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Abstract: Many patients suffer from postoperative pain after surgery, which causes discomfort and
influences recovery after the operation. During surgery, the anesthetists usually rely on their own
experience when anesthetizing, which is not stable for avoiding postoperative pain. Hence, it is
essential to predict postoperative pain and give proper doses accordingly. Recently, the relevance of
various clinical parameters and nociception has been investigated in many works, and several indices
have been proposed for measuring the level of nociception. However, expensive advanced equipment
is required when applying advanced medical technologies, which is not accessible to most institutions.
In our work, we propose a deep learning model based on a dynamic graph transformer framework
named DoseFormer to predict postoperative pain in a short period after an operation utilizing dynamic
patient data recorded in existing widely utilized equipment (e.g., anesthesia monitor). DoseFormer
consists of two modules: (i) We design a temporal model utilizing a long short-term memory (LSTM)
model with an attention mechanism to capture dynamic intraoperative data of the patient and
output a hybrid semantic embedding representing the patient information. (ii) We design a graph
transformer network (GTN) to infer the postoperative pain level utilizing the relations across the
patient embeddings. We evaluate the DoseFormer system with the medical records of over 999 patients
undergoing cardiothoracic surgery in the Fourth Affiliated Hospital of Zhejiang University School of
Medicine. The experimental results show that our model achieves 92.16% accuracy for postoperative
pain prediction and has a better comprehensive performance compared with baselines.

Keywords: big data analysis; machine learning; graph neural network; anesthesia; postoperative pain

1. Introduction

General anesthesia is a medical procedure in which a person is put into a coma-like
state, during which they lose consciousness and their protective reflexes are
suppressed [1,2]. This allows them to undergo surgical or other medical procedures
without being aware of or feeling pain. Clinically, general anesthesia is typically divided
into three components: sedation, analgesia, and muscle relaxation. The depth of sedation
and muscle relaxation during the procedure can be monitored using electroencephalogram
(EEG) [3] and electromyogram (EMG) [4], respectively. However, there is still a lack of a
relatively accurate method for measuring the level of intraoperative noxious stimulation
and analgesia [5]. Currently, anesthesiologists rely on their experience to control the dosage
of anesthetic drugs to avoid postoperative pain. However, this approach can be unreliable,
as different anesthesiologists may possess varying levels of experience and judgment,
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leading to inconsistent interpretations and outcomes. As a result, it is important to accu-
rately predict the level of postoperative pain in order to help anesthesiologists determine
the appropriate dosage of anesthetic drugs, improving the stability and reliability of the
anesthetic process.

To reduce the risk of acute postoperative pain, researchers have focused on developing
measures of intraoperative analgesia levels and have proposed a range of indicators. These
efforts aim to improve the accuracy and reliability of anesthetic drug dosing to control pain
levels after surgery better [6–9]. Although these indicators may aid anesthesiologists in
improving the control of analgesic drug administration, their calculation often necessitates
the use of additional monitoring equipment, which can make the deployment of these
indicators expensive and may limit their widespread adoption in clinical settings.

We propose a postoperative pain prediction system that leverages two key opportu-
nities: (i) the clinical experience of anesthesia medical staff and (ii) the data commonly
collected by modern medical institutions. According to the guidelines of clinical anesthe-
siology, anesthesiologists typically consider two aspects of a patient when administering
anesthetics: basic physical information (such as height, weight, and age) and fluctuations
in physiological signs (such as blood pressure) during surgery. By using these factors to
guide the amount and timing of drug administration, anesthesiologists aim to reduce the
risk of acute postoperative pain. By modeling the relationship between these patient status
variables and postoperative pain levels using historical data, we can develop a system that
helps anesthesiologists better predict and control postoperative pain.

Predicting postoperative pain is challenging for several reasons: (i) each patient’s
physiological conditions are unique, making it difficult to identify patterns of postoperative
pain, and (ii) fluctuations in vital signs can be challenging to interpret and may not always
provide reliable insights into a patient’s pain levels.

We design a framework named DoseFormer, which utilizes standard sensors and moni-
tors to predict postoperative pain and assist in intraoperative narcotization by a dynamic
graph transformer model. DoseFormer consists of two modules. The first module uses an
attention-based long short-term memory (LSTM) model to combine static physical data
and dynamic intraoperative data to create a hybrid semantic embedding that represents
various aspects of the patient’s information. The second module uses a graph transformer
network (GTN) to accurately predict postoperative pain by examining the relationships
among the semantic embeddings of patients. Our main contributions are as follows:

1. To the best of our knowledge, we are among the first to use deep learning and
prevalent patient data from current operating systems to measure intraoperative
nociceptive stimulation and guide analgesia.

2. Technically, we developed DoseFormer, a multi-modal system designed for predicting
postoperative pain. The DoseFormer system leverages a combination of static and
dynamic features, as well as patient relationships, to assist anesthesiologists in making
informed decisions about the optimal level of narcotization required during surgery.

3. We evaluated our model using real-world medical records from 999 patients and
found that it achieved 92.16% accuracy, outperforming several baselines in terms of
comprehensive performance. Data and codes are released at https://github.com/
zxh991103/DoseFormer accessed on 15 July 2023.

The rest of this paper is organized as follows. Section 2 describes the motivation, and
Section 3 reviews the related works. In Section 4, we introduce the system framework.
Section 5 describes the main design. Section 6 evaluates the performance. Lessons learned
and limitations are discussed in Section 7, and finally, Section 8 concludes the paper.

2. Motivation

In this section, we explain the importance of developing a system for predicting
postoperative pain at the current level of analgesia. Then, we discuss the challenges of
predicting postoperative pain.

https://github.com/zxh991103/DoseFormer
https://github.com/zxh991103/DoseFormer
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2.1. Background

Intraoperative analgesia is crucial in clinical settings because insufficient analgesia can
lead to acute postoperative pain and other complications. In a cross-sectional observational
study [10] of over 15,000 UK patients who underwent surgery in 2016, 11% reported
experiencing severe pain in the first 24 h, and 37% reported experiencing moderate pain.
A prospective cohort study in Germany [11] found that up to 47.2% of 50,523 patients
experienced severe pain (at least 8 out of 10 points) in the first 24 h after surgery. Due to
the high prevalence of postoperative pain, it is crucial to improve intraoperative analgesia
technology to help patients recover more quickly and comfortably after surgery.

2.2. Demand for Postoperative Pain Prediction

Currently, most hospitals rely on traditional methods of measuring analgesia, such
as relying on anesthesiologists to determine the appropriate level of narcotization based
on expert knowledge and clinical experience. In top hospitals, such as grade III level
A hospitals in Zhejiang Province, China, the prevalence of analgesic level monitoring
instruments is less than 80%. In other hospitals, such instruments often need to be improved.
Our postoperative pain prediction system uses only the anesthesia monitor, which is already
used in most general anesthesia procedures and does not require additional sensors or
increase hospital costs. As a result, our system is more practical and less burdensome for
patients compared to existing methods.

2.3. The Challenges

There are two challenges to be addressed in developing a postoperative pain level pre-
diction system. (i) Fluctuations in patient signs during surgery: Clinical experience shows
that anesthesiologists often only have the capacity to pay attention to changes in patient
sign waveforms over a short period, leading to inaccurate dose control of intraoperative
analgesics. It is necessary to extract features that may predict postoperative pain from the
fluctuations in patient signs to address this issue. (ii) Diversity of patient physiological con-
ditions: Different patients have complex, individual physiological conditions that can affect
their need for narcotic drugs. For example, a patient’s height and weight may influence
their dosage. These individual differences can make it difficult to identify the cause of pain
and can challenge anesthesiologists with less clinical experience to provide appropriate
care. Therefore, our prediction model considers these individual differences in patients.

3. Related Work
3.1. Monitoring of Intraoperative Analgesia

According to clinical teaching, there is a correlation between pain and disorders in vital
signs [12]. Traditional intraoperative analgesia techniques rely solely on manual observa-
tion of specific vital signs disorders. Several new monitoring devices have been developed
that use measurements of the patient’s sympathetic and parasympathetic nervous systems
to infer current levels of analgesia, including SPI, PPI, ANI, and NoL. These techniques
have been demonstrated to assist anesthesiologists in controlling the dosage of opioids and
reducing postoperative pain in patients [13,14]. However, few technologies are widely used
in clinical practice, and some have limited applications. For example, SPI can be affected
by drugs or pacemakers [15], and PPI cannot be used on patients with eye diseases. Our
research aims to develop an analgesic guidance technology that could be easy to implement
in clinical practice. Additionally, since our method is still at the theoretical level and has
not yet been tested in clinical trials, we are unable to compare the performance of different
techniques using the same evaluation system.

3.2. Machine Learning Medical Application

Some studies apply machine learning algorithms to predict the onset of diseases, such
as pneumonia and sepsis, as well as adverse reactions to drugs and other medical treatments.
These methods have shown promising results in terms of accuracy and effectiveness and
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have the potential to significantly improve patient outcomes by allowing medical staff to
take proactive measures. XGBoost and Logistic Regression are used to predict breakthrough
pain during labor analgesia using neuraxial techniques. The authors of [16,17] used
XGBoost to predict intraoperative hypoxemia, and [18] used Logistic Regression to predict
intraoperative hypotensive events.

In addition, deep learning techniques are utilized to predict the depth of anesthe-
sia [19–21] but not postoperative effects. Recently, a graph-based neural network that
utilizes patient similarity has been applied to predict postoperative pain [22]. However, it
only separately utilizes static and dynamic temporal features instead of combining them
for maximum effect. Therefore, to better exploit both static demographic and dynamic
intraoperative information, we design the graph-based multi-modal DoseFormer, aiming
to predict the likelihood of postoperative pain in patients and suggest adjustments to the
anesthesiologist’s use of analgesics.

4. System Overview

In this section, we provide an overview of the data collection and system functions.
Then, we explain the design of the proposed postoperative pain prediction system.

4.1. Patient Data Collection

The data are sourced from the Fourth Hospital Affiliated with Zhejiang University’s
hospital information system (HIS) and anesthesia information collection system (DoCare).
The subjects are patients who received cardiothoracic surgery at the Fourth Hospital
Affiliated with Zhejiang University from 1 January 2018 to 31 December 2020. Figure 1
displays the anesthesia monitor used during the operation. It continuously collects the
patient’s vital signs data every 5 min during surgery and saves these data in real time.

Figure 1. Anesthesia monitor used in operation.

4.2. System Workflow

DoseFormer predicts the likelihood of postoperative pain in patients. Postoperative
pain refers to the pain experienced by patients within 30 min of waking up from anes-
thesia. If the intraoperative analgesic drugs provide adequate pain relief, the patient will
not experience discomfort during their postoperative recovery. The results of predictive
models can indicate the sufficiency of the intraoperative analgesic drug dose and assist the
anesthesiologist in making adjustments to ensure optimal pain management. The workflow
of the DoseFormer system is illustrated in Figure 2a. The process starts with the vital record
instrument collecting data even before the surgical procedure commences. These vital
signs are recorded at 5-minute intervals and are transmitted to our system in real time. By
incorporating these records with the patient’s static characteristics, the system generates a
predicted postoperative pain index as its output.
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Figure 2. Postoperative pain prediction system.

4.3. Design Overview

The system architecture is depicted in Figure 2b and comprises three essential components:

1. Data set: The Data set module is responsible for collecting and preprocessing data,
which includes basic patient information and anesthesia data recorded in the DoCare
system. This module continuously updates with 5-minute intervals on the patient’s
status during surgery.

2. DoseFormer System: The DoseFormer system is in charge of performing inference.
The server utilizes the collected data to continually update the model and predict the
patient’s likelihood of experiencing postoperative pain. As new data are received, the
calculation component adjusts the prediction results accordingly.

3. Guidance: The Guidance module handles interactions with users. Once the server
returns the prediction results, they are displayed on the hospital client’s application.
These results serve as a reference for anesthesiologists to make informed decisions on
supplementing analgesic drugs for patients.

5. The DoseFormer Model

This section outlines the design of the DoseFormer model, including the overall frame-
work and the function and structure of each module.

5.1. Overall Framework

The overall DoseFormer framework is shown in Figure 3. Our model utilizes a dynamic
encoder, initialized with static features, to extract the hybrid semantic features for each
patient. Clinical experiences suggest that postoperative pain is correlated with a patient’s
physiological status. This means patients with similar physiological conditions are likely to
respond similarly to treatment and exhibit similar outcomes. To represent the similarity
between patients, we use a graph structure and a graph neural network to uncover the
patterns in the data. We introduce a dynamic forward process that utilizes static–dynamic
fused embeddings for similarity-weighted graph construction as the input for the graph
neural network, which enhances the representation of patient data. To enhance the repre-
sentation capability of the graph neural network and adapt the dynamic forward process
of graph construction [23], we employ Graph Transformer Networks (GTN) [24] to uncover
the patterns in the data. GTN then classifies the nodes and predicts whether the patient is
likely to experience postoperative pain based on their current state.

In summary, the task of our DoseFormer model is to predict whether a patient will
experience postoperative pain. This prediction task involves two classes: not having
postoperative pain, marked as 0, and having postoperative pain, marked as 1. Our model
takes multiple inputs, including static physical features from the HIS system (e.g., age,
gender), static clinical features from the DoCare system (e.g., anesthetic drug, surgical
position), and dynamic signals recorded during surgery from the DoCare system (e.g.,
heart rate, oxygen saturation). Subsequently, the model outputs two probabilities: the
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probability of having postoperative pain and the probability of not having postoperative
pain, where the sum of these two probabilities is one, enabling the model to directly
compare them and predict whether a patient will experience postoperative pain.

Static features

Dynamic features

node feature
Dynamic Encoder

Initial
state

Static-Dynamic Fusion Encoder Graph Transformer Network

Patient similarity network

Node 
classification

Output

Patient 
with 
pain

Patient 
without 

pain

Time 
1

Time 
0

Time 
t

……

Attention

Figure 3. DoseFormer model overview.

Furthermore, postoperative pain typically occurs after surgery and can be managed
by anesthesiologists. Based on the prediction results from our model, anesthesiologists can
make informed decisions regarding whether to increase or decrease specific drugs to aid
patients in alleviating and preventing postoperative pain effectively.

5.2. Dynamic Encoder

The dynamic encoder, depicted in Figure 4, captures static features, such as age, sex,
and type of operation, and dynamic features during the operation, such as systolic arterial
pressure, heart rate, and oxygen saturation, and fuse both of them to a hybrid feature
embedding. The dynamic encoder is divided into two sub-modules: a CNN-LSTM module
and an attention module.

CNN

LSTM LSTM LSTMLSTM

……

……

1-D CNN Encoder

Encoded features

Time

Static features Init Hidden

Out Out Out……

Attention

Init Cell

CNN CNN

Window Size: 3, Period: 15 mins

Record Interval: 5 mins

Stride: 1, Interval: 5 mins

Dynamic Features:
1. Heart Rate
2. Pulse
3. Oxygen Saturation
4. Systolic Blood Pressure
5. Diastolic Blood Pressure
6. Arterial Systolic Pressure
7. Arterial Diastolic Pressure

Dynamic Features ��×�

   

1-D CNN Output ���

   

LSTM Hidden State ���

   
LSTM O����� ���

Feature Embedding Vector hx  ���
 

Figure 4. Dynamic encoder.

Firstly, anesthesiologists typically take into account static patient features, such as
age and gender, before surgery. To leverage this prior knowledge effectively, we designed
the CNN-LSTM module, where we utilize the static information to initialize the temporal
model LSTM, aiming to model the prior knowledge of anesthesiologists when they observe
the dynamic signs during surgery.

Secondly, after conducting further consultations with professional anesthesiologists,
we gained insight into their practice of focusing more on signs during specific periods,
notably when the patient begins anesthesia and when the surgery concludes. Considering
this observation, we design the attention module to augment the temporal model LSTM,
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which captures the most significant signals during the surgery, aligning with the key
moments of interest for anesthesiologists.

Finally, we were able to obtain a hybrid feature embedding for each patient from the
dynamic encoder.

5.2.1. CNN-LSTM

In this module, we implement a long short-term memory (LSTM) model [25] combined
with a 1D convolutional neural network (CNN). In the 1D-CNN structure, we set the
window size to three, based on insights from our investigation into surgical procedures and
feedback from anesthesiologists. The patients’ dynamic physical signals, such as heart rate
and oxygen saturation, are recorded every 5 min, and anesthesiologists typically consider
the physical signals within a 15-min window. To effectively model the anesthesiologists’
experience, we opted for a window size of three, enabling us to capture pertinent dynamic
information within a timeframe similar to their evaluation practices. Furthermore, to
reflect the continuous monitoring approach of anesthesiologists during surgery, we set the
stride of the CNN to one. This choice ensures that the dynamic feature windows overlap,
aligning with medical norms. As a result, our 1D-CNN structure comprises three 1× 3
1D-convolutional layers with 80 channels each, followed by a global average pooling layer,
which transforms each window of temporal data into an 80-dimensional representation.

The LSTM model uses the static features (e.g., age, gender) to initialize the hidden and
cell states and inputs the temporal embeddings in each time step. The outputs of the LSTM
across all time steps represent the embedding of the whole dynamic feature during the
operation. An attention module is then applied to these outputs to obtain the final encoder
features for each patient.

In summary, the CNN-LSTM module takes multiple modalities as input, including
systolic blood pressure, diastolic blood pressure, arterial systolic pressure, arterial diastolic
pressure, heart rate, pulse, and oxygen saturation. For a patient x, the dynamic temporal
features input into the CNN-LSTM module form a matrix X ∈ R7×n, where 7 represents
the number of feature types from the various modalities, and n× 5 denotes the duration
of the operation time. The module then produces a feature matrix Ox ∈ Rt×F as output,
where t is the number of windows of temporal series data, and F is the LSTM output’s
hidden size.

5.2.2. Attention

According to clinical experience, an anesthetist usually pays more attention to some
intervals that represent the state change of the patient rather than the whole operation
period. Therefore, we want to extract important information from the LSTM outputs across
all time steps. In this module, we use the attention method to deal with the information
extraction problem, which is mostly used in sequence prediction [26] and classification [27].
Shown in Figure 5, details of our attention module are as follows:

Given the LSTM outs of a patient x, Ox = {~o1,~o2, . . . ,~ot},~oi ∈ RF,where t is the
number of the window of the temporal series data. As shown in Formula (1), we are
supposed to construct Q, K, V to make attention operation, where the projects are trainable
parameter matrices WQ ∈ Rdlstm×dlstm , WK ∈ Rdlstm×1,

Q = OxWQ

K = tanh(Q)WK

V = Ox

(1)

We calculate the attention vector λ by Formula (2),where λ ∈ Rdseq ,

λ = so f tmax(QKT) (2)
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Then, we obtain the feature embedding vector hx of a a patient x by Formula (3),

hx = ∑
t

λxtoxt (3)

Figure 5. Attention module.

5.3. Graph Transformer Network
5.3.1. Problem Description

Considering a patient’s features, x, hx =
{
~h1, ~h2, ..., ~hn

}
, where n is the number of

features in the feature set. The system is supposed to predict the likelihood of postoperative
pain in the patient with the output y ∈ {0, 1}. The postoperative pain prediction problem
can be treated as a node classification problem in the context of graph neural networks.

5.3.2. Input Construction

Our data set is transformed into a graph for input into the GTN, with each patient
represented as a node in the graph. We compute the cosine similarity distance using feature
vectors from the dynamic encoder for each pair of patients. Let ~ha and ~hb be the feature

embeddings for two patients. The similarity between them is calculated as s(a, b) =
~ha ·~hb
|~ha |·|~hb |

.

Subsequently, we introduce a threshold θ, which is a hyper-parameter. If the calculated
distance s(a, b) is less than the threshold θ, we consider that there is no edge connection
between the two patients. On the other hand, if the distance s(a, b) is equal to or greater
than the threshold θ, we include it as the similarity weight between the two patients. In
the above process, we add it to the network, and, finally, a stable graph structure can
be obtained. In other words, if two patients have a high level of similarity, an edge is
established between their corresponding nodes in the graph. The weight of the edge is
proportional to the similarity between the two patients. To create the input for the model,
we build a feature matrix and an arc table for each feature set.

Given a simple undirected weighted graph G = (V, E), V = {n1, n2, ..., nN} is the
node set and E = {e1, e2, ..., eM}is the edge set, where |V| = N and |E| = M.

The node feature input is defined by the feature matrix A ∈ RN×M, where N represents
the number of features for each patient, and M represents the total number of patients. The
feature matrix’s i-th row represents the feature embedding vector of the i-th patient, and
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the edge feature input is defined by an arc table. If an edge exists between nodes ni and nj
with a weight of wij, a triple

{
ni, nj, wij

}
is included in the arc table to represent the edge.

5.3.3. Node Embedding Update

In the previous section, we outlined the input graph’s structure and node features.
The graph neural network allows each node to extract the embedded information from its
neighboring nodes [28], leveraging the similarity between patients. The node features will
be used to initialize the node’s hidden state by the dynamic encoder, h =

{
~h1, ~h2, ..., ~hn

}
,

~hi ∈ RF, where N represents the number of nodes, and F represents the number of node
features for each node. In order to show the workflow of the graph transformer network,
demonstrated in Figure 6, we will detail how to obtain the aggregated embedding h′i from
the embedding hi from the static–dynamic fusion encoder.

node feature

Patient similarity network

Zoom in

hj(1)

hi

hj(2)

hi

hj(1)

hj(2)

FC-Q

FC-K

FC-V

Center Representation

Neighbor Representations

Matmul

Scale

Softmax

Matmul

Graph Transformer Network Prediction

LayerNorm

LeakyReLU

Gated Residual

h'i

MLP

Softmax

Postoperative Pain 
Probability

Comfort Pain

h'i

Figure 6. Graph transformer network.

For node ni, the objective is to gather information from neighboring nodes, aggregate
it, and use it to update the node ni’s feature embedding. As shown in Formula (4),

qi = WQ · hi,

kj = WK · hj,

vj = WV · hj

(4)

where WQ ∈ RF×F denote the transformation matrices of the center patient node ni for
querying, and WK, WV ∈ RF×F denote the transformation matrices of the neighboring pa-
tient node nj, used for key and value, respectively. Additionally, qi depicts the embedding
of the center patient nodes that queries the neighboring patient nodes; kj represents the
index of the neighboring patient nodes, and vj depicts the transformed embedding for the
neighboring patient nodes.

The attention α
nj
ni for the center patient node ni of the neighboring patient node nj is

calculated by:

α
nj
ni =

exp
〈

qi,
(
kj
)>〉

∑j′∈Ni
exp

〈
qi,
(

kj′
)>〉 (5)

where 〈q, k〉 = exp
(

q·kT
√

F

)
, and Ni denotes the node set including j′ neighboring patient

nodes relating to a center patient node i.
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Thus, the aggregated information of neighboring patient nodes for the center patient
node vi is denoted as Ini :

Ini = LeakyReLU(LayerNorm( ∑
j′∈Ni

α
n′j
ni · vj′)) (6)

Finally, we utilize a gated residual connection module [29] to obtain the hybrid em-
bedding h′i of the center patient node ni:

h′i = (1− β) · hi + β · Ini (7)

5.3.4. Prediction and Train

With the hybrid embedding h′i of the center patient node ni, we utilize an MLP structure
and a softmax layer to obtain the postoperative pain probability ŷni of the patient i:

ŷni = So f tmax(MLP(h′i)) (8)

Then, we utilize the MSE loss function to define the loss of the DoseFormer model, and
yni represent the ground truth of patient i:

Loss =
1
n ∑

ni∈V
MSE(ŷni , yni ) (9)

6. Experiment Setups and Results
6.1. Data Sets

Our system is tested using real-world data sets. After conducting data cleaning, a total
of 999 patient records were used for analysis. The HIS information in this study is presented
in Table 1, and the data from the DoCare system are shown in Table 2. In this study,
information that can be determined before surgery is referred to as static information, while
continuously changing vital signs during surgery is referred to as dynamic information.
Static data are represented as discrete values, while dynamic information is expressed as a
continuous waveform signal. We processed the data set as follows:

• For each patient, multiple treatments may be performed during a single surgery.
Under expert guidance, these treatments are divided into 16 categories based on the
similarity in the degree of intraoperative noxious stimulation they cause to patients.
The surgical information is then encoded using 16 binary variables.

• The data regarding drug administration during surgery consist of two primary fea-
tures: the anesthesia method and anesthetic drug, both of which are recorded in the
DoCare system. The anesthesia method is a non-numerical feature that indicates the
type of anesthesia used, such as general anesthesia or local anesthesia. In contrast, the
anesthetic drug is a numerical feature that conveys information about the type and
dosage of the administered drug.

• In the DoCare system, the ASA classification assesses drug efficacy on a scale from
one to five, with each level representing the severity level from least to most serious.

• To convert non-numerical features (e.g., the anesthesia method) into a numerical
format, we utilize One-Hot encoding and combine them with numerical features (e.g.,
anesthetic drug). This procedure allows us to obtain the static features represented
numerically. Subsequently, we feed these features for each patient into the MLP
networks, which then initialize the hidden and cell states of the LSTM module in the
dynamic encoder. This initialization step effectively models the prior knowledge of
anesthesiologists when they observe the dynamic signs during surgery.

In total, 72 features are extracted from the original data set.
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Table 1. HIS data description.

Categories Features

Demographic data (Static)

Sex

Age

Height

Weight

Table 2. DoCare system data description.

Categories Features

Surgery information (Static)

Operation content

Surgical team

Anesthesia method

ASA classification

Anesthetic drug

Surgical position

Incision grade

Operation time

Anesthesia duration

Vital record (Dynamic)

Systolic blood pressure

Diastolic blood pressure

Arterial systolic pressure

Arterial diastolic pressure

Heart rate

Pulse

Oxygen saturation

6.2. Evaluation Metrics

DoseFormer is designed to assist anesthesiologists in determining the appropriate
dosage of analgesic drugs. Therefore, when evaluating the system’s performance, it is
crucial to consider its clinical applicability. In line with this, four performance indicators
have been chosen for evaluation: accuracy, sensitivity, specificity, and SS1-score, such as
the F1-score in the Formula (10).

Accuracy =
TP + TN

TP + FP + FN + TN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

SS1 = 2 · Sensitivity · Specificity
Sensitivity + Specificity

(10)

Our data set consists of 254 patients with postoperative pain and 745 patients without
postoperative pain, resulting in a ratio of approximately 1:3 between the two groups.
Although there is a slight sample imbalance, we have implemented measures to account
for this during our evaluation process. To ensure a comprehensive evaluation, we have not
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solely relied on the accuracy metric. Instead, we have incorporated sensitivity, specificity,
and SS1, which are widely utilized in the medical field. These additional metrics provide
a more thorough assessment of the model’s performance across various aspects and help
address the potential impact of the sample imbalance.

• Sensitivity refers to the ability of the algorithm to identify patients with postoperative
pain accurately. Given the goal of reducing opioid use while preventing postoperative
pain, incorrect identification of patients with enough drug coverage would increase the
risk of over-drug use, which is unacceptable. Hence, sensitivity is a crucial evaluation
metric.

• Specificity refers to the accuracy of the algorithm in identifying patients who did not
experience pain after surgery. To evaluate the system’s ability to assist anesthesiol-
ogists, 100 patients were randomly selected. Real anesthesiologists were asked to
examine the sub-data set and compare the results with the algorithm’s output.

6.3. Baseline Approaches

In order to verify whether the graph transformer network can utilize the similarity
between patients and improve performance, we compared eight commonly used and
powerful classic algorithms, including logistic regression (LR) [30], support vector ma-
chine (SVM) [31], k nearest neighbor (KNN) [32], decision tree (DT) [33], bagging algo-
rithm (Bag) [34], random forest (RF) [35], extra trees (ET) [36], extreme gradient boosting
(XGB) [37], and DoseGuide [22]. The implementation details are outlined in Appendix A.1.

6.4. Experimental Results

Table 3 demonstrates our algorithm’s improved accuracy, sensitivity, and specificity
compared to others. In this context, accuracy can be used to measure the algorithm’s
overall performance. The table shows that our model’s accuracy is higher compared to
other algorithms. Compared to the state-of-the-art model DoseGuide, DoseFormer exhibits
significant improvements in multiple performance metrics. Specifically, it enhances the
accuracy rate by 7.34%, the sensitivity rate by 5.21%, the specificity rate by 15.11%, and the
SS1 rate by 10.9%. These improvements underscore the superior predictive capabilities of
the DoseFormer model. We also conducted a t-test for the significance test that our results
are statistically significant with a p-value < 0.05 compared to the best baseline DoseGuide,
and the differences between DoseFormer and DoseGuide are presented in Appendix A.2.

Table 3. The results of algorithms.

Algorithm LR SVM DT RF ET KNN Bag XGB DoseGuide DoseFormer

Accuracy 75.93 75.55 62.59 73.03 72.96 68.15 75.55 74.07 84.82 92.16 ** (+7.34)
Sensitivity 74.35 67.12 75.79 89.16 88.62 72.87 72.59 90.11 93.22 98.43 * (+5.21)
Specificity 76.12 75.82 60.23 70.44 69.90 65.77 75.91 73.59 76.19 91.30 ** (+15.11)

SS1 75.22 71.20 67.12 78.70 78.15 69.13 74.21 81.01 83.84 94.74 ** (+10.9)
** (*) means the result is significant according to t-test at level 0.01 (0.05) compared to DoseGuide.

The recall rate of our algorithm represents its ability to identify patients without
postoperative pain correctly. The table demonstrates our model’s superior performance,
with a sensitivity of over 90%. This indicates a low chance of misidentifying patients
without pain, thereby avoiding the mistake of over-dosing them with analgesics. This is
acceptable because, according to senior anesthesiologists, postoperative pain can be more
harmful to patients than increased anesthesia. This highlights the practical application
value of our model.

Real anesthesiologists use their experience and expertise to make predictions based
on patient information and data. These predictions are then compared to the actual
postoperative pain levels reported by the patients to evaluate the accuracy of the traditional
pain management methods. Our model performs better and can help anesthetists identify
12% more pain patients.
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Since we employ a 10-fold cross-validation to train the model, we calculate the stan-
dard deviation for each evaluation metric to assess the model’s robustness. The standard
deviation for accuracy is 0.0174, for sensitivity is 0.0101, for specificity is 0.0193, and for
sensitivity is 0.0135, demonstrating the stability of our model.

To validate the effectiveness of our proposed dynamic encoder structure, we conducted
ablation experiments, and the results are presented in Table 4. Our novel static–dynamic
feature fusion method demonstrates significant improvements, yielding an increase of
3.15% in accuracy, 6.17% in sensitivity, 4.65% in specificity, and 5.37% in SS1 score.

Table 4. The results of ablation experiments.

Dynamic Encoder Structure Accuracy Sensitivity Specificity SS1

LSTM without initial and out without attention 85.40 87.63 83.49 85.51
LSTM without initial and out with attention 89.01 92.26 86.65 89.37
LSTM with initial and out without attention 87.64 89.30 85.88 87.56
LSTM with initial and out with attention 92.16 (+3.15) 98.43 (+6.17) 91.30 (+4.65) 94.74 (+5.37)

From the above Table 4, we find that both the initialization state of LSTM and the
output attention are significant. In summary, the performance of our model exceeds the
baselines. This verifies our hypothesis that unstructured information, such as the similarity
between patients, can improve the performance of the algorithm’s prediction task.

6.5. Visualization
6.5.1. t-SNE Visualization of Feature Embedding

In Figure 7, there are a total of 509 points, with each point representing a patient
who underwent surgery under anesthesia at the Fourth Affiliated Hospital of Zhejiang
University School of Medicine between 1 January 2020 and 31 December 2020. The green
points on the figure represent patients without postoperative pain, while the orange points
represent patients with postoperative pain.

We utilize the t-SNE algorithm to reduce the feature embedding vectors, which are
output by the dynamic encoder module, into a two-dimensional representation. Through
this visualization, we observe that our dynamic encoder effectively fuses the static and
dynamic features, allowing it to distinguish between the two types of patients with postop-
erative pain with clear separation on the t-SNE plot. This demonstrates the discriminative
capability of our dynamic encoder module in capturing relevant patterns from the fused
features of the patients.

6.5.2. Statistics of Attention Mechanism in Dynamic Encoder

In Figure 8, we conduct an analysis of the most important time intervals in the attention
vector generated by the attention mechanism within the dynamic encoder. This mechanism
plays a crucial role in extracting relevant parts of the LSTM output, which ultimately leads
to the feature embeddings displayed in Figure 7. The surgical procedure usually has a
duration of approximately 90 min. To facilitate our analysis, we divide the 90-min surgical
procedure into 15-min intervals, denoted as Time.0 to Time.5. The results in this figure
reveal that the attention mechanism in our model assigns higher importance to Time.1 and
Time.5. In other words, the presence of postoperative pain is more strongly correlated with
the dynamic physical signs observed at the beginning and end of the surgical procedure.

To gain deeper insights into this phenomenon, we sought the expertise of senior
anesthesia researchers from Zhejiang University School of Medicine. They corroborated
that anesthesiologists indeed focus significantly on the procedure’s initial and final stages,
validating the rationale behind our attention mechanism. This finding enhances the medical
interpretability of our model, reinforcing its ability to capture critical moments in the
surgical process for predicting postoperative pain.
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6.5.3. Graph Structure Visualization

As illustrated in Figure 9a,b, we visualize the patient similarity graph learned by our
model. Each node in these figures represents an individual patient. Due to the presence
of 999 nodes in our graph model, we selectively display subgraphs of them to ensure
clear visualization of the patient similarities. To identify the strength of relationships
between patients, we categorize the relations based on their weights. Specifically, we define
relations with weights greater than the upper quartile as strong connections, while others
are considered general associations. In our visual representation, we utilize an orange edge
to indicate strong relations between nodes and gray edges to represent general associations.
From the figures, it becomes evident that certain patients exhibit strong similarities with
each other. In the subsequent section, we perform case studies to further investigate and
analyze the features responsible for these similarities between patients. This analysis aims
to provide deeper insights into the reasons underlying the observed patient associations in
the similarity graph.

30 20 10 0 10 20 30
30

20

10

0

10

20

30
No Pain
Pain

Figure 7. The t-SNE visualization for feature embedding output by dynamic encoder.
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Figure 8. Statistics of attention mechanism in dynamic encoder.
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(a) Sub-Graph 1 (b) Sub-Graph 2 (c) Attention Heat Map

Figure 9. Graph Structure.

Additionally, we have generated a heat map in Figure 9c. The horizontal axis repre-
sents the time periods from Time.0 to Time.5, as described in Section 6.5.2, while the vertical
axis corresponds to patient IDs. The intensity of the color in the heat map indicates the
attention values computed by our model. Upon analyzing Figure 9c, we observe a pattern
similar to the one presented in Section 6.5.2. This consistency reinforces the validity of
our findings and provides further evidence of our model’s ability to capture and prioritize
relevant information from dynamic physical signs during the surgical procedure.

6.5.4. Patient Case Study

In the aforementioned samples, we observe a strong connection between Patient No.
263 and Patient No. 271, while a general association is evident between Patient No. 263
and Patient No. 292.

Figure 10a,b provide insights into the similarities between Patient No. 263 and Patient
No. 271. We notice that there is a significant resemblance in the curves representing arterial
diastolic pressure and arterial systolic pressure, which are representative dynamic physical
signals during surgery. Moreover, Figure 9c shows that both Patient No. 263 and Patient
No. 271 have the highest attention value at Time.1, and this similarity is further reinforced
by the more pronounced resemblance during Time.1 in Figure 10a,b.

In contrast, Figure 10c,d display the noticeable differences in the corresponding curves
for Patient No. 263 and Patient No. 292. These distinctions align with the clinical practice,
indicating that our DoseFormer model demonstrates a comprehension similar to that of
anesthesiologists. This consistency with real-world surgical scenarios holds significant
practical value, emphasizing the effectiveness and relevance of our model in assisting
anesthesiologists with their decision-making during surgeries.

We find that the two curves have a more significant similarity during Time.1 of 5–10
intervals. Many similarities exist, especially for arterial systolic pressure in the whole
interval. However, Patient No. 263 and Patient No. 292 have no edge between them. From
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the comparison of signs in Figure 10c,d, we find that the two curves are quite different.
From the aspect of clinical practice, our model shows similar comprehension with the
anesthesiologists, which means DoseFormer is consistent with the actual situation of the
operation and has great practical significance.

(a) Similar Patients 1 (b) Similar Patients 2

(c) Distinct Patients 1 (d) Distinct Patients 2

Figure 10. Physical signs comparison.

7. Discussion
7.1. Limitations

Our work has the following limitations: (i) Measurement accuracy: The intraoperative
data used are obtained through non-invasive measurement, a monitoring method that is
safe for the patient. The DoCare system collects the patient’s biological data during surgery
every 5 min with low frequency. Due to the low frequency, the collected data may not
accurately reflect the real waveform seen by the anesthesiologist during the operation and
may miss important details. (ii) Data cleaning: Some of the data in the HIS and DoCare
system databases may contain manual entry errors due to the manual recording process.
Therefore, we are looking for an efficient data-cleaning process. (iii) Clinical Caveat: It
is essential to highlight that software intended for clinical use should undergo clinical
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trials in compliance with the relevant market’s procedures and regulations. Currently, our
method DoseFormer is still in the research stage, and it is not intended for direct utilization
in clinical medical institutions. As a responsible approach, further validation through
rigorous clinical trials and adherence to regulatory guidelines, such as MDR and ISO
13485 [38], would be necessary before considering its potential application in real-world
medical settings.

7.2. Potential

Our work shows the potential of deep learning in medical applications by demon-
strating its ability to analyze past cases and extract patterns from a large amount of patient
data, thereby reducing errors and improving decision-making in the medical field. Our
work also highlights the importance of effective data cleaning and verification processes to
ensure the accuracy and reliability of the results obtained using deep learning methods.
Our goal is to continuously improve the accuracy and robustness of the system through
ongoing research and collaboration with medical professionals. The system’s deployment
in real-world scenarios will also provide valuable feedback for future improvements.

7.3. Ethics and Privacy

Before conducting this study, ethical approval was obtained from the Ethics Committee
at The Fourth Affiliated Hospital, Zhejiang University School of Medicine. Our work
places a strong emphasis on privacy protection, with a particular focus on ensuring the
confidentiality of patient information.

To achieve this, we have adopted two specific methods to safeguard patients’ privacy.
These methods are designed to minimize the risk of unauthorized access to sensitive infor-
mation and ensure that patient data are handled according to relevant privacy regulations
and standards.

(i) Anonymous processing: The cooperating hospital will utilize our system to enhance
and support patient treatment. The system will receive input from the hospital’s database,
which serves as its source of information. To maintain patient privacy and confidentiality, all
personally identifiable information, such as names, medical record numbers, and operation
numbers, will be encrypted and replaced with unique serial numbers. These encrypted
IDs will not be utilized or analyzed as part of this project. This approach ensures that
patient privacy is maintained and that the information used in this study is protected from
unauthorized access and misuse.

(ii) Treatment means protection: The data collected from the hospital’s database and
DoCare system are exclusively used to aid healthcare providers in enhancing patient
treatment outcomes. The analysis process is considered part of the patient care method,
similar to the collection of vital signs such as heart rate and blood pressure during a medical
procedure. The hospital’s analysis results are solely kept and stored to ensure that patient
privacy is not compromised. These data are used exclusively to support the medical care of
patients and are not disclosed to any outside parties.

8. Conclusions

In this paper, we present DoseFormer, a graph-based dynamic system for predicting
postoperative pain. To our knowledge, this is the first application of deep learning methods
for evaluating intraoperative analgesia levels. We utilize the inherent properties of graph
transformer networks to demonstrate the significance of the patient similarity information,
and the DoseFormer system offers a cutting-edge solution to address the challenge of
accurately regulating the administration of analgesics during general anesthesia procedures.
Extensive evaluation of the model’s efficacy through real-world data set testing confirms
our system’s practical significance and value.
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Appendix A

Appendix A.1. Implementation

We implement our method and baselines with Pytorch 1.13.0 in the Python 3.7 envi-
ronment and train it with 128 GB memory and two GeForce RTX 3090 GPUs.

The hidden size is set to 160, and the threshold θ is set to cos π
4 =

√
2

2 which is searched
in the space [1, cos π

6 , cos π
5 , cos π

4 , cos π
3 ]. We apply Adam optimizer, and the learning rate

is set to 1 × 10−4.
The DoseFormer model and all the compared models have been trained using the same

scheme on a uniform data set consisting of 999 patients from 1 January 2019 to 31 December
2020. To ensure robust evaluation, we have employed a 10-fold cross-validation method.
The data set is partitioned into 10 subsets, each containing approximately 100 patients.
Throughout each training process, eight subsets of data are selected as the training set, one
subset as the validation set, and one subset as the test set. This procedure is iteratively
repeated for all 10 folds, and the results are then averaged to yield a comprehensive and
reliable performance assessment.

Appendix A.2. Differences between DoseFormer and DoseGuide

As shown in Figure A1, when comparing the DoseFormer with our previous work
DoseGuide [22], three improvements become evident, including (1) static–dynamic feature
fusion, (2) attention mechanism, and (3) graph model.

• Improvement 1: Static–Dynamic Feature Fusion. Through our observations, we
noticed that anesthesiologists tend to consider static patient features, such as age and
gender, before surgery. To capitalize on this valuable information, we have developed
an alternative approach compared to DoseGuide. In DoseFormer, we do not concat
static features and dynamic features directly. Instead, we employ the static information
to initialize the temporal model LSTM. This improvement aims to capture the prior
knowledge of anesthesiologists as they monitor the dynamic signs during surgery.

• Improvement 2: Attention Mechanism. After consulting extensively with expert
anesthesiologists, we acquired valuable insights into their practice of placing greater
emphasis on specific periods, particularly when patients are being anesthetized at the
start of surgery and when the procedure is concluding. Building on this understanding,
we have devised a self-attention mechanism that complements the temporal model

https://github.com/zxh991103/DoseFormer
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LSTM. This mechanism empowers us to capture the most vital signals during the
surgical process, aligning precisely with the crucial moments that are of primary
interest to anesthesiologists.

• Improvement 3: Graph Model. In contrast to DoseGuide, which solely relies on static
features for constructing the patient similarity graph, our novel approach DoseFormer
employs a dynamic forward process that leverages fused static–dynamic embeddings
to build the graph. This dynamic strategy significantly enhances the representation of
patient data, resulting in substantial enhancements to the graph construction process
within DoseFormer. Moreover, in our continuous efforts to bolster the representation
capabilities of the graph neural network, we have introduced the graph transformer
network. This network adapts the dynamic forward process of graph construction,
as previously proposed in the work by Yun et al. [23], thereby further elevating the
overall performance of our DoseFormer model.

Dynamic features

Static features
Initial

1D-CNN

LSTM Attention

node feature

Graph 
Transformer 

Network

Dynamic features

Static features

1D-CNN LSTM

node feature

Graph 
Attention 
Network

DoseFormer

DoseGuide

Static feature embedding

Dynamic feature embedding

MLP

Improvement 1: Static-Dynamic Feature Fusion  Improvement 3: Graph ModelImprovement 2: Attention Mechanism

Graph Construction 
by Static-Dynamic Feature Fusion

Graph Construction by Static Feature

Figure A1. Differences between DoseFormer and DoseGuide.
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