+1θi+1 + γi+2θi+2 + γi+3θi+3)

(8)

Thus, we obtain the (Xi+4, Yi+4, Zi+4) of the three channels after each cycle iteration in
the four-step parallel branch iteration algorithm. It can be observed that the key to success-
ful iteration lies in accurately predicting the rotation factor Ri = {γi, γi+1, γi+2, γi+3} simul-
taneously. According to formula (4), the CORDIC algorithm for arctangent aims to rotate
vector (X, Y) to the x axis, and the prediction of the γi sign is determined by the sign bit yi
from the previous iteration. In this algorithm, the value range of Ri = {γi, γi+1, γi+2, γi+3}
is determined as {0,−1}, where 0 indicates that after this iteration, the algorithm will cross
the x axis without rotation, and −1 indicates that after this iteration, the algorithm will
still not cross the x axis, requiring a clockwise rotation. Therefore, such value assignment
ensures that Zi+4 remains in the first quadrant, avoiding crossing the x axis, and it causes
some coefficients in the expression of (Xi+4, Yi+4, Zi+4) to be 0, effectively reducing the
algorithm’s complexity and saving hardware circuit area.

When the range of Ri = {γi, γi+1, γi+2, γi+3} is considered to be {0,−1}, all its pos-
sible results fall within the range of {0, 0, 0, 0} to {−1,−1,−1,−1}. As for the iterative
expression of Yi+4, the potential outcomes of the 16 branches are shown in Table 4. Com-
pleting these 16 branch computations requires a total of 32 additions and subtractions,
16 multiplications, and 21 shift operations.

The 16 potential branch results for the iterative expression of Xi+4 are shown in Table 5.
The 16 potential branch results for the iterative expression of Zi+4 are shown in Table 6.
In the prediction of the rotation factor, for each iteration, {γi, γi+1, γi+2, γi+3} can be

predicted. In the calculation of the arctangent function, the simplest method is to directly
compare the 16 potential branch results of the Y channel and select the one with the absolute
value closest to 0. However, if this method is used, a significant amount of area will be
consumed, and considerable delay will be introduced in the subsequent hardware circuit
design. Therefore, a faster and more area-efficient method is adopted in this paper.

It is known that the value of γi determines whether (Xi, Yi) requires a clockwise
rotation or no rotation to approach the x axis, while Yi+4 approaches 0. By examining the
highest sign bit of Yi+4 in each iteration, we can determine whether the (Xi, Yi) after rotation
crosses the x axis. As shown in Figure 2, the Symbol_group represents the highest sign bit of
16 branches of Yi+4, and from left to right is the Yi+4 corresponding to {γi, γi+1, γi+2, γi+3}
from {0, 0, 0, 0} to {−1,−1,−1,−1} (for the convenience of drawing, −1 is replaced by 1
here). According to Equations (3) and (8) and Table 6, the 16 branches of Zi+4 are arranged
in ascending order. Therefore, if the left prediction branch has Yi+4 as a negative number



Electronics 2023, 12, 3472 8 of 23

(the rotation will cross the x axis), then the right prediction branch will have Yi+4 as a
negative number. Thus, we can ascertain that the values in Symbol_group will appear in
consecutive 0s or consecutive 1s. Based on this principle, in order for Yi+4 to approach 0
without crossing the x axis, a successful prediction {γi, γi+1, γi+2, γi+3} must be located at
the boundary between 0 and 1 in Symbol_group, as indicated by the red mark in Figure 2.
Subsequently, we can use the predicted rotation factor {γi, γi+1, γi+2, γi+3} to select the
corresponding Xi+4 and Zi+4 from Tables 5 and 6. With this, one cycle of the four-step
parallel branch iteration is completed.

Table 4. The 16 branches of channel Y.

Ri Yi+4

(0,0,0,0) Yi
(0,0,0,−1) Yi−2−(i+3)Xi
(0,0,−1,0) Yi−2−(i+2)Xi
(0,−1,0,0) Yi−2−(i+1)Xi
(−1,0,0,0) Yi−2−iXi

(0,0,−1,−1) (1−2−(2i+5))Yi−3*2−(i+3)Xi
(0,−1,0,−1) (1−2−(2i+4))Yi−5*2−(i+3)Xi
(0,−1,−1,0) (1−2−(2i+3))Yi−6*2−(i+3)Xi
(−1,0,0,−1) (1−2−(2i+3))Yi−9*2−(i+3)Xi
(−1,0,−1,0) (1−2−(2i+2))Yi−10*2−(i+3)Xi
(−1,−1,0,0) (1−2−(2i+1))Yi−12*2−(i+3)Xi

(0,−1,−1,−1) (1−7*2−(2i+5))Yi−(7*2−(i+3)−2−(3i+6))Xi
(−1,0,−1,−1) (1−13*2−(2i+5))Yi−(11*2−(i+3)−2−(3i+5))Xi
(−1,−1,0,−1) (1−22*2−(2i+5))Yi−(13*2−(i+3)−2−(3i+4))Xi
(−1,−1,−1,0) (1−28*2−(2i+5))Yi−(14*2−(i+3)−2−(3i+3))Xi

(−1,−1,−1,−1) (1−35*2−(2i+5)+2−(4i+6))Yi−(15*2−(i+3)−15*2−(3i+5))Xi

Table 5. The 16 branches of channel X.

Ri Xi+4

(0,0,0,0) Xi
(0,0,0,−1) Xi+2−(i+3)Yi
(0,0,−1,0) Xi+2−(i+2)Yi
(0,−1,0,0) Xi+2−(i+1)Yi
(−1,0,0,0) Xi+2−iYi

(0,0,−1,−1) (1−2−(2i+5))Xi+3*2−(i+3)Yi
(0,−1,0,−1) (1−2−(2i+4))Xi+5*2−(i+3)Yi
(0,−1,−1,0) (1−2−(2i+3))Xi+6*2−(i+3)Yi
(−1,0,0,−1) (1−2−(2i+3))Xi+9*2−(i+3)Yi
(−1,0,−1,0) (1−2−(2i+2))Xi+10*2−(i+3)Yi
(−1,−1,0,0) (1−2−(2i+1))Xi+12*2−(i+3)Yi

(0,−1,−1,−1) (1−7*2−(2i+5))Xi+(7*2−(i+3)−2−(3i+6))Yi
(−1,0,−1,−1) (1−13*2−(2i+5))Xi+(11*2−(i+3)−2−(3i+5))Yi
(−1,−1,0,−1) (1−22*2−(2i+5))Xi+(13*2−(i+3)−2−(3i+4))Yi
(−1,−1,−1,0) (1−28*2−(2i+5))Xi+(14*2−(i+3)−2−(3i+3))Yi

(−1,−1,−1,−1) (1−35*2−(2i+5)+2−(4i+6))Xi+(15*2−(i+3)−15*2−(3i+5))Yi



Electronics 2023, 12, 3472 9 of 23

Table 6. The 16 branches of channel Z.

Ri Xi+4

(0,0,0,0) Zi
(0,0,0,−1) Zi+θi+3
(0,0,−1,0) Zi+θi+2
(0,−1,0,0) Zi+θi+1
(−1,0,0,0) Zi+θi

(0,0,−1,−1) Zi+θi+2+θi+3
(0,−1,0,−1) Zi+θi+1 +θi+3
(0,−1,−1,0) Zi+θi+1 +θi+2
(−1,0,0,−1) Zi+θi +θi+3
(−1,0,−1,0) Zi+θi +θi+2
(−1,−1,0,0) Zi+θi +θi+1

(0,−1,−1,−1) Zi+θi+1+θi+2+θi+3
(−1,0,−1,−1) Zi+θi +θi+2+θi+3
(−1,−1,0,−1) Zi+θi +θi+1+θi+3
(−1,−1,−1,0) Zi+θi +θi+1+θi+2

(−1,−1,−1,−1) Zi+θi+θi+1+θi+2+ θi+3

_Symbol group

16'h0000

16'h0001

iR 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

16'h0003

16'h0007

16'h000f

16'h001f

16'h003f

16'h007f

16'h00ff

16'h01ff

16'h03ff

16'h07ff

16'h0fff

16'h1fff

16'h3fff

16'h7fff

(1 1)→−

0

1

itH0

Figure 2. Prediction of twiddle factors.

3. Hardware Circuit Implementation of a Four-Precision Floating-Point
Arctangent Function
3.1. Top-Level Module

According to the proposed four-precision floating-point arctangent function’s four-step
parallel branch iterative CORDIC algorithm, the entire hardware circuit structure mainly
consists of three modules: the exception detection and pre-processing module, the four-step
parallel branch iteration module, and the floating-point normalization module.

The exception detection and pre-processing module first splits the normalized 128-bit
four-precision floating-point input values x and y. Then, based on Table 3 and the arctan-
gent function’s curve, it performs exception detection on the split data. If any exceptions
are detected, it outputs the exception flag signal Exc_flag and the result of the exception
handling Exc_result. Subsequently, the four-step parallel branch iteration module pre-
dicts the rotation factor {γi, γi+1, γi+2, γi+3} and iteratively calculates the three channels



Electronics 2023, 12, 3472 10 of 23

(X, Y, Z). After completing the iterations, it processes the output results of the Z channel,
converting them from fixed-point to standard four-precision 128-bit floating-point output.
Finally, based on the exception flag signal, the module selects the final arctangent result
for output.

The hardware structure of the top-level module is illustrated in Figure 3.

Exception Detection

Data Preprocessing

Floating-point regularization post-processing

MUX

Channel-X

Four-step Parallel Branch Iteration

Channel-Y

Channel-Z

Iteration Control 

x y

mx my ex ey

1mx 1my

_Exc result

_Exc flag

sx sy

10

Angle

4x counter

LUT

Rotation Factor 

Prediction outZ

Figure 3. Hardware circuit diagram of the top module.

3.2. Exception Detection and Pre-Processing Module

The exception detection and pre-processing module first detects and handles excep-
tional and special inputs. If the inputs are valid, the module proceeds to pre-process the
two input values to ensure they fall within the calculable region of the CORDIC algorithm.

During the process of detecting exceptional and special inputs, the normalized 128-bit
floating-point numbers, xx and yy, are first split into their respective components: the sign
bit, the exponent part, and the fraction part with an added hidden precision bit, as shown
in Figure 4. The split data is then subject to exceptional input detection. When exceptional
or special inputs are detected, the Exc_flag is set to 1. The possible types of exceptional and
special inputs are outlined in Table 7.



Electronics 2023, 12, 3472 11 of 23

sx {1/ 0, }mx M=ex

sy {1/ 0, }my M=ey

1 bit 15 bits 113 bits

1 bit 15 bits 113 bits

Figure 4. A split of 128-bit floating-point numbers.

Table 7. Exceptions and special input tables.

xe xm xs ye ym ys Exc_Flag Exc_Result

15’h7fff 6= 0 - - - - 1 NAN
- - - 15’h7fff 6= 0 - 1 NAN

15’h7fff 0 - 15’h7fff 0 - 1 NAN
- - - 0 0 - 1 0
0 0 - - - 0 1 π/2
0 0 - - - 1 1 −π/2

In the data pre-processing module, in order to enhance the computational precision,
both xm and ym are extended by 15 bits. Simultaneously, for the computation of the arct-
angent function, in this design, all input vectors are transformed into the first quadrant,
and xs and ys are used as quadrant identifiers. Additionally, based on the magnitude of
xe and ye, the following processing is performed to convert the two floating-point num-
bers into fixed-point numbers without altering their proportional relationship, facilitating
subsequent iterative calculations.

(1) When ye > xe is true, xm is right-shifted by (ye − xe) bits to obtain xm1, and ym is
assigned to ym1.

(2) When ye < xe is true, ym is right-shifted by (xe − ye) bits to obtain ym1, and xm is
assigned to xm1.

Here, if ye − xe > 128 is true, then during the shift operation on xm, it will exceed
128 bits, resulting in xm becoming 0 after the shift. At this point, arctan(y/x)’s value
approximates ±pi/2, and based on the value of ys, Exc_result is set to pi/2 or −pi/2.
Similarly, if xe − ye > 128 is true, then during the shift operation on ym, it will exceed
128 bits, causing ym to become 0. As a result, the iterative process of this arithmetic
component will not execute, and Exc_result is set to 0.

The circuit structure of the exception detection and pre-processing module is illustrated
in Figure 5.

3.3. Four-Step Parallel Branch Iteration Module

The four-step parallel branch iteration module is the core component of the floating-
point arctangent function computation unit, which implements the aforementioned four-
precision floating-point arctangent function using the four-step parallel branch iterative
CORDIC algorithm. This algorithm prioritizes speed over area, employing a single-level
loop structure. Its input signals originate from xm1 and ym1 of the exception detection and
pre-processing unit. Through multiple iterations, the module performs parallel computa-
tions for the three channels (X, Y, Z) and outputs the arctangent result. Finally, this result,
combined with the sign bit preserved by the exception detection and pre-processing unit,
is forwarded to the floating-point regularization post-processing module to obtain the final
angle value.

The hardware structure of the four-step parallel branch iteration module is illus-
trated in Figure 6. It includes a counter, iteration control logic, Y-channel parallel branch
computation module, X-channel parallel branch computation module, Z-channel par-
allel branch computation module, lookup table (LUT), and rotation factor prediction



Electronics 2023, 12, 3472 12 of 23

module. In each iteration, the Y-channel first performs parallel computations for 16 pre-
dicted branches. Then, the rotation factor prediction module selects the branch Yi+4 in the
Y-channel that is closest to zero and does not cross the x-axis, obtaining the corresponding
value Ri = {γi, γi+1, γi+2, γi+3}. Based on Ri, the module selects the corresponding branch
results Xi+4 and Zi+4 from the X-channel and Z-channel.

x

1mx _Exc result

MUX

128

sx ex mx

1 15 112

0 1

Bit-wise 

Concatenation

113

1

y

MUX

128

sy
ey

my

115112
0 1

Bit-wise 

Concatenation

113

1

Exception Detection

Shift

−

MUX

Shift

1my

MUX

sx ex sy ey

_Exc flag

Figure 5. Circuit structure of exception detection and pre-processing module.

3.3.1. Calculation of 16 Branches for X and Y Channels

Through Tables 4 and 5, it can be observed that among the 16 predicted branches in
the Y-channel and X-channel, there are numerous multiplication terms involving the same
constant coefficients. To address this issue of multiple-constant multiplication (MCM),
a dedicated independent MCM module is designed in this paper. Taking the Y-channel as an
example, the split results of the MCM required for its 16 predicted branches are presented
in Table 8. Initially, the input y undergoes the first-level constant multiplication, where
the constants are all powers of 2, readily obtainable through bit shifting. Furthermore,
the second-level constants depend on the results from the first level, while the third-level
constants necessitate the utilization of the split results from the previous two levels. Thus,
by employing appropriate combinations of addition, subtraction, and bit shifting operations,
all multiplication terms with their respective constant coefficients can be derived. This
method fully utilizes the split results of earlier levels, reducing the number of computations
compared to the use of multiple single-constant multipliers. As a result, it addresses the
bottleneck issue caused by extensive multiplication calculations, accelerates computation
speed, and minimizes area consumption.



Electronics 2023, 12, 3472 13 of 23

1mx

Iterative Control 

Logic

Channel Y Parallel 

Branch Calculation

1my

Channel X Parallel 

Branch Calculation

Channel Z Parallel 

Branch Calculation

iX iY

+4iX

+4iY

iR

LUT

4x 

Counter

iZ

+4iZ

Rotation Factor 

Prediction 

outZ

Figure 6. Hardware structure of four-step parallel branch iteration module.

Table 8. Coefficient split results for multiple-constant multiplication.

First Layer Split Result Second Layer Split Result Third Layer Split Result

2 <<1 3 2 + 1 11 8 + 3
4 <<2 5 4 + 1 13 8 + 5
8 <<3 6 2 + 4 22 16 + 6
16 <<4 7 8 − 1 28 16 + 12
32 <<5 9 8 + 1 35 32 + 5

10 8 + 2
12 8 + 4
14 16 − 2
15 16 − 1

Taking the Y-channel as an example, the specific branch computation structure is
provided based on the rules of multiple-constant splitting and the corresponding iterative
expressions for Yi+4. In Figure 7, the computation process for the 15th branch Y14 is
illustrated. Initially, Xi and Yi are fed into the Multiple-Constant Multiplier module. Then,
based on the add-4 counter, a shift operation is performed, enabling Xi and Yi to undergo a
left-shift operation before a subsequent right-shift operation. This approach reduces bit
loss and effectively enhances precision. To minimize critical path delay, the first two and
last two terms of this branch are computed in parallel, followed by a subtraction operation
to obtain the final result. The computation principles for the other 15 branches are similar.
Similarly, results can be obtained for the 16 branches in the X-channel.



Electronics 2023, 12, 3472 14 of 23

iXiY

+4iY

+

<<2 <<3 <<4 <<4 <<1

+

>>>

<<1

+

i

5

− −

−

>>>
<<1

+

i+

i 3

>>>

−

Figure 7. The hardware circuit of the calculation of the 15th branch of the Y-channel.

3.3.2. Calculation of 16 Branches for Z-Channel

In Table 6, the 16 predicted branches of the Z-channel are obtained through addition
and subtraction operations based on precomputed four angles using rotation factors. These
four angles are indexed using the output of the add-4 counter and obtained from the lookup
table. The lookup table has a bit width of 129 bits, with the highest bit set to 0, preparing
for signed addition and subtraction operations in the Z-channel. The precomputed values
placed in the lookup table correspond to arctan(1), arctan(2−1), arctan(2−2) and so on.
Since all calculations are performed using fixed-point representation, each floating-point
arctangent value needs to be converted into fixed-point format before being stored in the
lookup table. For a decimal fraction less than 1, its corresponding binary floating-point
representation, as shown in Equation (8), can be truncated to the fractional part to obtain
the corresponding fixed-point value. Then, by appending a leading 0 to the highest bit,
a 129-bit fixed-point value for the lookup table is obtained, as illustrated in Equation (9).

Z = 0.
128 bits︷ ︸︸ ︷

z0z2z3 · · · z126z127 (9)

ZFixed = 0
128 bits︷ ︸︸ ︷

z0z2z3 · · · z126z127︸ ︷︷ ︸
129 bits

(10)

The computation block diagram for the Z-channel is illustrated in Figure 8.

3.3.3. Twiddle Factor Prediction Module

Based on the prediction strategy shown in Figure 2, the highest sign bit of the
16 predicted branches of Yi+4, is combined to form a 16-bit Symbol_group selection sig-
nal. Subsequently, according to this selection signal, the corresponding rotation factor
Ri={γi, γi+1, γi+2, γi+3} is outputted. The relationship between Symbol_group and Ri is
presented in Table 9. Finally, based on the successfully predicted rotation factor, the corre-
sponding Xi+4, Yi+4, Zi+4 is selected as the output result for this iteration.



Electronics 2023, 12, 3472 15 of 23

i

LUT

4x 
Counter

iZ

iz

4iZ +
Addition 

and 
Subtraction

1iz +

2iz +

3iz +

MUX

0output

1output

15output
14output





iR
129

4

129

129

129

129

129

Figure 8. The computation block diagram for the Z-channel.

Table 9. The result of the twiddle factor.

Symbol_Group Ri Symbol_Group Ri

16’h0000 4’b1111 16’h00ff 4’b0111
16’h0001 4’b1110 16’h01ff 4’b0110
16’h0003 4’b1101 16’h03ff 4’b0101
16’h0007 4’b1100 16’h07ff 4’b0100
16’h000f 4’b1011 16’h0fff 4’b0011
16’h001f 4’b1010 16’h1fff 4’b0010
16’h003f 4’b1001 16’h3fff 4’b0001
16’h007f 4’b1000 16’h7fff 4’b0000

As Ri={γi, γi+1, γi+2, γi+3} varies from (0, 0, 0, 0) to (−1, −1, −1, −1) incrementally,
due to θi > θi+1 > θi+2 > θi+3, the values of Z0 to Z15, combined with the results of the
16 predicted branches in Table 6, are arranged in ascending order. However, there is a
special case where θi+1 + θi+2 + θi+3 > θi exists during the first iteration, causing Z7 > Z8.
As a result, in the first iteration, the highest sign bits of the two Yi+4 corresponding to these
Ri should be swapped to ensure that the value of Symbol_group consists of consecutive
0s and consecutive 1s. The hardware structure of the rotation factor prediction module is
illustrated in Figure 9.

From Table 8, it can be observed that the maximum constant coefficient in the multiplier
is 35. To ensure that the computation process does not result in overflow errors, 6 additional
bits should be reserved in Xi and Yi. Moreover, since the current design employs signed
arithmetic for addition and subtraction, consideration should be given to a sign bit and an
additional carry bit. Thus, before entering the four-step parallel branch iteration module,
Xi and Yi should be padded with 8 bits at the high end to prevent overflow. As the
precision of the CORDIC algorithm improves with increasing iteration count, the selection
of an appropriate bit width is essential to enhance the precision of the computational
results while considering area consumption. Through debugging, this design includes
a compensatory bit width of 15 bits appended to the tails of Xi and Yi, resulting in their
final bit width being set to 136 bits. Since Zi involves only addition operations, the lookup
table can be set to 128 bits, and adding a carry bit leads to Zi being set to 129 bits. Thus,
each computation requires (113 + 15)/4 = 32 iterations, where 113 represents the fraction
bit width and 15 is the compensatory precision. After the completion of 32 iterations,
the iterative process concludes, and the output value of Z-channel represents the result of
the fixed-point arctangent angle.



Electronics 2023, 12, 3472 16 of 23

4x 

Counter

Bit-wise 

Concatenation

0Output [MSB]

7Output [MSB]

8Output [MSB]

15Output [MSB]

Bit-wise 

Concatenation

0Output [MSB]

8Output [MSB]

7Output [MSB]

15Output [MSB]

16 16

01

MUX

Symbol_group

iR

0000

0001

1110

1111

4

16

MUX

Figure 9. The prediction of twiddle factors.

3.4. Floating-Point Regularization Post-Processing Module

The floating-point normalization module aims to convert the computed results into
floating-point numbers that comply with the IEEE-754 standard. It receives the sign bit from
the exception detection and pre-processing module and the 129-bit fixed-point arctangent
result from Z-channel after iteration. Through floating-point normalization processing, it
eventually outputs a 128-bit floating-point number.

Before performing floating-point normalization, it is necessary to detect leading zeros
in the fixed-point arctangent angle value. The conventional approach for leading zero
detection involves sequential logic, counting from the highest bit until the first non-zero
position is found. However, implementing this structure generally results in significant
area and power consumption and is not suitable for this application, especially when there
are a large number of leading zeros, requiring multiple detections and significantly slowing
down the computation speed. Reference [29] proposes a leading zero detection algorithm
based on tree coding, which is efficient for smaller bit widths with fewer encoding and
merging operations. However, in this design, the operand is 129 bits long, and applying
the tree coding method for leading zero detection would inevitably lead to a long detection
chain and considerable gate-level delay.

Therefore, in this design, the tree coding method was not chosen, and instead, a multi-
way selector was employed to implement the leading zero detection circuit. The multi-
way selector is already optimized and readily available in the technology library, offer-
ing a smaller delay compared to the tree coding method and a simpler implementation.
The 129-bit leading zero detection module in this design consists of two layers of multi-way
selectors, and its hardware structure is shown in Figure 10.

First, the 129-bit data to be detected is divided into groups of 8 bits each, forming
leading zero detection subunits called lzd_unit. Each subunit takes 8 bits of the data as
the selection signal and outputs the number of leading zeros, zero_num, for those 8 bits.
Due to the presence of special positions for leading zeros, many terms in the multi-way
selector can be combined, significantly reducing the delay. The 129-bit data is divided
into 16 groups of 8-bit arrays, with the lowest bit as a separate unit, forming 16 lzd_units
and obtaining 16 sets of leading zero counts. Each of these 16 zero_num values is then
compared to 8’d8 to check for equality, and the comparison results are concatenated to



Electronics 2023, 12, 3472 17 of 23

form a 16-bit determination signal which is called judgment. Finally, judgment is used
as the control signal for the multi-way selector to make a selection from the 16 results,
ultimately outputting the number of leading zeros for the high 128 bits of the input data.
The lowest bit data is combined with the output to obtain the number of leading zeros for
the entire 129-bit input data. Since judgment consists of multiple leading ones and the
remaining data, it is equivalent to performing leading one detection using the multi-way
selector, allowing for further term merging in the selector. The hierarchical connection of
the two-layer multi-way selector enables the leading zero detection function to be achieved
with minimal delay cost.

=8’d8?

[128:121]Z

MUX

8' 8d





8

8' 7d

8' 1d
8' 0d

zero_num0

Bit-wise 
Concatenation

=8’d8?

[120 :113]Z

MUX

8' 8d





8

8' 7d

8' 1d
8' 0d

zero_num1

=8’d8?

[8:1]Z

MUX

8' 8d





8

8' 7d

8' 1d
8' 0d

zero_num15

MUX

1

16

judgement

zero_num0

8’d8+zero_num0

8’d16+zero_num0

8’d24+zero_num0

8’d120+zero_num0

[0]Z

+ zero_num
8

1

1

8

Figure 10. Circuit structure for leading zero detection.

The format of the fixed-point arctangent values is shown in Figure 11, and their
corresponding real rad range is between 0 and 2. To convert them into IEEE-754 standard
floating-point numbers, the exponent part is determined as (16,383-zero_num) based on
the number of leading zeros. Simultaneously, the data is left-shifted by zero_num bits,
and the 112 bits following the hidden precision bit 1 are extracted as the mantissa. Finally,
combined with the sign bit output from the exception detection and pre-processing module,
they form a 128-bit standard floating-point value, resulting in the arctangent angle range
of [−π, π]. The hardware structure of the floating-point regularization post-processing
module is illustrated in Figure 12.

Leading Zeros 1

129 bits

Figure 11. Format for fixed-point arctangent.



Electronics 2023, 12, 3472 18 of 23

S

outZ

M

129

0

1

1

Leading Zero 
Detection

Shift

sx

π

15'h3fff

—

Bit-wise Concatenation

Truncate and 
Rounding

E

—

MUX

129

MUX

1
sy

Bit-wise Concatenation

129

0 1

128 Angle

Figure 12. The hardware structure of the floating-point regularization post-processing module.

4. Results and Analysis
4.1. Circuit Simulation and Error Comparison

To ensure the accuracy and reliability of the design, we employed the method of
random testing and conducted extensive data testing and comparison. Since this design is
based on 128-bit floating-point with a maximum precision of 113 bits, the C environment
could no longer accommodate quadruple precision. Therefore, we utilized the “bigfloat”
package in Python, which supports quadruple precision as well as custom precision. This
package allows us to calculate results with the specified precision for input data, making it
suitable for conducting tests and comparisons on this module. The data set was generated
using a Python script. As Python itself cannot produce standard normalized floating-point
numbers, we followed these steps: first, randomly generate 1 bit for the sign, 15 bits for
the exponent, and 112 bits for the mantissa. Then, combine these random values to form
a standard 128-bit floating-point number and convert it into its corresponding real value.
Using the “bigfloat” package, we calculated the arctangent function for the real value and
converted the result back into a 128-bit standard floating-point format, saving it as the ideal
calculation result. Next, we used the randomly generated standard 128-bit floating-point
numbers as the test data set, inputting them into the completed hardware circuit and
conducting logic function simulation verification in the modelsim simulation platform.
This allowed us to obtain the actual calculation results. Subsequently, we compared the
ideal calculation results with the actual calculation results to analyze the discrepancies
between them.



Electronics 2023, 12, 3472 19 of 23

From the ideal calculation results and the actual calculation results, we randomly
selected 100 sets of data to plot the error scatter diagram, as shown in Figure 13. It can
be observed that among the randomly selected 100 sets of test data, the majority of the
ideal calculation results have an error smaller than 8.43 × 10−35 rad compared to the
actual calculation results, with the maximum error not exceeding 2.0× 10−34. Partial ideal
calculation results and corresponding actual calculation results are presented in Table 10.

Figure 13. Error distribution results.

Table 10. Some simulation and theoretical data.

Input_x Input_y Circuit Simulation Result Python Results

4003136c6f31da68
f9b59fde37a9987c

4003bc40f9d0f2bd
ab3d776756ad81bc

3fff040cfa4c18a99
d4a224eda6478f6

3fff040cfa4c18a99
d4a224eda6478f6

4000557faa9d41bd
c364e616606e6a7b

40000d64aa536216
7ba90edae51ed46d

3ffe55f81f8ea3463
92516ba70bd7374

3ffe55f81f8ea3463
92516ba70bd7375

4004e265eca703a0
2c54201a3e85d11b

4006426a847f751c
ee6b57f49e471c9d

3fff367df31da86b6
16a89fd5d92a646

3fff367df31da86b6
16a89fd5d92a646

40046675def5fa53
5860cc95991d7b4d

3fffc0c4e2b6e40db
73621e047d71840

3ffa4054f9ceaa797
9c88445dc3c9427

3ffa4054f9ceaa797
9c88445dc3c9428

3fff079c82007a74
952bf87b08baaeb4

4000dabae2856163
02494d63af9ee753

3fff4ccb1bbf5bea7
442ca60fc17e706

3fff4ccb1bbf5bea7
442ca60fc17e707

400392583ecb3e6d
21d3e8b18c9966d3

3fffc749be7eb391
3f37f183e0b3976a

3ffb21346986115c
69d4b44dfb408a75

3ffb21346986115c
69d4b44dfb408a7b

The testing waveform of the completed system, as depicted in Figure 14, demon-
strates that after 32 cycles, a 128-bit floating-point arctangent value satisfying the precision
requirement can be obtained.



Electronics 2023, 12, 3472 20 of 23

Input_x
Input_y

AngleFinish_flag

Figure 14. The testing waveform for arctangent computation.

4.2. Hardware-Implemented Performance
4.2.1. Result Analysis of ASIC Circuit Synthesis

To validate and analyze the completed hardware circuit of the four-precision floating-
point arctangent function, logic synthesis was performed on the arctangent function
floating-point arithmetic unit using Design Compiler under the TSMC 65 nm process.
Power analysis was conducted at a clock frequency of 500 MHz. The arithmetic unit was
designed to achieve high precision and low latency by sacrificing power and area. Table 11
presents the results obtained after synthesis.

Table 11. Synthesis results of the circuit.

Process Area Power Iterations

TSMC 65 nm 0.6317 mm2 40.6483 mW 32

Table 12 presents a comparison of the iteration counts between the four-step parallel
branch iterative CORDIC algorithm and other similar low-latency CORDIC algorithms
to achieve n-bit precision. The traditional CORDIC algorithm requires n iterations to
achieve n-bit precision, while the high-performance radix-4 CORDIC algorithm requires
n/2 iterations. The dual-step branch CORDIC algorithm requires (n + 3)/2 iterations,
and the low-latency hybrid CORDIC algorithm requires (3n/8) + 1 iterations. With a
precision requirement of 113 bits, the results in the table show that the proposed algorithm
in this design requires the fewest iterations and achieves the shortest computation period.

Table 12. Iterations for different CORDIC algorithms.

CORDIC Algorithm Iterations

Traditional CORDIC [8] 113
Radix-4 CORDIC [15] 57

Dual-step branch CORDIC [21] 58
Low-latency hybrid CORDIC [27] 44

This paper 32

4.2.2. Implementation on FPGA

Since the floating-point arctangent function is often used in data signal processing
and other fields, it usually needs to be implemented on the FPGA. Therefore, this paper
synthesizes and implements the designed hardware circuit on the FPGA, and compares
it with the performance of similar computing architectures. The FPGA model we use
here is the XC7A100T of the Xilinx Artix-7 series. The circuit diagram of the designed
128-bit floating-point arctangent function upon completion is depicted in Figure 15. Simul-
taneously, similar algorithms were implemented under the TSMC 65 nm process, and a
comparison of hardware circuit costs was conducted. Table 13 shows the performance
comparison results of the arithmetic unit designed in this paper and other studies.



Electronics 2023, 12, 3472 21 of 23

clk

input_x[127:0]

input_y[127:0]

rst

U0

pre_deal

exception

x_sign

y_sign

exception_theta[127:0]

input_x[127:0]

input_y[127:0]

x_E[14:0]

x_M[112:0]

y_E[14:0]

y_M[112:0]

U1

pre_deal1

arctan_sign

x_sign

y_sign

x_E[14:0]

x_M[112:0]

x_M1[112:0]

y_E[14:0]

y_M[112:0]

y_M1[112:0]

U2

cordic_core_arctan

arctan_sign

arctan_sign_resclk

exception exception_lock

finish

rst

exception_theta[127:0]

input_x[112:0]

input_y[112:0]

res_exception_theta[127:0]

z_out[128:0] normalize

normalize

arctan_sign_res arctan[127:0]

z[128:0]

arctan_res_i

RTL_MUXS

I0[127:0]S=1'b1

I1[127:0]S=default
O[127:0]

arctan_res_reg

RTL_LATCH

G

D[127:0]
Q[127:0]

finish

arctan_res[127:0]

Figure 15. The circuit diagram of the 128-bit floating-point arctangent function.

Table 13. Comparison of hardware cost and performance.

CORDIC Area on TSMC 65 nm (mm2) LUTs Utilized in FPGA Number of Cycles Number of Operands Target Precision (bits) Error (rad)

Paper [30] 0.0975 5150 22 32 23 1.9× 10−6

Paper [31] 0.3356 20443 55 64 53 6× 10−16

This paper 0.6317 37697 32 128 113 2× 10−34

In Table 13, it can be observed that compared to [30], the proposed arctangent compu-
tation unit in this paper has only increased its execution cycles by 10 cycles and consumed
6.3 times more resources. Although there is a slight performance loss in terms of resource
consumption and execution efficiency, its computation accuracy has significantly improved,
reducing the error by a factor of 1028. Compared to [31], the proposed computation unit
in this paper has increased resource consumption by less than 1 time, but it has reduced
execution efficiency by 23 cycles. At the same time, the computation accuracy has greatly
improved, reducing the error by a factor of 1018. The results indicate that the design strategy
of the 128-bit floating-point arctangent computation unit in this paper, which trades area
for speed and precision, is highly meaningful and results in significant improvements in
computation accuracy and efficiency.

5. Conclusions

In this paper, the traditional CORDIC algorithm is analyzed, considering the issue
of low computational efficiency caused by multiple iterations, and an improved four-step
parallel branch iterative CORDIC algorithm is proposed, which reduces the computation
period by a factor of 4 through parallel prediction of rotation factors, enabling the com-
pletion of a 128-bit floating-point arctangent calculation in just 32 cycles. Subsequently,
the improved algorithm is implemented and simulated using verilog for hardware circuit
implementation, and the results are compared with the “bigfloat” arithmetic library in
Python. The result shows that the maximum error does not exceed 2× 10−34 rad, indicating
extremely high computational accuracy. Finally, the designed arithmetic unit is subjected
to logic synthesis under the TSMC 65 nm process, resulting in a hardware area of approxi-
mately 0.6317 mm2 and power consumption of about 40.6483 mW at a working frequency
of 500 MHz. Additionally, the arithmetic unit is also synthesized and implemented on
Xilinx FPGA.

Therefore, the designed low-latency four-precision floating-point arctangent algorithm
in this paper significantly enhances both the computational accuracy and efficiency of
the arctangent function, filling the gap in the research field of high-precision arctangent
calculations. Moreover, the arctangent arithmetic unit constructed in this paper fills the
void in the domain of high-precision floating-point arctangent hardware circuits, providing
a new solution for the design of dedicated CORDIC chips. In the future, this work is
intended to be expanded on as follows:

1. The designed arithmetic unit will be further improved to reduce the complexity and
cost of the hardware circuit;

2. The improved algorithm will undergo more extensive experimental validation to
verify its correctness in practical applications.



Electronics 2023, 12, 3472 22 of 23

Author Contributions: Conceptualization, M.W.; methodology, C.H. and B.Y.; software, C.H., B.Y.
and S.X.; validation, Y.Z. and Z.W.; writing—original draft preparation, C.H. and B.Y.; writing—
review and editing, C.H., B.Y. and S.X.; project administration, Y.Z. and Z.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tang, P.T.P. Table-lookup algorithms for elementary functions and their error analysis. In Proceedings of the 10th IEEE Symposium

on Computer Arithmetic, Grenoble, France, 26–28 June 1991. [CrossRef]
2. De Lassus Saint-Geniès, H.; Defour, D.; Revy, G. Exact Lookup Tables for the Evaluation of Trigonometric and Hyperbolic

Functions. IEEE Trans. Comput. 2017, 66, 2058–2071. [CrossRef] [CrossRef]
3. Koren, I.; Zinaty, O. Evaluating elementary functions in a numerical coprocessor based on rational approximations. IEEE Trans.

Comput. 1990, 39, 1030–1037. [CrossRef] [CrossRef]
4. Schulte, M.J.; Swartzlander E.E. Hardware designs for exactly rounded elementary functions. IEEE Trans. Comput. 1994, 43,

964–973. [CrossRef] [CrossRef]
5. Muller, J.M. A Few Results on Table-Based Methods. Reliab. Comput. 1999, 5, 279–288. [CrossRef]
6. Sidahoao, N.; Constantinides, G.A.; Cheung, P.Y. Architectures for function evaluation on FPGAs. In Proceedings of the 2003

IEEE International Symposium on Circuits and Systems (ISCAS), Bangkok, Thailand, 25–28 May 2003. [CrossRef]
7. Nasayama, S.; Sasao, T.; Butler, J.T. Programmable numerical function generators based on quadratic approximation: Architecture

and synthesis method. In Proceedings of the Asia and South Pacific Conference on Design Automation, Yokohama, Japan,
24–27 January 2006. [CrossRef]

8. Volder, J.E. The CORDIC Trigonometric Computing Technique. IRE Trans. Electron. Comput. 1959, EC-8, 330–334. [CrossRef]
[CrossRef]

9. Meher, P.K.; Valls, J.; Juang, T.-B.; Sridharan, K.; Maharatna, K. 50 Years of CORDIC: Algorithms, Architectures, and Applications.
IEEE Trans. Circuits Syst. I: Regul. Pap. 2009, 56, 1893–1907. [CrossRef] [CrossRef]

10. Walther, J.S. A unified algorithm for elementary functions. In Proceedings of the Spring Joint Computer Conference, Atlantic City,
NJ, USA, 18–20 May 1971. [CrossRef]

11. Garrido, M.; Källström, P.; Kumm, M.; Gustafsson, O. CORDIC II: A New Improved CORDIC Algorithm. IEEE Trans. Circuits
Syst. II: Express Briefs 2016, 63, 186–190. [CrossRef] [CrossRef]

12. Zhu, B.; Lei, Y.; Peng, Y.; He, T. Low Latency and Low Error Floating-Point Sine/Cosine Function Based TCORDIC Algorithm.
IEEE Trans. Circuits Syst. I: Regul. Pap. 2017, 64, 892–905. [CrossRef] [CrossRef]

13. Luo, Y.; Wang, Y.; Ha, Y.; Wang, Z.; Chen, S.; Pan, H. Generalized Hyperbolic CORDIC and Its Logarithmic and Exponential
Computation With Arbitrary Fixed Base. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 2156–2169. [CrossRef] [CrossRef]

14. Angarita, F.; Perez-Pascual, A.; Sansaloni, T.; Vails, J. Efficient FPGA implementation of Cordic algorithm for circular and linear
coordinates. In Proceedings of the International Conference on Field Programmable Logic and Applications, Tampere, Finland,
24–26 August 2005. [CrossRef]

15. Antelo, E.; Villalba, J.; Bruguera, J.D.; Zapata, E.L. High performance rotation architectures based on the radix-4 CORDIC
algorithm. IEEE Trans. Comput. 1997, 46, 855–870. [CrossRef] [CrossRef]

16. Lyu, F.; Wu, C.; Wang, Y.; Pan, H.; Wang, Y.; Luo, Y. An optimized hardware implementation of the CORDIC algorithm.
IEICE Electron. Express 2022, 19, 20220362. [CrossRef] [CrossRef]

17. Nair, H.; Chalil, H. FPGA Implementation of Area and Speed Efficient CORDIC Algorithm. In Proceedings of the 2022 6th
International Conference on Computing Methodologies and Communication (ICCMC), AErode, India, 29–31 March 2022.
[CrossRef]

18. Fons, F.; Fons, M.; Cantó, E.; López, M. Trigonometric Computing Embedded in a Dynamically Reconfigurable CORDIC System-
on-Chip. In Proceedings of the International Workshop on Applied Reconfigurable Computing; Springer: Berlin/Heidelberg Germany ,
2006. [CrossRef]

19. Salehi, F.; Farshidi,E.; Kaabi, H. Novel design for a low-latency CORDIC algorithm for sine-cosine computation and its Imple-
mentation on FPGA. Microprocess. Microsyst. 2020, 77, 103197. [CrossRef] [CrossRef]

20. Sergiyenko, A.; Moroz, L.; Mychuda, L.; Samotyj, V. FPGA Implementation of CORDIC Algorithms for Sine and Cosine Floating-
Point Calculations. In Proceedings of the 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS), Cracow, Poland, 22–25 September 2021. [CrossRef]

https://doi.org/10.1109/ARITH.1991.145565
.
http://doi.org/10.1109/TC.2017.2703870
.
http://dx.doi.org/10.1109/12.57042
.
http://dx.doi.org/10.1109/12.295858
http://dx.doi.org/10.1023/A:1009984523264
https://doi.org/10.1109/ISCAS.2003.1206096
https://doi.org/10.1109/ASPDAC.2006.1594712
.
http://dx.doi.org/10.1109/TEC.1959.5222693
.
http://dx.doi.org/10.1109/TCSI.2009.2025803
https://doi.org/10.1145/1478786.1478840
.
http://dx.doi.org/10.1109/TCSII.2015.2483422
.
http://dx.doi.org/10.1109/TCSI.2016.2631588
.
http://dx.doi.org/10.1109/TVLSI.2019.2919557
https://doi.org/10.1109/FPL.2005.1515779
.
http://dx.doi.org/10.1109/12.609275
.
http://dx.doi.org/10.1587/elex.19.20220362
https://doi.org/10.1109/ICCMC53470.2022.9753730
https://doi.org/10.1007/11802839_17
.
http://dx.doi.org/10.1016/j.micpro.2020.103197
https://doi.org/10.1109/IDAACS53288.2021.9660963


Electronics 2023, 12, 3472 23 of 23

21. Phatak, D.S. Double step branching CORDIC: A new algorithm for fast sine and cosine generation. IEEE Trans. Comput. 1998, 47,
587–602. [CrossRef] [CrossRef]

22. Paz, P.; Garrido, M. CORDIC-Based Computation of Arcsine and Arccosine Functions on FPGA. In IEEE Transactions on Circuits
and Systems II: Express Briefs; IEEE: Manhattan, NY, USA, 2023; p. 1. [CrossRef]

23. Zhu, H.; Ge, Y.; Jiang, B. Modified CORDIC algorithm for computation of arctangent with variable iterations. In Proceedings of
the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016. [CrossRef]

24. Torres, V.; Valls, J.; Canet, M. Optimized CORDIC-based atan2 computation for FPGA implementations. Electron. Lett. 2017, 53,
1296–1298. [CrossRef] [CrossRef]

25. Torres, V.; Valls, J. A Fast and Low-Complexity Operator for the Computation of the Arctangent of a Complex Number. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2663–2667. [CrossRef] [CrossRef]

26. Li, X.; Fu, Y.; Gao, D.; Qiu, Y. Arctangent calculation based on low-consumption π/4 one-way optimal iterative CORDIC
algorithm. J. Huazhong Univ. Sci. Technol. 2019, 47, 29–33. [CrossRef]

27. Shukla, R.; Ray, K.C. Low Latency Hybrid CORDIC Algorithm. IEEE Trans. Comput. 2014, 63, 3066–3078. [CrossRef] [CrossRef]
28. IEEE Std 754-2008; IEEE Standard for Floating-Point Arithmetic. IEEE: Piscataway, NJ, USA, 2008; pp. 1–70. [CrossRef]
29. Oklobdzija, V.G. An implementation algorithm and design of a novel leading zero detector circuit. In Proceedings of the

Conference Record of the Twenty-Sixth Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA,
26–28 October 1992. [CrossRef]

30. Liu, X.H.; Xu, L.; Liu, H.Y. Realization of arctangent function based on improved CORDIC algorithm in FPGA. Comput. Technol.
Dev. 2013, 23, 5. [CrossRef]

31. Zhou, J.; Dou, Y.; Lei, Y.; Xu, J.; Dong, Y. Double Precision Hybrid-Mode Floating-Point FPGA CORDIC Co-processor. In Pro-
ceedings of the 2008 10th IEEE International Conference on High Performance Computing and Communications, Dalian, China,
25–27 September 2008. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

.
http://dx.doi.org/10.1109/12.677251
https://doi.org/10.1109/TCSII.2023.3262353
https://doi.org/10.1109/ICSP.2016.7877837
.
http://dx.doi.org/10.1049/el.2017.2090
.
http://dx.doi.org/10.1109/TVLSI.2017.2700519
http://doi.org/10.13245/j.hust.190806
.
http://dx.doi.org/10.1109/TC.2013.173
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/ACSSC.1992.269243
http://doi.org/10.3969/j.issn.1673-629X.2013.11.026
https://doi.org/10.1109/HPCC.2008.14

	Introduction
	CORDIC Algorithm and Improvement
	IEEE 754 Floating-Point Standard
	Basic CORDIC Algorithm
	Four-Step Parallel Branching Iteration CORDIC Algorithm for Four-Precision Floating-Point Arctangent Function

	Hardware Circuit Implementation of a Four-Precision Floating-Point Arctangent Function
	Top-Level Module
	 Exception Detection and Pre-Processing Module
	Four-Step Parallel Branch Iteration Module
	Calculation of 16 Branches for X and Y Channels
	Calculation of 16 Branches for Z-Channel
	Twiddle Factor Prediction Module

	Floating-Point Regularization Post-Processing Module

	Results and Analysis
	Circuit Simulation and Error Comparison
	Hardware-Implemented Performance
	Result Analysis of ASIC Circuit Synthesis
	Implementation on FPGA


	Conclusions
	References

