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Abstract: Multimodal sentiment analysis aims to understand people’s attitudes and opinions from
different data forms. Traditional modality fusion methods for multimodal sentiment analysis con-
catenate or multiply various modalities without fully utilizing context information and the correlation
between modalities. To solve this problem, this article provides a new model based on a multimodal
sentiment analysis framework based on a recurrent neural network with a complex attention mecha-
nism. First, after the raw data is preprocessed, the numerical feature representation is obtained using
feature extraction. Next, the numerical features are input into the recurrent neural network, and the
output results are multimodally fused using a complex attention mechanism layer. The objective of
the complex attention mechanism is to leverage enhanced non-linearity to more effectively capture
the inter-modal correlations, thereby improving the performance of multimodal sentiment analysis.
Finally, the processed results are fed into the classification layer and the sentiment output is obtained
using the classification layer. This process can effectively capture the semantic information and
contextual relationship of the input sequence and fuse different pieces of modal information. Our
model was tested on the CMU-MOSEI datasets, achieving an accuracy of 82.04%.

Keywords: sentiment analysis; deep learning; complex attention mechanism

1. Introduction

Sentiment analysis is a technique that uses computers to automatically analyze and
infer human emotional expressions [1,2]. Initially, sentiment analysis work mainly focused
on text data [3]. Text sentiment analysis aims to analyze, mine, and reason about the
underlying sentiment in text. However, with the rapid development of social networks,
the ways for people to express their emotions on the platform have become more and
more abundant [4]. Extending from text expression to multimodal expression including
pictures and videos, a single-text sentiment analysis technology cannot adapt to the diverse
expression environment in online social media. Multimodal data have more information
than unimodal data. For example, to detect a sarcastic sentence, such as “Great job, you’ve
managed to make yourself even more unlikable”, if only the textual information of the
first half of the sentence is considered, it is easy to classify it as a positive sentiment [5].
But if supplemented by some information from the visual modality, it is easy to detect the
speaker’s unpleasant gesture or expression and classify it as a negative emotion. Similarly,
in some cases, audio features (laughter, sighs, and screams) are used as supplementary
information to regular textual modality information to verify the accuracy of emotion
prediction. However, efficiently integrating information from these different modalities is a
crucial task.

Videos provide an excellent source for extracting multimodal information. In addition
to a visual modality, speech and text information is also provided [6]. Furthermore, the
speaker can utter multiple utterances in one video, and these utterances can have different
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emotions. The emotional information of an utterance is often interdependent with other
contextual utterances.

We propose a multimodal sentiment analysis model based on a complex attention
mechanism recurrent neural network. We apply complex attention to neighboring utter-
ances to help the network model learn in a better way. Traditional attention mechanisms
usually use single-matrix multiplication to compute attention weights to represent the
influence of different parts of the input on the output. However, in multimodal tasks,
different input sources have different representations and may require different trans-
formations and fusions. Therefore, complex attention mechanisms use multiple matrix
multiplications to compute attention weights to account for interactions and correlations
among multiple sources. Among them, complex attention and occupation are composed
of a simple attention head and a complex attention head. In the simple attention head,
the calculation method of the attention matrix is consistent with the original multi-head
attention mechanism; in the complex attention head, both Q and K are cut into two parts,
and each part is subjected to linear transformation and activation function processing to
obtain different “keys” and “values”. Then, we use a “query” vector to calculate the simi-
larity with each “key” and pass the result into a softmax function for normalization. The
attention weights from the simple and complex attention heads are combined, weighted,
and summed with each “value” vector to obtain the final output vector. Via the complex
attention mechanism, the context information is fully integrated to further improve the
accuracy rate. Our experiment is also based on the CMU-MOSEI dataset.

The structure of this article is as follows: In Section 2, the current state of research on
multimodal sentiment analysis and related work is described; in Section 3, we describe
our model; and in Section 4, we describe the composition of the dataset we use and how
to extract different modalities. The eigenvectors of the results obtained on the CMU-
MOSEI dataset are described in Section 5, and the conclusions and directions for future
improvement are summarized in Section 6.

2. Related Works

Sentiment analysis is a natural language processing technology designed to auto-
matically identify and extract the emotion or emotional color contained in text, audio,
images, and other data sources [7]. The significance of sentiment analysis is that it can help
people better understand and analyze a large amount of content on social media, such as
users’ attitudes and opinions on a certain product, brand, political event, etc. It can also
be applied to many fields such as advertising, market research, brand management, and
public opinion monitoring [8].

The development of sentiment analysis can be traced back to the 1960s, when research
was mainly based on sentiment lexicons and grammar rules. With the continuous de-
velopment of machine learning and deep learning technology, the method of sentiment
analysis gradually shifts from a rule-based method to a data-driven method [9]. In addi-
tion, with the expansion of sentiment analysis application scenarios and the enrichment
of data sources, sentiment analysis has gradually expanded from a single modality to a
multimodal approach.

The purpose of multimodal sentiment analysis is to obtain sentiment information from
multiple data sources and comprehensively consider the relationship between different
data sources to identify and understand sentiment more accurately. For example, text
and audio data can provide different emotional information and thus can complement
and corroborate each other [10], thereby improving the accuracy of sentiment analysis.
The application fields of multimodal sentiment analysis include audio and video content
analysis, social media analysis, human–computer interaction, intelligent customer service,
and other fields. The value of studying multimodal sentiment analysis lies in improving the
accuracy and practicality of sentiment analysis, and it also helps people better understand
and utilize the relationship between different data sources, thus promoting the development
of interdisciplinary research. With the continuous exploration and research on multimodal
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sentiment analysis tasks, multimodal sentiment analysis tasks can be subdivided into
two subtopics: 1. conversational multimodal sentiment analysis; 2. narrative multimodal
sentiment analysis.

A. Conversational Multimodal Sentiment Analysis

Conversational multimodal sentiment analysis refers to sentiment analysis based
on multiple modal data sources (such as text, voice, video, etc.) for a situation or scene
involving multiple rounds of interaction. This task enables better understanding of and
coping with emotional changes in conversations by continuously identifying and tracking
emotional states during conversations.

Interactive multimodal sentiment analysis usually includes three tasks, namely emo-
tion recognition, emotion expression, and emotion interaction. The goal of emotion recog-
nition is to identify the emotional state of the participants and infer the emotional state of
the speaker via the analysis of multiple modal data sources, such as voices, facial expres-
sions, and text. Emotional expression is analyzed to understand the interactive behavior of
the participants and infer the way they express their emotions, such as anger, happiness,
and other emotions and expressions. The goal of emotional interaction is to analyze the
emotional transmission and interaction between different participants, such as analyzing
the transmission, transfer, and empathy of emotions in a dialogue.

B. Narrative Multimodal Sentiment Analysis

Narrative multimodal sentiment analysis refers to sentiment analysis based on mul-
tiple modal data sources (such as text, image, video, etc.) for a static multimodal dataset
(such as a video or a set of images). The goal of this task is to analyze the emotional
information shown in these data in order to better understand the meaning and emotional
color behind it. Differently from conversational multimodal sentiment analysis, narrative
multimodal sentiment analysis does not need to consider multiple rounds of interaction. It
pays more attention to the connection of contextual information within the data samples
and the fusion of information from different modalities.

Zadeh et al. (2018) [11] proposed a new model, the TFN (Tensor Fusion Network),
which can learn end-to-end intra- and inter-modal dynamics while aggregating interactions
between unimodal, bimodal, and trimodal inputs. The model fuses the features of different
modalities using mathematical matrix operations and uses the tensor outer product between
modalities to calculate the correlation between elements of different modalities. In the
calculation process, as the product of the matrix continues to expand, the dimensionality of
the eigenvector will also increase greatly, which eventually makes the model too large to be
trained. Shankar et al. (2022) [12] proposed a new multimodal fusion architecture, that is,
progressive fusion (Profusion), which improves the problem that the tensor fusion network
is difficult to train due to feature vector dimensions that are too large. Connecting late
fusion representations to unimodal feature generators via backlinks enables early layers to
provide multimodal information, revealing the advantages of early fusion and late fusion.

Chen M et al. (2017) [13] proposed an application of gated multimodal embedded
long short-term memory (LSTM) with temporal attention for the word-level fusion of
multimodal inputs. Gated multimodal embeddings ease the difficulty of fusion, while
LSTM(A) with temporal attention performs word-level fusion. Agarap A F et al. (2018) [14]
conducted a sentiment analysis on reviews using a bidirectional recurrent neural network
(RNN) with long short-term memory. After analyzing the dataset, irrelevant features
were removed, but due to the problem of gradient disappearance in the neural recurrent
network, the time series of the neural recurrent network could not be too long, only short-
term information could be remembered, and long-term information could not effectively
be used.

Bao L et al. (2019) [15] proposed a long short-term memory network (LSTM) with an
attention mechanism. This model combines lexical information with the attention LSTM
model and uses a deep neural network to make the framework more stable; thus, no
additional tag data are required. Compared with the RNN network, the LSTM network
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introduces a gating mechanism to control the circulation and loss of features, which can
effectively solve the gradient explosion problem of the RNN network and support the
memory of long sequences. However, LSTM requires a lot of computation during training
due to the numerous parameters of LSTM and the computational complexity between
each gate.

Chung J et al. [16] proposed a gated recurrent neural network model (GRU). They
simplified the structure and training parameters of LSTM, and the GRU only uses two
gating switches, which reduces the risk of overfitting with too many parameters and greatly
reduces the amount of calculation during training. The GRU still has the problem of not
being able to perform parallel computing.

Graves A et al. [17] were the first to use a bidirectional LSTM model to solve the
multimodal sentiment analysis problem. They obtained better results than the LSTM
model. However, due to the bidirectional LSTM’s greater number of parameters, the
calculation cost is greater, and the calculation time required is longer. Hamborg F et al.
used a bidirectional GRU model to embed language models and knowledge from external
sources. Compared with the bidirectional LSTM model, the parameters of the BiGRU
model are relatively few, the calculation time is short, and it can effectively solve problems
that cannot be calculated in parallel. When dealing with problems with less data, it can
obtain better results than the BiLSTM model.

Our proposed approach differs from existing work in that our model framework
assigns larger weights to adjacent utterances, thereby exploiting contextual information for
utterance-level sentiment prediction. We use the multimodal complex attention mechanism
framework to exploit the contributed features across multiple modalities and adjacent
utterances for sentiment analysis to obtain better sentiment analysis results.

3. Method

This section mainly introduces the framework structure of the model. In our pro-
posed framework, we aim to leverage multiple modalities and contextual information
for utterance sentiment prediction. Our proposed framework inputs multilingual formal
information (including textual, visual, and acoustic information) of a series of utterances
into three independent bidirectionally gated recurrent units.

The Bi-GRU is a bidirectional gated recurrent neural network (bidirectional gated
recurrent unit), which is composed of GRUs (gated recurrent units) in two directions, one
from left to right and one from right to left, which can perform sequential-data-processing
two-way modeling. The Bi-GRU is widely used in natural language processing, time series
data analysis, and other fields, and it is an excellent sequence modeling tool. In the Bi-GRU,
the GRU is a special recurrent neural network (RNN), which can memorize and process
the input sequence and generate a hidden state vector for the next step of prediction.
Compared with a traditional RNN, the GRU has fewer parameters, faster convergence
speed, and can better obtain the information of longer sequences. Compared with LSTM
(long short-term memory), it has fewer parameters and a faster calculation speed. On the
basis of the GRU, the Bi-GRU adds the ability of two-way modeling, which can better
use contextual information for prediction and improves the performance and accuracy of
the model.

3.1. Attention

Multimodal sentiment analysis in natural language processing usually includes senti-
ment analysis tasks on multiple modal data sources such as text, images, and audio [18].
Attention mechanism is a technique widely used in multimodal sentiment analysis, which
can improve the performance of the model [19].

In multimodal sentiment analysis, attention mechanisms can be used to select the most
relevant features in text, images, and audio to better capture emotional information in dif-
ferent modal data. In terms of specific implementation, the common attention mechanisms
are as follows:
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1. The text attention mechanism can be used to select the most relevant features from
multiple text features. It is usually based on an attention score, which is determined
by computing the similarity between text features and sentiment labels. A common
implementation is to use an attention-based mechanism to compute a weighted sum
of text features to generate the final sentiment representation.

2. The image attention mechanism can be used to pick out the most relevant image
regions. It is usually determined based on the attention distribution of visual features.
A common implementation is to use a convolutional neural network (CNN) to extract
image features and then to use an attention mechanism to select the most relevant
features and combine them into a final emotion representation.

3. The audio attention mechanism can be used to select the most relevant audio features.
It is usually based on an attention score, which is determined by computing the
similarity between audio features and sentiment labels. A common implementation is
to use an attention-based mechanism to compute a weighted sum of audio features to
generate the final emotion.

3.2. Complex Attention Mechanism

We use a complex attention mechanism to fuse three modalities (text, audio, and
vision). Complex attention mechanisms are variants of attention mechanism that can
capture different levels of semantic information. Compared with the traditional simple
attention mechanism, the complex attention mechanism divides the input into different
parts, uses different linear transformations for calculation, and then combines them to
produce the final attention weights. This approach can better represent different levels of
semantic information and thus enhance the performance of the model.

As shown in Figure 1, after the original data are extracted by different methods, they
are input into the recurrent neural network, and the output results are multimodally fused
using the complex attention mechanism layer. The workflow of the complex attention
mechanism is as follows: First, linearly transform the input tensor X and map it to three
tensors: query, key, and value. Next, the Q, K, and V tensors are divided into simple
attention heads and complex attention heads, and the number of each head is set to 2.
Specifically, each tensor is divided into simple attention heads and complex attention heads.
In the next step, the attention weights are calculated for the simple attention head and the
complex attention head.
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In the simple attention head, the input tensor will be transformed by three matrices
to obtain three low-dimensional tensors: Q, K, and V. Next, for each simple attention
head, calculate the attention weight matrix A—each element of A is obtained by the inner
product of Q and K—and then multiply A and V to obtain the final output. The attention
weight matrix A of the simple attention head is computed by the inner product of Q
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and K. In the complex attention head, the input tensor will also be transformed by three
matrices to obtain three low-dimensional tensors: Q, K, and V. The difference is that the
complex attention head uses an extra linear layer to compute the inner product of Q and
K, which introduces a stronger nonlinear capability. As shown in Figure 2. Therefore,
the attention weight matrix A of the complex attention head is obtained by performing
product calculation on the linearly transformed Q and K instead of directly performing
the inner product calculation on Q and K. This transformation enables the model to better
capture high-level features in the input tensor. The attention weight is calculated by first
multiplying the Q tensor and the K tensor and then dividing by the scaling factor, which is
an adjustable parameter to scale the calculation result.
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Next, the attention weights of the simple and complex attention heads are spliced along
the head dimension to obtain a merged tensor of shape (num_heads+num_complex_heads,
batch_size, seq_len, seq_len), and then the total attention weight is combined with V, and
the quantities are multiplied to obtain a new tensor. Add the above tensors to the residual
connection, that is, add them to the input tensor X, and finally, perform normalization.
Output the processed tensor as the result of complex attention mechanism:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

Whead =
n

∑
i

Headi (2)

where
√

dk is an adjustable parameter used to scale the calculation results, and Whead is
the total attention weight after the simple attention head weight and the complex attention
head weight are spliced.



Electronics 2023, 12, 3516 7 of 13

3.3. Classification Layer

After obtaining the result of the complex attention mechanism, a softmax layer with
a size of 1 will be used to obtain a vector result, and the vectors of various forms will be
summed element by element. The formula is as follows:

y ∼ p = Wa(LayerNorm(Si))
i∈[L,A]. (3)

Among them, y is the final output result, Si is the tensor after complex attention
mechanism, and Wα is the weight parameter.

3.4. Single-Sentence Complex Attention Framework (SSCAF)

Under the SSCAF, a complex attention mechanism is used to compute a single sentence.
This framework does not consider utterance information from other attention levels but
utilizes multimodal information of a single utterance for prediction. Differently from the
simple attention mechanism, the complex attention mechanism divides the input vector
into multiple parts and uses different weight matrices to calculate the relationship between
different parts. Suppose we have a unimodal input tensor X, X ∈ {batch_size, seq_len,
input_dim}, where input_dim indicates the number of elements or features in the input
vector. Use num_head complex attention heads, and each head uses three parameter
matrices for calculation: WQ, WK, and WV.

First, we divide the input tensor X into num_heads subvectors, that is, X = [X1, X2, . . .,
Xnum_heads]. Then, we use WQ, WK, and WV to linearly transform each subvector to obtain
Qi = XiWQ, Ki = XiWK, and Vi = XiWV. Note that the weight matrices WQ, WK, WV here
are shared for the entire input tensor. Then, we calculate the attention weight matrix Ai
for each subvector Qi, Ki, and Vi and achieve Ai = softmax (QiKi

T/sqrt{dk}). Finally, we
multiply the attention weight matrix Ai with the corresponding subvector Vi and splice
to achieve the final output tensor Y, namely Y = [Y1, Y2, . . ., Ynum_heads] WO, where WO
is a parameter matrix for linear transformations. Note that it is necessary to ensure that
the dimensions of the subvectors are consistent during splicing, which can be achieved by
adding zero vectors at the end of shorter subvectors. The following is the complex attention
mechanism formula for computing a single sentence:

MultiHead(Q, K, V) = concat(head1, . . . , headh)Wo

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
Attention(Q, K, V) = so f tmax(QKT√

dk
)V

WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,WV
i ∈ Rdmodel×dv , WO ∈ Rhdv×dmodel

(4)

where Wi
Q, Wi

K, and Wi
V represent the weight matrix of the Q, K, and V matrices of the

i-th header, respectively; WO is the weight matrix of the output matrix; h is the header;
dk and dv are the dimensions of the key matrix and value matrix; and dmodel is the
dimension of the hidden layer of the model.

3.5. Context-Complex Attention Framework (CCAF)

Under the CCAF, a complex attention mechanism is applied to the utterances of each
modality, based on which the classification is performed. Differently from the SSCAF, the
CCAF uses the contextual information of the utterance to calculate its Q, K, and V matrices
for each modality:

Qm
i = QmWm

Q,i
Km

i = KmWm
K,i

Vm
i = VmWm

V,i

(5)

where, i ∈ {1, 2, . . ., h}; h represents the number of heads; and WQim, WKim, and WVim
represent the weight matrix used to divide the Q, K, and V matrices, respectively.
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Concatenate the divided Q, K, and V matrices to obtain the final Q, K, and V matrices:

Qi = [Q1
i , Q2

i , . . . , Qm
i ]

Ki = [K1
i , K2

i , . . . , Km
i ]

Vi = [V1
i , V2

i , . . . , Vm
i ]

(6)

where m represents the number of modalities. Then, calculate its corresponding attention
weight matrix for each head:

Attentioni = so f tmax(
QiKT

i√
dk

) (7)

where dk represents the dimension of the key matrix. For each head, the output result of the
head is calculated according to its corresponding attention weight matrix and value matrix,
and the output results of all heads are spliced to obtain the final output result, where WO
means to combine all. The weight matrix of the concatenation of the output results in the
head. The resulting O is the multimodal data:

Oi = AttentioniVi (8)

O = [O1, O2, . . . , Oh]WO (9)

4. Data Preparation
4.1. CMU-MOSEI Dataset

We validate our experiments using the CMU-MOSEI dataset, which contains a col-
lection of 2084 speaker video clips, each of which is essentially a monologue, containing
three forms: spoken language in text form, vision in the movements and facial expres-
sions; voice in intonation and rhythm. Each sentence is annotated with a variety of tags.
First, the Likert scale is used to mark the emotion, which is divided into seven categories:
[highly negative, negative, weakly negative, neutral, weak positive, positive, and highly
positive]. Ekman emotions {happiness, sadness, anger, fear, disgust, and surprise} are also
annotated on a Likert scale of [0, 3] for denoting sentiment x: [no evidence for x, weak x, x,
strong x] [20].

4.2. Linguistic Feature

When extracting text features, all sentences are lowercased first, and special characters
and punctuation marks are removed. Build a vocabulary containing only unique words
and use the unsupervised word embedding Glove model to embed each word in a 300-
dimensional vector [21]. Label the words that are not in the vocabulary in the validation or
test set as “unk”.

4.3. Acoustic Feature

Audio is one of the important ways by which human beings can obtain information.
Among them, nonverbal information, such as laughter, gasps, and sighs, and the rhythmic
characteristics of speech, such as speech rate and intonation, often convey more complex
information. These nonverbal expressions are also used as data in emotion classification
tasks [22]. In terms of audio feature extraction, common methods include the following:
1. the zero-crossing rate, that is, the number of intersection points of the signal on the
time axis; 2. spectral quality, that is, the center position of the signal in the frequency
domain; 3. the features obtained by a specific model; 4. MFCCs, that is, the features of the
sound extracted by simulating the characteristics of human hearing. When extracting audio
features, in order to reduce the influence of noise, it is first needed to remove irrelevant
sounds and then to focus on vocals. For this, we use Mel-Frequency Cepstral Coefficients
(MFCCs) to extract acoustic features. Combine N sampling points into one observation
unit, usually about 20–30 ms. In order to avoid too-large changes between two frames,
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we set an overlapping region containing M sampling points, where M is about 1/2 to 1/3
of N. Each sampled frame is filtered using a Mel filter, and then inverse discrete Fourier
transform is performed to obtain features containing 80 dimensions.

4.4. Visual Feature

We chose to use a convolutional neural network to preprocess features. We used a
CNN with 3D convolutional kernels to process the temporal and spatial information of
videos to extract features for sentiment analysis tasks. The model has been preprocessed
on Sports-1M and Kinetics. In this model, we take a video clip of 32 RGB frames as input
and slide between the 32 RGB frames with a stride of 8 frames to obtain a feature vector for
the entire video.

5. Experiments

In this section, we present the results of model experiments on a dataset based on our
CMU-MOSEI dataset.

5.1. Experimental Setting

We built a complex attention mechanism model based on the Tensorflow deep learning
framework and trained the model on an NVIDIA Tesla V100 GPU. We incorporated an
early stopping mechanism with a default value of 3 and set the dropout rate to 0.1. All
experiments are performed without using pretrained models.

We use the BiGRU with 300 neurons, each followed by a dense layer of 100 neu-
rons. With dense layers, we project the input features of all three modalities to the same
dimension.

Optimize the training of the model using the Adam optimizer and set the learning
rate to make the training converge to better performance. Set the random number seed to
ensure that the random number in the tensor of each run remains unchanged. The batch
size is set to 32, the early stop mechanism is added, and the patience value is set to 5; that
is, if the accuracy on the validation set does not increase over the prespecified batches, then
the training will stop after five batches. The updated formula of the optimizer is as follows:

θ = θt−1 −
η√

v̂ + ε
m̂t (10)

In the experiments, we used two simple attention heads and two complex attention
heads to construct the complex attention mechanism. We adopt cross-entropy as the loss
function, and the model weights are set as time weights, which were used to adjust sample
weights at different time steps in order to more effectively utilize contextual information
in the sequence. In time weighting, earlier time steps are usually given lower weights,
and newer time steps are given higher weights. This weight assignment reflects the
importance of time in sequence data, because in many sequence data, information closer to
the current time step tends to have a greater impact on the task. By using time weights, the
model can pay more attention to the newer information to better capture the contextual
relationship and timing patterns in the sequence data so that the model can better adapt to
the characteristics of the sequence data.

5.2. Experimental Results

We validated our model on the CMU-MSOEI dataset and compared it with the results
obtained by other models. We experimented with all valid combinations of textual, visual,
and auditory inputs, including unimodal (only one modality at a time) and trimodal (all
three modalities at a time) inputs, and measured accuracy using an evaluation index.

For the MOSEI dataset, we achieve better performance using text. Subsequently,
we construct the input with three modalities and feed it to the network. For unimodal
input, the text in the SSCAF has the highest accuracy, followed by visual and audio inputs.
The accuracies are 80.12%, 79.92%, and 79.79%, respectively, and the result obtained by
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simultaneously inputting the three modes is 81.78%. The above results are the average
results obtained from five experiments. As shown in Table 1.

Table 1. Classification results using various modality combinations on the CMU-MSOEI dataset.

Method
Modality Contextual

LSTM [23]
MU-SA and

MMUU-SA [24] B2+B4 [25] Proposed
T V A

Unimodal

√
76.75% 78.23% / 80.12%√
71.84% 74.84% / 79.92%√
70.94% 75.88% / 79.79%

Trimodal
√ √ √

77.64% 79.80% 81.14% 81.78%

In an RNN, each input sequence may be of a different length. This can present some
challenges when trying to assign weights to each sample as some samples may be more
important than others. Therefore, the mode assignment weights of different sample weights
can assign different weights for each time step to consider the timing of samples and better
train the model. As shown in Table 2.

Table 2. Effect of weight on network classification performance.

Modality Time-Wise Sample-Wise None Temporal

T 78.72% 78.99% 78.19% 80.12%
V 77.53% 78.86% 76.59% 79.92%
A 74.34% 77.39% 71.01% 79.79%

T+V+A 81.38% 80.85% 80.72% 81.87%

The optional sample weight assignment mode [26] has the following four classifi-
cations: 1. “Temporal” assigns different weights to each time step and trains the model
considering the timing of samples. 2. “Time-wise” assigns a weight to each time step. The
weight of the same sample at different times can be different, but the weight of different
samples at the same time is the same. 3. “Sample-wise” assigns a weight to each sample,
and this weight is the same during the training process. 4. “None” assigns no sample
weights, and the weights of all samples are set to 1, which is the default value.

In the attention mechanism, the weight of each neuron is calculated according to the
relationship between it and other neurons, so the interaction relationship between different
modalities can be better handled. We use the complex attention mechanism to fuse the
three modalities [13].

The self-attention mechanism is an application of the attention mechanism, which
realizes the understanding and representation of sequences by connecting the connections
between different positions in a sequence. In the self-attention mechanism, the represen-
tation of each position is obtained by a weighted summation of the representations of all
other positions in the sequence, where the weight of each position to other positions is
calculated by a series of linear transformation and softmax operation.

Multi-head attention is an extension of the self-attention mechanism [27], which
allows the model to perform self-attention calculations in multiple different subspaces.
Specifically, after the multi-head attention mechanism linearly transforms the input, it
divides the transformed results into multiple heads, performs independent self-attention
calculations on each head, and finally combines all heads. The outputs are stitched together
and subjected to a final linear transformation. The benefit of this is that it allows the model
to focus on multiple subspaces with different levels of attention, thus gaining a better
understanding of the input.

Complex attention is an extension of the multi-head attention mechanism, which
can handle inputs with different modalities. In the complex attention mechanism, the
input of each modality is first linearly transformed into different subspaces, and then an
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independent attention computation is performed in each subspace. Finally, the outputs
of all modalities are concatenated together, and the final output is obtained via linear
transformation. This method can handle multiple input types, such as text, images, and
speech, and has good expressiveness when dealing with multimodal input. As shown
in Table 3.

Table 3. Effect of attention on network classification performance.

Method
Modality

Self-Attention Multi-Head
Attention

Proposed
T V A

Unimodal

√
78.32% 78.99% 80.12%√
77.13% 78.32% 79.92%√
76.86% 77.79% 79.79%

Trimodal
√ √ √

80.05% 80.85% 81.78%

6. Conclusions

We propose a novel variant of the attention mechanism, referred to as the complex
attention mechanism. Firstly, we employ the Bi-GRU model to capture the sequential
patterns within the original data [28]. The Bi-GRU is extensively used in natural language
processing, time series data analysis, and other fields, serving as an exceptional tool for
sequence modeling. Comprising two directions of gated recurrent units (GRU), the Bi-GRU
models time series data bidirectionally—from left to right and from right to left. GRU’s
lower parameter count and faster convergence speed enhance its ability to comprehend
lengthy sequences of information. Building upon the GRU, the Bi-GRU incorporates bidi-
rectional modeling, effectively leveraging contextual information for improved predictive
accuracy. Subsequently, the output from the Bi-GRU model is channeled into a complex
attention mechanism, which comprises both simple and complex attention heads. By intro-
ducing an additional linear layer, certain attention heads within the multi-head attention
mechanism are transformed into complex attention heads. The inner product of Q and K is
computed, generating the attention weight matrix for the complex attention head via linear
transformation. In contrast to the multi-head attention mechanism, the complex attention
mechanism introduces heightened non-linearity, facilitating robust contextual association
and thereby enhancing the accuracy of multimodal sentiment analysis. Following this, the
output of the complex attention mechanism is passed through a softmax layer to obtain
the final sentiment analysis result. We conducted experiments on all valid combinations
of textual, visual, and auditory inputs using the CMU-MOSEI dataset. This encompassed
both unimodal and trimodal inputs, with accuracy serving as the evaluation metric. Our
approach yielded superior results, underscoring its effectiveness in enhancing sentiment
analysis across different modalities.
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