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Abstract: Aiming at rolling bearing fault diagnosis, the collected vibration signal contains complex
noise interference, and one-dimensional information cannot be used to fully mine the data features
of the problem. This paper proposes a rolling bearing fault diagnosis method based on SVD-GST
combined with the Vision Transformer. Firstly, the one-dimensional vibration signal is preprocessed
to reduce noise using singular value decomposition (SVD) to obtain a more accurate and useful signal.
Then, the generalized S-transform (GST) is used to convert the processed one-dimensional vibration
signal into a two-dimensional time–frequency image and make full use of the advantages of deep
learning in image classification with higher recognition accuracy. In order to avoid the problem of
limited sensory fields in CNN and the need for an RNN to compute step by step over time when
processing sequence data, the use of a Vision Transformer model for pattern recognition classification
is proposed. Finally, an experimental platform for the fault diagnosis of rolling bearings is built.
The model is experimentally validated, achieving an average accuracy of 98.52% over multiple
tests. Additionally, compared with the SVD-GST-2DCNN, STFT-CNN-LSTM, SVD-GST-LSTM, and
GST-ViT fault diagnosis models, the proposed method has higher diagnostic accuracy and stability,
providing a new method for rolling bearing fault diagnosis.

Keywords: singular value decomposition; generalized S-transform; Vision Transformer; rolling
bearing; fault diagnosis

1. Introduction

Rolling bearings are very common in rotating machine parts and are widely used in
all kinds of mechanical equipment, including high-speed railways, airplanes, and auto-
mobiles [1]. Using fault diagnosis technology, the health status of rolling bearings can be
judged more accurately, which can save on maintenance costs of the mechanical equipment
and avoid unnecessary waste [2]. If rolling bearing failure occurs, it causes property loss
and even a threat to the staff’s life and health. Therefore, the fault diagnosis of rolling
bearings is of great significance [3].

After years of development, rolling bearing fault diagnosis has gradually moved from
traditional methods to intelligent fault diagnosis. Traditional rolling bearing fault diagnosis
methods are usually more dependent on the practitioner’s professional knowledge and
work experience, so they can be influenced by the practitioner’s own subjective judg-
ment [4]. Conventional methods also require regular testing and maintenance of equipment
by staff, which, for a large organization in continuous operation, requires a large annual
investment to support the work [5]. Although traditional rolling bearing fault diagnosis
technology has played an important role, with the continuous development and progress
of science and technology, more intelligent fault diagnosis methods have emerged, one
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after another. These methods meet the current needs of people because they improve the
reliability and accuracy of fault diagnosis [6].

Intelligent fault diagnosis techniques utilizing artificial intelligence technology have
gradually emerged over the years. The acquired data are analyzed using various equip-
ment sensors. Using machine learning, deep learning, and other technologies, we can
attain feature extraction and pattern recognition classification from these data [7] to deter-
mine whether there is a potential failure or an abnormal situation occurring in industrial
equipment, as well as to determine which type of failure it is [8].

The use of deep learning techniques in the field of fault diagnosis is in line with the
current trend of the positive impact of computers on people’s lives. Compared to previous
fault diagnosis methods, deep learning–based methods can realize an “end-to-end” fault
diagnosis process, avoiding the troublesome feature extraction process [9]. In deep learning
technology, neural network models are currently very popular, such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory
networks (LSTMs) [10]. These network models have also been widely used in the field
of fault diagnosis. Liu et al. [11] proposed the possibility of combining GST and SVD to
extract localized damage in rolling bearings and compared it with other commonly used
methods to verify the feasibility of the model. Pan et al. [12] proposed an improved bearing
fault diagnosis method combining a CNN and LSTM, where the input is the raw sampled
signal without any preprocessing or conventional feature extraction. Huang et al. [13]
used EMD for processing bearing vibration signals to reduce noise and then constructed a
convolutional recurrent neural network as a rolling bearing fault diagnosis classifier using
the envelope processed via EMD. Lu et al. [14] proposed a rolling bearing fault diagnosis
method combining LSTM and a self-encoder. Self-encoders can automatically learn useful
functions from vibration signals. LSTM is used to process time series data, and the LSTM
network is used as an encoder and decoder of the self-encoder. Additionally, it has been
shown experimentally that the proposed algorithm has good multi-class classification
performance. In recent years, the Transformer model has shined in the field of deep
learning. The Transformer model is a classic NLP model because of its excellent sequence
modeling ability and the advantages of parallel computing [15]. Its biggest feature is the use
of an attention mechanism to calculate its input and output, as well as balanced processing
power. It does not adopt the sequential structure of traditional RNN sequence alignment
and also avoids the drawbacks of the limited receptive field of CNNs, enabling it to capture
global information [16].

Although the current research on deep learning fault diagnosis methods has achieved
initial results, most of the existing research is aimed at one-dimensional vibration signal
data as input. However, the research on the deep learning fault diagnosis method that
takes two-dimensional data as input is not deep enough. There are few studies on the
analysis of two-dimensional data in more complex situations [17]. Therefore, the potential
advantages brought by the bearing fault diagnosis method that converts the vibration
signal into two-dimensional image data and then uses the two-dimensional image data
as the input of the deep learning model are worth exploring in depth. Visualizing the
vibration signal can not only retain the information contained in the vibration signal with
high quality but also optimize the preprocessing of the vibration signal data [18]. At the
same time, the deep learning model has good recognition and processing characteristics for
the converted two-dimensional image data, and the diagnosis accuracy rate is high.

To sum up, in order to effectively improve the problems of incomplete feature extrac-
tion, too-complex feature extraction, and external noise interference in the fault diagnosis
process of rolling bearings, and to avoid the problems of limited receptive fields, CNNs
and RNNs need to gradually calculate using time sequences when processing sequence
data. This article proposes a rolling bearing fault diagnosis method that combines two-
dimensional vibration images with Transformer models. The main contributions of this
paper are as follows:
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(1) A rolling bearing fault diagnosis method based on SVD-GST combined with the Vision
Transformer is proposed. A fault diagnosis experimental platform is built, and the
model is verified to have high accuracy and feasibility through experiments.

(2) In the process of using SVD noise reduction, the singular value energy difference
spectrum is introduced to determine the order, which solves the problem of how to
determine the effective order of the reconstruction matrix after the vibration signal of
the rolling bearing is decomposed.

(3) It is verified that the Vision Transformer model can mine more hidden fault informa-
tion and reduce information loss for the two-dimensional vibration images of rolling
bearings obtained using GST.

The rest of this paper is composed as follows: Section 2 introduces the algorithm
principle, including SVD, GST, and the Vision Transformer; Section 3 introduces the rolling
bearing fault diagnosis model; Section 4 builds a fault diagnosis experimental platform and
introduces the process of vibration signal acquisition; Section 5 analyzes the experimental
results in various ways as well as compares them with other models; and Section 6 is the
conclusion of this paper.

2. Principle Introduction
2.1. SVD

Singular value decomposition (SVD) is a very important matrix decomposition tech-
nique in the field of numerical analysis and linear algebra. It has applications in image
processing, data reduction, and signal noise reduction [19]. By using SVD, we can remove
noise from the vibration signal of the rolling bearing so that a cleaner and more accurate
vibration signal can be obtained [20]. In SVD, the problem that needs to be solved at present
is how to determine the effective order of the reconstruction matrix after the vibration signal
of the rolling bearing is decomposed. Currently, the effective order is determined using
methods such as the threshold method and singular entropy increment [21]. However,
these methods require relatively high user experience, so the noise reduction effect is not
obvious for the vibration signal of the rolling bearing. In order to solve this method, this
paper introduces the singular value energy difference spectrum to determine the order so
as to achieve the purpose of noise reduction.

The vibration signal of a rolling bearing is usually a one-dimensional signal, which can-
not be directly subjected to SVD [22], so the one-dimensional vibration signal
X = {x1, x2, x3, · · ·, xN} must be converted into a two-dimensional matrix. Through
the Hankel matrix, the signal can be represented as a low-rank approximation. This paper
chooses to construct the Hankel matrix. The Hankel matrix Am×n is shown in Formula (1):

Am×n =

 x(1) · · · x(n)
...

...
x(m) · · · x(N)

 = Dm×n + Wm×n (1)

In Formula (1), Am×n is expressed as a constructed Hankel matrix, N = m + n + 1.
The noise signal is Wm×n, and the useful vibration signal is Dm×n. When m = N/2, the
Hankel matrix noise reduction effect is generally more obvious. Because the size parameter
m of the Hankel matrix is half the length of the original signal, it may produce a better
separation effect, especially in noise reduction applications. This choice can suppress noise
to a certain extent and preserve important features of the signal. This choice is mainly
considered from the three aspects of capturing signal trend and periodic characteristics,
suppressing high-frequency noise, and separating signal and noise.
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On the problem of singular value order determination, the order is determined by the
singular value energy distribution of the useful signal and the noise signal in the vibration
signal of the rolling bearing. The signal energy is shown in Formula (2):

E =
q

∑
i=1

σ2
i (2)

In Formula (2), the signal energy is represented by E, σi represents the singular value,
and the total order is q and ends at q. The singular value energy difference spectrum is
described below and normalized, as shown in Formula (3):

p(i) =
σ2

i − σ2
i+1

E
(3)

In Formula (3), the p(i)(i = 1, 2, · · · , q) sequence represents the energy difference
spectrum. From Formula (3), it can be seen that the energy changes the adjacent orders of
the singular value. The singular value energy ratio of the useful signal is relatively large, so
a large peak signal is formed. The signal after the peak is generated by the noise signal, and
the singular value corresponding to this point is found in the energy difference spectrum.
Then, take this point as the order of the reconstructed signal to realize the removal of the
noise signal of the rolling bearing.

2.2. GST

Generalized S-transform (GST) is a form of the time–frequency analysis method,
which is a combination of time-domain signal analysis and frequency-domain signal
analysis [23]. GST provides more detailed and comprehensive signal characterization in the
time–frequency domain by jointly analyzing the signal in the time and frequency domains,
which can obtain the instantaneous frequency information of the signal [24]. The principle
of GST is based on the ideas of short-time Fourier transform (STFT) and continuous wavelet
transform (CWT). Its core concept is to perform local spectral analysis of the signal at
different time points [25]. The specific principles are as follows:

S( f , τ)1 =
∫ +∞

−∞
h(t)w(t− τ) exp(−i · 2π f t)dt (4)

In Formula (4), S( f , τ) represents S transformation, h(t) represents the signal to be
analyzed, and the translation amount is represented by τ. w(t) represents the Gaussian

window function. w(t) = 1
σ( f )
√

2π
exp

(
−t2

2σ( f )2

)
, and σ( f ) = 1/| f |. GST is modified on the

S-transform formula. By adding the parameter m to adjust the Gaussian window width,
the time–frequency resolution of the S-transform is improved. GST is shown in Formula (5).

S( f , τ)2 =
∫ +∞

−∞
h(t− τ)w(t) exp(−i · 2π f t)dt (5)

In Formula (5), w(t) = 1
σm( f )

√
2π

exp
(

−t2

2σm( f )2

)
, and σm( f ) = 1/| f |m. GST is per-

formed on the one-dimensional vibration signal of the rolling bearing after noise reduction
to obtain a two-dimensional time–frequency image. By imaging the vibration signal, the
information contained in the vibration signal can be preserved at a high quality, and the
deep learning model has good recognition and processing characteristics for the converted
two-dimensional image data.

2.3. Vision Transformer

The Transformer model is a classic NLP model proposed by the Google team in
2017 [26]. The Transformer architecture has revolutionized the field of natural language
processing and has become the backbone of many state-of-the-art models for a variety
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of tasks, including machine translation, text generation, question answering, sentiment
analysis, and more. Unlike other models, it uses the self-attention mechanism completely
to calculate the input and output. It does not adopt the sequential sequence alignment
structure of traditional RNNs and also avoids the problem of the limited receptive field of
CNNs. This allows the Transformer to capture global information [27]. The Transformer’s
multi-attention mechanism enables the extraction of richer feature representations from raw
data. This is particularly important for fault diagnosis tasks, as effective feature extraction
can improve the accuracy and robustness of the model.

Compared with other deep learning models (CNN, LSTM, etc.), the Transformer
model has the following advantages in terms of more intuitive explanations: (1) Attention
mechanism. Traditional deep learning models are basically local perceptual information,
and contextual information is limited to a certain location or time. But, when dealing
with certain problems, it is very important to have a global understanding of the context.
For the Transformer model, the entire sequence can be modeled through the attention
mechanism to capture global information. (2) Parallel processing. Traditional models (such
as LSTM models) must be processed step by step when dealing with timing issues, and the
next step can only be performed after the last time step is processed. This can lead to the
underutilization of computing resources. The Transformer’s self-attention mechanism can
process the information of all positions at the same time, which can fully and effectively
improve efficiency. (3) Applicability to relationship modeling at different distances. The
traditional model has problems such as gradient explosion. The Transformer model relies
on the self-attention mechanism to perform weighted attention on location information at
different distances, effectively dealing with long-distance dependencies. Figure 1 shows
the Transformer model structure.
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Figure 1. Transformer model structure.

Although the Transformer model is very good, there is a problem that it is not suitable
for two-dimensional images. In order to solve this problem, the Vision Transformer (ViT)
model came into being. ViT is an image classification model based on the Transformer
architecture proposed by Alexey Dosovitskiy et al. [28] in 2020. The basic idea of ViT is to
split the image into a series of small patches (patches), convert these small patches into
sequence data, and then input the Transformer model for processing. The following are the
main principles of ViT:

Embedding module. First, the input image is divided into patches of fixed size. These
patches are images that do not overlap in spatial dimensions, similar to dividing an image
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into a regular grid. Cut the image with size [H, W, C] into size [P, P, C], and the number of
cut image blocks is N. Specifically, this is shown in Formula (6).

N =
HW
P2 (6)

In Formula (6), the height, depth, and width of the input image are H, C, and W,
respectively, and the corresponding height and width after clipping are P. Each patch is
mapped to a lower-dimensional vector space by a fully connected layer (often called an
embedding layer). The parameters of this embedding layer are learned via model training
so that each small block can be effectively represented as a vector. The vector length is
XP = P× P×C. Then, add a classification vector xcls, and add a position code P containing
spatial information as the input of the Transformer encoder layer [29].

z0 =
[

xcls; E
(

x1
P

)
; E
(

x2
P

)
; · · · ; E

(
xM

P

)]
+ P (7)

In Equation (7), the input of the encoding is z0. xcls is a category token, and its purpose
is to realize the classification task; E is a linear mapping matrix, and P is a position code.

Transformer encoder module. The Transformer encoder is composed of multiple
self-attention mechanisms (self-attention) and feed-forward neural network layers, which
can learn global and local context dependencies in sequence data [30]. Its structure is shown
in Figure 2.
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It can be seen from Figure 2 that the information data input into the Transformer
encoder is first normalized. After the multi-head self-attention mechanism, the dropout
is randomly inactivated, and then, the residual connection is used to fuse with the input
information data. The processed data are then normalized. Then, enter the multi-layer per-
ceptron, use the residual connection after dropout, and fuse with the input data again. The
multi-layer perceptron (MLP block) consists of a fully connected layer, a GELU activation
function, and a dropout module [31].

The last is the classification module. The output sequence of the Transformer encoder
is classified and predicted through a fully connected layer, and the classification result of
the image is obtained.
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3. Fault Diagnosis Model
3.1. Vision Transformer Model

The input of the original Transformer in the NLP field is a one-dimensional word
sequence, but the picture is two-dimensional, so ViT changes the input format. In this paper,
the rolling bearing vibration signal is converted into a two-dimensional time–frequency
image, which can not only retain rich feature information but also facilitate the input of the
ViT model. The framework of the ViT model is shown in Figure 3.
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ViT divides the input time–frequency image into multiple non-overlapping patches.
These patches are turned into one-dimensional vectors through the embedding layer. Then,
compress the dimension of the changed patch sequence through linear projection, which
also realizes feature transformation [32]. The above two processes are also called the
token process so that the token vector can be obtained, which solves the problem that
the dimension is relatively large in a one-dimensional vector. In order to facilitate the
subsequent classification of rolling bearing fault types, a learnable class token is introduced
to retain image location information [33]. Then, input the class token and the token vector
into the Transformer encoder. The Transformer encoder module is introduced in the
previous part of the principle. Finally, the output corresponding to the class position is
input to the MLP head (composed of the fully connected layer, GELU, and dropout layer)
to predict the classification output. The ViT model parameters are shown in Table 1.

Table 1. Vision Transformer model parameters.

Patch Size Layers Hidden Size D MLP Size Heads Params

16× 16 12 768 3072 12 86 M

It can be seen from Table 1 that the input patch size is 16 × 16. Layers represent
the number of times the encoder block is stacked. Hidden size D indicates the length of
the token vector. MLP size represents the number of fully connected layer nodes. Heads
indicates the number of heads. Compared with the standard Transformer, ViT only needs
to use its encoder part for image classification and does not require a decoder. The concept
of image tokenization operation and the class token is introduced, and some features of
the Transformer are retained. Compared with CNNs, the advantages are more obvious
when the number of data is larger. At the same time, there is no disadvantage to a limited
receptive field, and the feature information is more comprehensively captured.

3.2. Rolling Bearing Fault Diagnosis Model

The overall model of rolling bearing fault diagnosis based on SVD-GST combined
with the Vision Transformer is shown in Figure 4.
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From Figure 4, we can see that the overall process is divided into the following
parts: (1) first, obtain the vibration signal of the rolling bearing through the acceleration
sensor, and use the data acquisition card to convert the signal to the PC; (2) use the SVD
algorithm to perform noise reduction preprocessing on the collected vibration signal;
(3) use the generalized S-transform to convert the one-dimensional vibration signal into a
two-dimensional time–frequency image; (4) use the Vision Transformer to perform feature
extraction and pattern recognition on time–frequency images and output training results;
and (5) after training, use the trained model to classify rolling bearing faults.

4. Fault Diagnosis Platform Construction

The main components of the rolling bearing fault diagnosis experimental platform
are as follows: rolling bearings (6406), a magnetic powder brake (FZ-A-12), a three-phase
asynchronous motor (YE3-100L2-4), a piezoelectric acceleration sensor (CAYD051V), a
frequency converter (G7R5/P011T4), a data acquisition card (YE6231), and a PC. In this
experiment, five fault categories of rolling bearing inner ring faults, rolling element faults,
cage fracture faults, outer ring faults, and normal rolling bearings were designed. The
specific fault form is shown in Figure 5.
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Figure 5a–e, respectively, show the five states of rolling bearing inner ring failure,
rolling element failure, cage fracture failure, outer ring failure, and normal rolling bearing.
The physical map of the rolling bearing fault diagnosis experiment platform is shown in
Figure 6, and the experimental process is shown in Figure 7.
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The specific experimental steps are as follows: To ensure safety, first, add an air switch
between the power supply and the inverter. Connect the inverter to the motor. The motor
and the gearbox are connected by a belt (the rolling bearing in the gearbox is tested in this
experiment). The intermediary between the gearbox and the magnetic powder brake is
through a coupling. An acceleration sensor is installed on the end cover of the gearbox,
the vibration signal is obtained through the sensor, and the signal data information is
transmitted to the PC using a data acquisition card.

This experiment is a no-load experiment, so the magnetic powder brake is closed
during the experiment. The speed of the three-phase asynchronous motor is 900 r/min.
The sampling frequency is 6 kHz. The experimental data information is shown in Table 2.

Table 2. Experimental data information.

Category Rolling Bearing Status Motor Speed (Hz) Brake Load (A) Length Number of Data Sets

1 cage fracture fault 30 0 1024 1000
2 normal state 30 0 1024 1000
3 inner ring fault 30 0 1024 1000
4 rolling element fault 30 0 1024 1000
5 outer ring fault 30 0 1024 1000

In this experiment, 1024 points comprise a set of data lengths. Each state collects
1000 groups, so there are 5000 groups in total. The training set, verification set, and test set
are divided according to 7:2:1, that is, 3500 training sets, 1000 verification sets, and 500 test
sets. The specific division is shown in Table 3.
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Table 3. Data set division.

Gearbox Status Number of Training Sets Number of Validation Sets Number of Test Sets Label

cage fracture fault 700 200 100 0
normal state 700 200 100 1

inner ring fault 700 200 100 2
rolling element fault 700 200 100 3

outer ring fault 700 200 100 4
total number of

samples 3500 1000 500

5. Result Analysis
5.1. Rolling Bearing Vibration Signal Preprocessing

This article uses SVD to denoise the vibration signal of rolling bearings. In order to
solve the problem of determining the effective order of the reconstruction matrix after
decomposing the vibration signal of rolling bearings, a singular value energy difference
spectrum was introduced to determine the order, thus achieving the purpose of noise
reduction in vibration signals. Take the first 500 singular values for analysis this time.
Figure 8 shows the singular value distribution curve of the vibration signal of rolling
bearings. Figure 9 shows the singular value energy difference spectrum of the vibration
signal of rolling bearings. Figure 10 shows the vibration signal of rolling bearings before
and after noise reduction.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 

Table 2. Experimental data information. 

Category Rolling Bearing Status Motor Speed (Hz) Brake Load (A) Length Number of Data Sets 
1 cage fracture fault 30 0 1024 1000 
2 normal state 30 0 1024 1000 
3 inner ring fault 30 0 1024 1000 
4 rolling element fault 30 0 1024 1000 
5 outer ring fault 30 0 1024 1000 

In this experiment, 1024 points comprise a set of data lengths. Each state collects 1000 
groups, so there are 5000 groups in total. The training set, verification set, and test set are 
divided according to 7:2:1, that is, 3500 training sets, 1000 verification sets, and 500 test 
sets. The specific division is shown in Table 3. 

Table 3. Data set division. 

Gearbox Status Number of Training Sets Number of Validation Sets Number of Test Sets Label 
cage fracture fault 700 200 100 0 

normal state 700 200 100 1 
inner ring fault 700 200 100 2 

rolling element fault 700 200 100 3 
outer ring fault 700 200 100 4 

total number of samples 3500 1000 500  

5. Result Analysis 
5.1. Rolling Bearing Vibration Signal Preprocessing 

This article uses SVD to denoise the vibration signal of rolling bearings. In order to solve 
the problem of determining the effective order of the reconstruction matrix after decomposing 
the vibration signal of rolling bearings, a singular value energy difference spectrum was 
introduced to determine the order, thus achieving the purpose of noise reduction in vibration 
signals. Take the first 500 singular values for analysis this time. Figure 8 shows the singular 
value distribution curve of the vibration signal of rolling bearings. Figure 9 shows the singular 
value energy difference spectrum of the vibration signal of rolling bearings. Figure 10 shows 
the vibration signal of rolling bearings before and after noise reduction. 

 
Figure 8. Singular value distribution curve of rolling bearing vibration signal. Figure 8. Singular value distribution curve of rolling bearing vibration signal.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 9. Singular value energy difference spectrum of rolling bearing vibration signal. 

 
Figure 10. Rolling bearing vibration signal before and after noise reduction display. 

In Figure 8, after the singular value order of the overall curve is 30, there is a turning 
point in the gradient descent trend, and the decline rate becomes relatively gentle 
compared with the previous one. Since the curve is not too obvious, the singular value 
energy difference spectrum in Figure 9 can be clearer, which is why the energy difference 
spectrum is introduced. In Figure 9, when the order is 30, it can be clearly seen that the 
peak signal changes abruptly, indicating that this is the dividing point between the 
vibration signal of the rolling bearing and the useful signal. The useful signal is located 
before the order is 30, and the noise signal is located after the order is 30. Therefore, the 
singular value order of the reconstructed signal is 30; that is, the first 30 singular value 
signals are reconstructed. In Figure 10, it can be seen that the periodicity of the signal after 
noise reduction is more prominent overall, and the quality and readability of useful 
signals are improved. 

5.2. Two-Dimensional Time–Frequency Image Acquisition 
Perform a generalized S-transform on the denoised vibration signal of the rolling 

bearing to convert the one-dimensional vibration signal into a two-dimensional time–
frequency image. Figure 11 shows the time–frequency images of rolling bearings under 
five fault states. 

Figure 9. Singular value energy difference spectrum of rolling bearing vibration signal.



Electronics 2023, 12, 3515 11 of 16

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 9. Singular value energy difference spectrum of rolling bearing vibration signal. 

 
Figure 10. Rolling bearing vibration signal before and after noise reduction display. 

In Figure 8, after the singular value order of the overall curve is 30, there is a turning 
point in the gradient descent trend, and the decline rate becomes relatively gentle 
compared with the previous one. Since the curve is not too obvious, the singular value 
energy difference spectrum in Figure 9 can be clearer, which is why the energy difference 
spectrum is introduced. In Figure 9, when the order is 30, it can be clearly seen that the 
peak signal changes abruptly, indicating that this is the dividing point between the 
vibration signal of the rolling bearing and the useful signal. The useful signal is located 
before the order is 30, and the noise signal is located after the order is 30. Therefore, the 
singular value order of the reconstructed signal is 30; that is, the first 30 singular value 
signals are reconstructed. In Figure 10, it can be seen that the periodicity of the signal after 
noise reduction is more prominent overall, and the quality and readability of useful 
signals are improved. 

5.2. Two-Dimensional Time–Frequency Image Acquisition 
Perform a generalized S-transform on the denoised vibration signal of the rolling 

bearing to convert the one-dimensional vibration signal into a two-dimensional time–
frequency image. Figure 11 shows the time–frequency images of rolling bearings under 
five fault states. 

Figure 10. Rolling bearing vibration signal before and after noise reduction display.

In Figure 8, after the singular value order of the overall curve is 30, there is a turning
point in the gradient descent trend, and the decline rate becomes relatively gentle compared
with the previous one. Since the curve is not too obvious, the singular value energy
difference spectrum in Figure 9 can be clearer, which is why the energy difference spectrum
is introduced. In Figure 9, when the order is 30, it can be clearly seen that the peak signal
changes abruptly, indicating that this is the dividing point between the vibration signal of
the rolling bearing and the useful signal. The useful signal is located before the order is 30,
and the noise signal is located after the order is 30. Therefore, the singular value order of
the reconstructed signal is 30; that is, the first 30 singular value signals are reconstructed.
In Figure 10, it can be seen that the periodicity of the signal after noise reduction is more
prominent overall, and the quality and readability of useful signals are improved.

5.2. Two-Dimensional Time–Frequency Image Acquisition

Perform a generalized S-transform on the denoised vibration signal of the rolling
bearing to convert the one-dimensional vibration signal into a two-dimensional time–
frequency image. Figure 11 shows the time–frequency images of rolling bearings under
five fault states.
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Figure 11. Two-dimensional time–frequency diagram of rolling bearing: (a) cage fracture fault;
(b) normal state; (c) inner ring fault; (d) rolling element fault; (e) outer ring fault.

Figure 11a–e are the two-dimensional time–frequency diagrams of five fault states
of cage fracture, normal state, inner ring fault, rolling element fault, and outer ring fault,
respectively. The generalized S-transform can provide high time–frequency resolution by
interpolating the signal on the time–frequency plane. This makes it better able to capture
subtle changes in the signal in both the time and frequency domains.

5.3. Fault Diagnosis Model Analysis

This experiment is carried out on the Windows 11 operating system. The programming
language is Python, and the Pytorch deep learning framework is used. The processed
two-dimensional time–frequency image is input into the Vision Transformer model, and the
process of feature extraction and pattern recognition training and classification is completed
in this model. Figure 12 shows the loss value curves corresponding to the training set and
the verification set. Figure 13 is the conversion curve of the training set and verification set
accuracy.
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It can be seen from Figure 12 that as the number of training samples increases, the
loss value gradually decreases until it finally decreases to a more stable value. In the
0–10 training period, the loss value changes most obviously, indicating that the conver-
gence accelerates during this period. When the number of iterations reaches 10–40 times,
the loss transformation is relatively slow, indicating that as the number of iterations in-
creases, the training sample and the verification sample have a convergence trend. After
40 iterations, the training samples and verification samples are basically not fluctuating
and have overlapped, indicating that the training has ended at this time.

It can be seen from Figure 13 that as the number of training samples increases, the
accuracy of the training samples and verification samples continues to increase until finally
reaching a stable value. In the 0–10 training times, the accuracy rate rises very rapidly,
indicating that the model is learning rapidly at this time. Within 10–40 training times, the
training samples and verification samples start to rise slowly, indicating that the model
training is basically becoming mature at this time. After 40 training times, the accuracy
curve can basically be maintained at about 97%. It is smooth and stable without large
fluctuations, indicating that the model has been trained.

5.4. Analysis of Fault Diagnosis Results

In order to demonstrate the recognition effect of the model on various faults of rolling
bearings, this experiment uses a confusion matrix to represent the classification results. The
details are shown in Figure 14.
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It can be seen in Figure 14 that the model proposed in this paper has the highest
recognition rate for label 1 (normal state), reaching 100%. The identification rates of label
0 (cage fracture) and label 3 (rolling element failure) can reach 98%. In total, 2% of cage
fracture faults are misidentified as outer ring faults. In the process of rolling element fault
identification, 1% of them are misidentified as cage fracture faults and outer ring faults.
The model can identify label 2 (inner ring fault) with a recognition rate of 97%, of which 3%
are mistaken for outer ring faults. The model has the lowest recognition accuracy rate for
label 4 (outer ring fault), which is 95%, of which 4% are misidentified as cage fractures and
1% are misidentified as inner ring faults. Overall, the model recognition rate is high, up to
97.6%, which also proves that the model proposed in this paper is feasible.

5.5. Comparison of Models

In order to illustrate the advanced nature of the rolling bearing fault diagnosis model
based on SVD-GST combined with the Vision Transformer (SVD-GST-ViT), under the same
experimental conditions, the model was compared with the popular CNN and LSTM
models in deep learning. The training, validation, and test sets are divided according to
7:2:1. All models undergo the same data preprocessing. For each model, set the same
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hyperparameters, such as the number of iterations, batch size, etc. In order to prevent
the accidental occurrence of a single recognition rate, the above methods are trained and
tested 10 times, respectively. Table 4 shows the average accuracy and standard deviation of
10 tests of different methods:

Table 4. The average accuracy of different methods.

Fault Diagnosis Model 10 Average Accuracy % Standard Deviation %

SVD-GST-2DCNN 95.24 1.2933
STFT-CNN-LSTM 92.50 0.6520
SVD-GST-LSTM 94.28 1.7863

GST-ViT 91.06 0.9834
SVD-GST-ViT 98.52 0.4266

As can be seen in Table 3, the average recognition accuracy of the proposed model
(SVD-GST-ViT) method is the highest, reaching 98.52%. Compared with the method of
directly using GST-ViT, it increases by 7.46%, indicating that the original vibration signal
can remove redundancy and enhance features after SVD decomposition. Compared with
SVD-GST-2DCNN, STFT-CNN-LSTM, and SVD-GST-LSTM, it also increases by 3.28%,
6.02%, and 4.24%, respectively. The standard deviation of the model proposed in this paper
is the smallest, which is 0.4266%. Compared comprehensively, the model has high accuracy
and stability.

6. Conclusions

This paper proposes a rolling bearing fault diagnosis model based on SVD-GST com-
bined with the Vision Transformer. SVD is used for noise reduction processing to solve
the problem that in the fault diagnosis of rolling bearings, the collected vibration signals
contain interference from complex noise and redundant components, which affects subse-
quent feature extraction and pattern recognition. A generalized S-transform is proposed
to convert a 1D vibration image into a 2D time–frequency image. It solves the problem
that the recognition rate is difficult to further improve because of the loss of signal in-
formation in the one-dimensional data processing and industrial practice of the bearing
fault diagnosis method based on deep learning, making full use of the advantages of deep
learning in image classification and prediction with higher recognition accuracy. At the
same time, in order to avoid the problems of limited receptive fields in CNNs and the
need for step-by-step calculations in time sequences when an RNN processes sequence
data, the Vision Transformer model is proposed. The experimental results show that the
multiple average accuracy rate of the fault diagnosis model adopted in this paper is 98.52%
for different fault states of rolling bearings. Compared with other model methods, it can
effectively improve the fault identification effect of rolling bearings.

For future research on rolling bearing fault diagnosis, multimodal data fusion can be
considered. This article only uses the vibration signal of the rolling bearing. In addition,
other sensor data, such as current and temperature, can also be considered to obtain more
comprehensive fault diagnosis information. The advantages of the Transformer model can
be fully utilized in dealing with multimodal data problems. In conclusion, the research
direction of applying the Transformer model to rolling bearing fault diagnosis is worthy of
further exploration.
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