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Abstract: To tackle the challenges of edge image processing scenarios, we have developed a novel
heterogeneous image signal processor (HISP) pipeline combining the advantages of traditional
image signal processors and deep learning ISP (DLISP). Through a multi-dimensional image quality
assessment (IQA) system integrating deep learning and traditional methods like RankIQA, BRISQUE,
and SSIM, various partitioning schemes were compared to explore the highest-quality imaging
heterogeneous processing scheme. The UNet-specific deep-learning processing unit (DPU) based on
a field programmable gate array (FPGA) provided a 14.67× acceleration ratio for the total network
and for deconvolution and max pool, the calculation latency was as low as 2.46 ms and 97.10 ms,
achieving an impressive speedup ratio of 46.30× and 36.49× with only 4.04 W power consumption.
The HISP consisting of a DPU and the FPGA-implemented traditional image signal processor (ISP)
submodules, which scored highly in the image quality assessment system, with a single processing
time of 524.93 ms and power consumption of only 8.56 W, provided a low-cost and fully replicable
solution for edge image processing in extremely low illumination and high noise environments.

Keywords: image signal processor (ISP); deep learning (DL); image quality assessment (IQA); FPGA;
hardware implementation

1. Introduction

From globally popular smartphones and digital cameras to DSLRs and surveillance
cameras, the image signal processor (ISP) is ubiquitous [1]. Since the raw data converted by
light signals into digital signals from CMOS or CCD image sensors do not meet the expec-
tations of human eyes and most computer vision recognition algorithms [2], and physical
defects such as distortion, bad pixels, and dark current exist in lenses and sensors that
require correction, the ISP pipeline has become an indispensable part of image processing.
In the past two years, due to the rise of autonomous driving, virtual reality, and drones,
the requirements for image acquisition and analysis have increased dramatically, and ISP
algorithms have played a cornerstone role in image processing in many of the latest camera
applications (such as YOLOv5-tassel [3] in 2022 and HYDRO-3D [4] in 2023). Research on
the impact of ISP image quality is also on the rise [5].

An ISP consists of a series of image processing modules connected in a pipeline struc-
ture, which enhances image quality by performing various processing tasks such as noise
reduction, sharpening, enhancement, and color correction [6]. Because the operations and
parameters of each submodule are usually fixed, the traditional ISP is reliable, consistent,
and predictable in terms of performance [7]. However, it is difficult for it to handle complex
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scenes with different lighting conditions [8], and achieving good imaging results requires
a significant amount of tuning work on the parameters and pipeline composition [9]. Al-
though image processing based on traditional algorithms has also made considerable
progress in the fields of dehazing, denoising, and so on [10–13], the above problems have
not been effectively solved. At the same time, it is clear that the superiority and convenience
of image processing through neural networks have sparked more discussions in journals
and at conferences.

In recent years, with the development of deep learning, more and more research
has attempted to use deep learning methods to improve image quality in a particular
dimension or even to simulate the entire traditional ISP pipeline [14]. The emergence of
fully convolutional networks (FCN) [15] and UNet [16] in 2015 greatly reduced the amount
of data required for training of deep learning neural networks, which originally required
thousands of annotated data for training, and created a precedent for the application of
neural networks in image segmentation. Since then, algorithms have emerged to solve
end-to-end super-resolution (SR) problems, including SRCNN (the first trial to solve SR
problems using a CNN structure) [17], VDSR using a ResNet structure [18], and SRGAN
using generative adversarial networks [19]. However, the above studies were all deep
learning schemes based on a single problem, until the paper “Learning to See in the Dark”,
published in 2018, used UNet to solve the imaging problem in low-light environments [20].
The model used the RAW Bayer format as input and RGB as output, which was a complete
ISP from an imaging perspective and set off a boom in replacing entire ISP pipeline functions
through a single deep learning model.

In order to cope with more complex environments and produce better imaging results,
the researchers proposed a full end-to-end deep neural model called DeepISP [21] in 2018,
a novel pyramid CNN architecture for fine-grained image restoration named PyNet [22],
and CycleISP, which achieved state-of-the-art performance on real camera benchmark
datasets [23] in 2020. The more recent and interesting studies are on CSANet [24] and
PyNET-CA [25], and both of them employ the channel spatial attention method in their
networks. A series of image processing units implemented through deep learning, such
as DeepISP, PyNet, CycleISP, and CSANet, are typically referred to as deep learning ISP
(DLISP). In contrast, DLISP does not have fixed submodules to handle different functions,
nor does it require organizing fixed pipelines and manually adjusting parameters. Instead,
it often simulates the entire ISP pipeline’s processing effects through a single end-to-end
neural network [26] (such as a fully convolutional neural network like UNet or WNet).

Due to its ability to extract complex and multidimensional parameters from large
amounts of targeted training sets, DLISP has stronger adaptability and superior processing
performance in specific scenarios [27]. Moreover, it is easier to optimize and iterate the
model without requiring a significant amount of manual intervention. However, DLISP
requires significant computing power and storage resources. Most research is focused on
improving the quality of the output image but overlooks the high real-time requirements
and limited computing resources in which reproducing these effects poses a significant
challenge. As a result, although academia and industry have proposed many DLISP models
that often outperform traditional ISP pipelines in extreme environments such as low light
and high noise, the lack of device computational power means that few DLISP models can
be effectively deployed for production and use in real-time scenarios [28]. Especially in
edge scenarios, it is impossible to integrate high-performance CPU and GPU clusters to
infer neural networks for real-time processing. Therefore, in order to enable deep learning
to play a more reasonable role and create more value in practical scenarios, customized
hardware acceleration schemes for deep learning edge inference are necessary. There
have been attempts to combine DLISP with traditional methods, but no one has been
able to explain well what the division of image processing tasks should be, why such the
division should be adopted, and how to better integrate the two to efficiently leverage
their strengths.
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For the current DLISPs, the real obstacle to their standardization and adoption in
production is the computational limitations of edge devices, which result in insufficient
inference speed, preventing them from meeting the most basic requirement of real-time
performance as an ISP. This requires the design of accelerators to speed up neural network
inference in edge scenarios. The mainstream choice for accelerating neural network in-
ference in edge scenarios is through the design of specific hardware accelerators such as
NVDLA and other NPUs [29]. However, hardware accelerators with general architectures
implemented through ASICs not only have a high design difficulty and a long development
cycle but also may not be sufficient to meet the real-time requirements in terms of accel-
eration ratio. Additionally, general-purpose NPUs often require software and may even
need to run an operating system on the CPU for scheduling, which increases development
difficulty and results in longer memory access time. Some researchers have proposed
solutions that optimize hardware structures for specific models, reducing redundant de-
signs and concentrating hardware resources to improve the inference speed of specific
operators [30–32]. However, this approach only makes the implementation of the NPU
more difficult and reduces its universality and versatility.

This paper proposes a solution to implement a dedicated DPU for a specific network
using FPGA, emphasizing the specificity of the accelerator from the design stage, and im-
plementing the hardware network from specific operators to fully leverage the advantages
of parallel computing in FPGAs. This achieves an acceleration ratio far higher than that of
a general-purpose NPU, meeting the real-time requirements for image processing. Based
on this, this paper proposes the concept of heterogeneous ISP (HISP): by dividing different
tasks between DLISP and traditional ISP submodules and combining them, the fitting
results of the neural network model are coordinated with the adjustments of the fixed
pipeline to output the optimal image quality in various complex and extreme scenarios.
By implementing the entire HISP pipeline on FPGA, and utilizing the specialized DPU
for accelerating the DL algorithm mentioned above, the remaining resources are used to
implement the most important ISP submodules, achieving an exciting processing effect
with low power consumption and low latency.

In particular, this paper has three main contributions:

• Detailed analysis of the strengths and weaknesses of traditional ISP and DLISP, and
proposal of the concept of HISP to combine the two, leveraging their advantages while
minimizing their drawbacks.

• Integration of different traditional ISP modules with DLISP to create multiple pipelines,
which will be evaluated through multiple dimensions of image quality assessment
(IQA). Proposing an HISP allocation plan that divides processing tasks for traditional
and deep-learning modules and achieves the optimal balance among processing speed,
resource consumption, and development difficulty.

• Implementation of a dedicated DPU for UNet on FPGA, achieving a 14.67× accelera-
tion ratio. In addition, we designed a heterogeneous ISP that combines traditional ISP
and DLISP based on the optimal division of labor, all on FPGA, resulting in the best
image quality in edge scenarios and costing only 8.56 W power.

The remainder of this paper is structured as follows:
Section 2 explores works more related to the proposed solution, details about the

analysis with comparative experiment are given in Section 3, Section 4 shows the detailed
implementation of the hardware system, experimental results are in Section 5, while final
remarks are in Section 6.

2. Related Work
2.1. Traditional ISP Principle and Pipeline

The design focus of the heterogeneous ISP (HISP) is to reasonably allocate tasks
between traditional processing methods and deep learning methods, allowing each to
play to its strengths, minimizing unnecessary resource waste, and avoiding inefficient
processing. The premise of exploring the optimal task allocation scheme is to understand
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the basic principles of traditional ISP and DLISP, and to clearly understand the advantages
and disadvantages of the two through comparative experiments, which all begin with the
processing pipeline of traditional ISP.

A typical ISP pipeline consists of a series of interconnected processing submodules
that operate at high speed under clock signals of several hundred MHz. The input of an ISP
pipeline usually consists of Bayer mosaic format RAW data from a CMOS or CCD sensor
output [33]. The image data are continuously transferred from one submodule to the next
until all the processing is completed and finally flow out of the pipeline in the form of YUV
or RGB. Figure 1 shows a common basic ISP pipeline.
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Figure 1. Traditional pipeline of image signal processing.

In a camera, the image sensor converts light into electric current, and the value of the
current varies with the intensity of the light. This means that the sensor cannot distinguish
the wavelength of light. In order to obtain color information, in 1974, engineer Bryce
Bayer of Kodak proposed to place a layered color filter array (CFA) in front of the image
sensor [34], which avoids the cost and alignment issues of using three different filters.

CFA arranges the color filters in a certain way on the pixels of the sensor, with each
pixel filtered by only one color filter, resulting in missing color information. Therefore,
the image output by the Bayer array is very unrealistic to the human eye. To restore the
complete color image, interpolation algorithms such as bilinear or bicubic interpolation
are used to predict and fill in the missing color information based on the arrangement of
the Bayer pattern and the information of neighboring pixels [35,36]. This process is usually
referred to as demosaicing. The intuitive effect is shown in Figure 2.
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Demosaicing is the most important step to make an ISP transform non-intuitive raw
data into images that look pleasing to the human eye. Suppose there are currently four
pixels with coordinates G1 (x1,y1), G2 (x2,y2), G3 (x3,y3), and G4 (x4,y4): we need to
determine the pixel value of a point with coordinates Gx (x,y), so the most common bilinear
interpolation algorithm in the demosaicing module principle is as follows [37]:

f (T1) =
x2 − x
x2 − x1

f (G1)+
x− x1

x2 − x1
f (G2) (1)

f (T2) =
x2 − x
x2 − x1

f (G3)+
x− x1

x2 − x1
f (G4) (2)

f (Gx) =
y2 − y
y2 − y1

f (T1)+
y− y1

y2 − y1
f (T2) (3)

Substituting the first two equations into the third equation yields:

f (x, y) = (x2−x)(y2−y)
(x2−x1)(y 2−y1)

f (G1)+
(x−x1)(y2−y)
(x2−x1)(y 2−y1)

f (G2)+
(x2−x)(y2−y)
(x2−x1)(y 2−y1)

f (G3)+
(x−x1)(y2−y)
(x2−x1)(y 2−y1)

f (G4)

= (x2−x)(y2−y)
(x2−x1)(y 2−y1)

( f (G1) + f (G3))+
(x−x1)(y2−y)
(x2−x1)(y 2−y1)

( f (G2)+ f (G4))
(4)

In summary, the whole process is reflected in Figure 3. Demosaicing can be considered
a crucial step in image processing for ISP, as it greatly improves both the visual effect for
human eyes and the recognition performance of computer vision algorithms [38]. Therefore,
correcting the physical defects of the sensor and lens before demosaicing to ensure the
quality of Bayer images is also an essential step. This involves bad pixel correction (BPC),
black level correction (BLC), lens shading correction (LSC), and Bayer noise removal (BNR)
in the Bayer domain.
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These steps are also uniformly classified into preprocessing in the ISP pipeline. After
demosaicing, the image is converted from Bayer’s raw data to RGB format through color
interpolation. At this point, the complete color image already roughly conforms to the
human eye’s visual perception. However, the image may still have problems such as being
too dark, too bright, color deviation, blur, and noise, which can affect the final output
image quality. Therefore, various processing techniques are needed in the RGB domain to
improve image quality.
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One of the most typical steps is gamma correction, which can enhance the details in
the dark areas of the image while adjusting the color [39]. This creates a bright and clear
effect for the color image. Gamma correction compensates for the color display differences
that exist on different output devices, making the image appear the same on different
monitors [40]. It also enhances the dynamic range and detail in the dark areas of the image
to better respond to the human eye’s sensitivity to dark areas [41].

In addition, the RGB image also needs automatic white balance (AWB), color correction
matrix (CCM), denoising, edge enhancement (EE), and other processing techniques. Some
ISPs also need to convert the processed RGB domain data into YUV format output through
color space conversion (CSC) at the end or in the middle of the pipeline. This can further
optimize the data in the YUV domain or be directly output.

Different manufacturers’ ISPs may not entirely use the same submodules and organize
the pipeline in the same order at this step. However, the overall structure is similar, and
different application scenarios and requirements may also result in differences in ISP
pipelines. The complex structure also explains why traditional ISPs have poor adaptability
and require a lot of manual adjustment of various parameters.

In the traditional ISP pipeline, each of the above processing steps is completed by a
single submodule that is connected in series to form a complete pipeline. In addition, there
are L3 [42], Burst [43] as shown in Figure 4, and other pipelines, which may have different
forms but still generally process through a fixed pipeline.
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2.2. Deep Learning ISP

To accurately position the role that deep learning should play in the image processing
pipeline, we not only need to understand the principles of ISP but also need a clear
understanding of the advantages of deep learning compared to traditional methods.

In earlier years, there were many studies that used deep learning methods for image
denoising, dehazing, gamma correction, and brightness enhancement, among other image
processing tasks. These studies can be viewed as simulating individual submodules within
an ISP through neural networks, thereby achieving improvements in single dimensions of
image quality.

In these studies, using deep learning for image denoising has been a particularly
popular topic. For instance, DnCNN in 2017 used deep convolutional neural networks
for denoising and achieved excellent results, whose feature was using a large number of
noisy images to generate training data during training instead of using real images and
noise pairs, and MIRNet in 2020 was a multi-scale residual network that could perform
denoising and super-resolution simultaneously. Its feature was using depthwise separable
convolution to reduce the number of parameters and thus lower computational cost. This
method performs well in complex image reconstruction.
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There is no doubt that the emergence of a large number of neural networks for
denoising and enhancing images is essentially due to the extremely significant advantages
of deep learning in these two types of tasks in image processing [44–46].

“Learning to See in the Dark” opened the door to simulate the complete ISP pipeline,
and since 2019, there have been numerous experiments and studies using end-to-end neural
networks to simulate the entire ISP pipeline [20,47].

For example, DeepISP used a deep neural network to simulate the entire ISP pipeline,
including demosaicing, denoising, color correction, and JPEG compression. Its feature was
that it could perform end-to-end optimization and achieve better results than traditional
methods. This solution achieved state-of-the-art performance in the objective evaluation of
the peak signal-to-noise ratio on the subtask of joint denoising and demosaicing. Figure 5
shows the process of a typical DLISP.
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channels and processed).

In general, the reason why deep learning methods are better than traditional ISP is
that they can learn the complex mapping from raw sensor data to the final image more
effectively. They can adaptively adjust processing methods to better deal with different
types of images and image quality issues. In addition, deep learning methods can use a
large amount of training data to learn the statistical properties of natural images, which
enables them to generalize better to new images.

Simulating the entire ISP pipeline through deep learning has been proven to produce
superior results in extreme environments such as low light, dark areas, and high noise.
This further indicates that DLISP is capable of effectively handling both denoising and
brightening tasks.

2.3. No-Reference Image Quality Assessment Scheme

The deep learning scheme brings a lot of changes visible to the naked eye; however,
the intuitive perception of the naked eye is obviously not a scientific criterion for evaluating
the quality of an image, so we will build an IQA scheme to accurately quantify the output
image quality of traditional ISP, DLISPs, and HISPs.

Image quality assessment (IQA) refers to using a series of mathematical methods and
algorithms to measure and evaluate the visual quality of digital images. It can be divided
into full-reference (FR), no-reference (NR), and reduced-reference (RR) methods. Over the
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past few decades, many traditional and deep learning IQA methods have been developed
and studied to improve the accuracy and efficiency of image quality assessment.

In an ISP output image quality evaluation scheme, it is not necessary to pay attention
to the content and local statistical characteristics of the picture, such as structure, color,
and texture. Instead, it can quantify the macro statistical characteristics of the image, such
as clarity, color contrast, edge information, and noise in the face of various content and
types of images, as the performance indicator of our image processing flow. Therefore, it is
necessary to summarize a reliable no-reference image quality assessment (RRIQA) scheme.

Common traditional NR methods include BRISQUE [48], NIQE [49], PIQE [50], etc.
BRISQUE and NIQE are two models based on natural scene statistical features. The
BRISQUE method calculates features such as image gradients, contrast, color distribution,
and sharpness, while the NIQE method calculates features such as local contrast, gradient
statistics, and phase consistency and uses these features to predict image quality. The
advantages of these two methods are that they can perform quality assessment without a
reference image, but their disadvantages are that they have a certain dependency on the
scene and image type. PIQE is a model based on the human visual perception model. It
also calculates IQA by calculating features such as contrast, color saturation, and sharpness.
However, since this method simulates the image processing in the human visual system, its
prediction results have a high correlation with the results of human subjective evaluation,
which is more in line with human visual perception.

Since traditional methods are generally highly dependent on the image scene and
type [51], their accuracy and robustness in practical applications still need to be further
studied and improved. In recent years, with the development of deep learning technology,
more and more research has focused on using deep learning methods to solve the problem
of image quality assessment [52,53].

The CNN-based deep learning IQA method is mainly based on CNN learning of
image feature representation, which can help determine the quality of the image. These
methods use a large amount of training data to train the CNN model to predict image
quality. Common CNN-based methods include DeepIQA, NIMA, RankIQA, etc.

After research and decision-making, NIMA, proposed by Google’s research team, uses
a new neural network architecture that adds an attention mechanism when learning the
quality characteristics of the image, which can better capture the important information in
the image. The core idea of RankIQA is that it is not necessary to make an accurate quality
assessment of each image, but instead focuses on comparing quality differences between
images, which tends to be more robust in practical applications.

Therefore, in the RRIQA scheme for ISP output image quality with different inputs,
NIMA and RankIQA will be combined with BRISQUE, NIQE, and PIQE, three methods of
scoring are included as evaluation indicators, and finally, we also add the result of artificial
blind scoring (ABS). The purpose is to consider the image quality score under different
evaluation systems at the same time and add the score of visual perception to evaluate
an image from multiple perspectives as much as possible to ensure the credibility and
universality of the results.

The scores of BRISQUE and PIQE are usually two digits within 100, and the range of
score changes is in the dozens, while the scores of NIQE, NIMA, and RankIQA are mainly
distributed between 1–10, and the score changes reflecting image quality are usually only
single digits or even a few tenths. At the same time, ABS conducted a blind evaluation
of each picture through 100 questionnaires, and the scoring standard ranged from 1 to
10. Due to the different score ranges, we needed to normalize the different scores first.
As a formula used in the initial exploration, based on our experimental experience, we
normalized BRISQUE and PIQE by directly dividing by 10 (linear treatment).

The higher the scores of BRISQUE, PIQE, and NIQE, the poorer the image quality, and
the higher the scores of NIMA and RankIQA, the higher the image quality. At the same time,
the results of different methods had certain differences, so we also needed to synthesize
each score. This part of this research has tried to use addition, multiplication, and even
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neural network methods, and finally, for the consideration of time cost and convenience,
we used simple linear addition. In all the methods, simple additions to normalized scores
also performed well.

The final score can be derived from the following formula:

Final Score = NIMA + RankIQA + ABS − (BRISQUE/10 + PIQE/10 + NIQE) (5)

For pipelines with the same input, since the score distribution and ranking given by
each evaluation system are different, we canceled the calculation of the final score but
added the ground truth image as a reference while taking the non-reference IQA. Referring
to the IQA system, the parameters evaluated were peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM).

3. Analysis
3.1. How to Allocate the Task?

How to make the traditional ISP submodule cooperate with DLISP and realize the
perfect task allocation is actually the most important issue of HISP, which cannot be
overemphasized.

Research has shown that among all the ISP functions, demosaicing and gamma cor-
rection have the greatest impact on the performance of final computer vision tasks. For
example, poor demosaicing can have various negative effects, including zipper artifacts,
edge blurring, color errors (false color effect), etc.

Therefore, evaluating the implementation effects of traditional ISP submodules and
DLISP on demosaicing and gamma correction can help us make a choice and allocate these
two tasks to the best-performing method.

The low-light, high-noise raw data from the SID dataset were selected as input and
directly fed into the demosaic and gamma correction submodules of the traditional ISP
for processing. We then compared the results with those of the software algorithm and
DLISP’s processing results as shown in Figure 6.
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Figure 6. Image output by gamma submodule, software, and DLISP.

Visibly, the result obtained by directly processing the raw data under extremely low
light conditions through gamma correction is extremely poor, and there is a significant
difference compared to the results obtained by software algorithms. However, DLISP
outputs a brighter and smoother image, and it can be demonstrated that traditional ISPs
have weak adaptability in extreme scenarios and often cannot cope with low-light and
high-noise environments when demosaicing and gamma correcting.

In theory, DLISP has processing capabilities that traditional ISP cannot match, particu-
larly in extreme scenarios. However, traditional ISP still has its advantages.

To achieve optimal processing results, neural network models have become increas-
ingly complex and voluminous, with continuous growth in model parameters from CNN to
UNet to WNet. This means that there are higher hardware requirements for neural network
inference. If these algorithms are used on devices with limited computing power, they
cannot guarantee basic replicability and robustness, and their processing speed depends
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on the size of the device’s computing power. They are usually unable to meet real-time
requirements in various edge scenarios.

Moreover, DLISP’s processing capabilities are not flawless in any scenario. For exam-
ple, in “Learning to See in the Dark”, using the official pre-trained model and setting the
brightness enhancement factor to 100 for low-ISO raw images (ISO = 0.1 s) in the official
SID dataset, visible information loss, edge blur, noise, and color deviation occur as shown
in Figure 7.
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Figure 7. Different problems in DLISP’s output image. The (a–c) three sub-figures represent experi-
mental results on three different images, which show that phenomena such as information loss and
blurring are common.

Through the previous RRIQA scheme, we were able to accurately quantify the evalua-
tion results. The specific results are shown in Table 1.

Table 1. By using a multidimensional IQA system, the differences between the DLISP output image
and the ground truth can be obtained.

BRISQUE PIQE NIQE NIMA RankIQA ABS Final Score

Gt1 12.13 24.60 3.10 5.17 4.21 7.70 10.30
Output1 30.66 43.55 3.77 4.66 4.05 6.30 3.82

Gt2 24.40 16.02 3.77 4.76 4.83 8.90 10.69
Output2 36.80 51.58 4.31 4.62 4.39 7.30 3.16

Gt3 22.85 12.02 4.55 4.96 4.27 8.00 9.19
Output3 33.27 54.02 4.65 5.19 3.73 7.10 2.64

Among them, RankIQA’s Pearson linear correlation coefficient (PLCC) = 0.8175 and
Spearman rank-order correlation coefficient (SROCC) = 0.7819. Through the final score,
we can clearly see the quality difference between the ground truth image and the final
output image.

Further increasing the amount of training and the richness of the dataset can make
DLISP have a better processing effect.

At the same time, the more similar the input picture scene is to the scene set in the
training set, the higher the quality of the output image will be. However, even so, the
abovementioned problems of noise, blur, and loss of color information will still occur.
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3.2. HISP May Work Better

The traditional ISP pipeline can typically achieve several hundred frames per second,
and selecting some of its submodules to assist or enhance the processing flow of DLISP does
not bring significant delays during implementation. Moreover, the HISP, which combines
the two image processing methods, may exhibit superior performance compared to their
individual operation.

To preliminarily validate the superiority of the heterogeneous ISP (HISP), we selec-
tively chose several traditional ISP submodules based on various types of defects (such
as edge blur, overexposure, and color deviation) in the low IQA score images output by
DLISP. These submodules assisted DLISP to form a HISP for processing, and the output of
HISP under various scenarios was compared with the processing effects of traditional ISP
and DLISP in Figure 8.
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The traditional submodules used to assist DL in image processing did improve the image
quality, and the experimental results preliminarily confirmed the superiority of HISP over
traditional ISP and DLISP, laying a theoretical foundation for subsequent implementation.

The ground truth image was used as the control group for this group of experiments.
The results in black and bold in Table 2 are the best results in the experimental group, while
the red ones are the worst.



Electronics 2023, 12, 3525 12 of 25

Table 2. By using traditional ISP modules to assist in optimizing DLISP, the feasibility of HISP
was preliminarily verified (the best-performing results are bold and in black in the table, and the
worst-performing results are bold and in red).

BRISQUE PIQE NIQE NIMA RankIQA ABS PSNR SSIM

Gt 42.62 69.36 5.03 4.79 2.97 8.70 - -

Traditional ISP Output 25.56 24.76 3.35 3.43 2.66 5.30 10.0495 0.1087
DLISP Output 43.59 66.74 4.86 3.75 2.17 6.10 10.4020 0.3085

DL Output + Sharpen 44.44 76.30 8.03 4.14 2.45 7.90 10.4043 0.3171
DL Output + Sharpen + Contrast 43.08 77.30 8.20 4.03 2.72 6.40 9.5036 0.2178

DL Output + Sharpen + Contrast +Denoise 46.11 80.77 6.01 3.96 2.93 7.10 9.5323 0.2336

Due to the ability to deal with the problems of blurred edges and blurred information
in the processing results of DLISP, the method of deep learning plus traditional sharpening
submodules achieved the highest score in half of the total eight IQA methods, and it also had
high scores under other IQA systems, giving relatively excellent performance. At the same
time, the overall performance of the method of assisting deep learning processing through
submodules was better than that of traditional ISP and DLISP, which also preliminarily
proves the feasibility and excellence of HISP.

4. Implementation

While both AI algorithms and traditional ISP methods have their own advantages,
we have also preliminarily verified the enormous potential of HISP, which may achieve a
synergistic effect of 1 + 1 > 2. However, in current edge DLISP devices, the DL algorithm
often needs to be run on an ARM core or even a PC workstation. A faster edge inference
solution is urgently needed for HISP.

FPGAs have significant advantages in parallel computing [54], and accelerating algo-
rithms through FPGAs can prevent the DL algorithm part of HISP from becoming a burden
on speed, allowing the final HISP product to have sufficient real-time performance.

Implementing a general-purpose hardware accelerator like NVDLA ensures hardware
versatility and generality, but it also requires software drivers and the acceleration ratio
for a specific network may not be ideal. On the other hand, implementing a specific DPU
for a neural network structure, starting from specific operators to implement a hardware
network, emphasizes the specificity of the accelerator from the design stage and can achieve
higher acceleration ratios. This approach also eliminates the need for running an operating
system or compiling kernel drivers, resulting in high flexibility and a short development
cycle [55].

Both two FPGA hardware solutions have been implemented simultaneously.

4.1. FPGA Implementation of NVDLA

On the AXU9EG development board, a minimal lightweight accelerator with an
8 × 8 MAC operation array was obtained by trimming the open-source RTL source code of
NVDLA. Due to its complex logical core structure, a smaller scale needed to be trimmed to
enable smooth driving on FPGA and reduce resource consumption.

Further optimization of the NVDLA RTL code was required. As NVDLA is aimed
at ASIC design, the Verilog code for internal RAM is a structural level description, which
means that instantiating RAM will consume a large amount of FPGA LUT resources. There-
fore, all RAMs were replaced with FPGA internal block RAMs to reduce LUT overhead
and improve operating speed.

A top-level file wrapper interface was then developed, and NVDLA was encapsulated
as a callable custom IP core in Vivado. The 4-core ARM-Cortex-A53 CPU unit on the
development board was interconnected with the NVDLA IP core through the CSB and AXI
buses using block design.



Electronics 2023, 12, 3525 13 of 25

The CSB was the control bus for NVDLA, and after the CSB2APB conversion mod-
ule provided by NVIDIA converted the CSB protocol to the APB protocol, signals were
extracted from NVDLA, and the AXI2APB Bridge IP core provided by Xilinx was used to
convert the AXI-Master control lines extracted from the ARM CPU core into the APB proto-
col. This enabled the ARM core to control NVDLA through a memory-mapped mechanism
to read and write NVDLA’s registers.

Meanwhile, the ARM CPU core’s AXI-Slaver was controlled by NVDLA’s AXI-Master
to enable NVDLA to access the DDR storage on the ARM CPU side, allowing shared
memory and faster access speed (Figure 9).
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To run NVDLA, kernel driver and Runtime are necessary. We built a Linux operating
system adapted for ARM cores using Petalinux, configured the device tree, added the
compiled NVDLA kernel driver file, and replaced the file system with Ubuntu, which is
more conducive to subsequent development.

Due to the limitation of hardware resources, it was not possible to implement a full
version of NVDLA on an FPGA. Therefore, we configured and re-trimmed the accelerator
core. Except for the use of the smallest 8 × 8 array, there was no SRAM interface, lookup
table, and RUBIK engine enabled. Therefore, it did not support deconvolution, softmax,
or even excessive pooling operations, and only supported one activation operator ReLU.
In order to make up for the shortcomings of NVDLA’s FPGA implementation in operator
support, after successfully testing inference acceleration in Runtime, we chose Tengine, a
framework developed by Open AI Lab, to deploy complex deep learning neural network
models to the NVDLA hardware accelerator backend. Developed using C language under
Tengine, it quickly and efficiently deployed models in formats including TensorFlow, Py-
Torch, and ONNX on various embedded devices. Additionally, it performed heterogeneous
computing by utilizing both ARM CPUs and NVDLA through graph partitioning. As a
result, Tengine schedules NVDLA and on-chip CPUs for heterogeneous computing, and in
addition to basic convolution and activation, it also supports operators like deconvolution,
concatenation, and pooling in end-to-end networks such as UNet. Figure 10 shows the
Tengine’s top-down technical architecture.

4.2. FPGA Implementation of a Dedicated DPU for UNet

To achieve dedicated acceleration of neural networks in FPGA, it is necessary to have
an understanding of the network structure and split various operators into hardware
structures. We chose the small and typical UNet neural network as an entry point and first
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wrote corresponding operators for convolution, max pooling, and deconvolution using
high-level synthesis (HLS) as shown in Figure 11.
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Figure 11. Key code and architecture of hardware convolution operator implemented through HLS.
The multiplication and plus signs in the upper right corner represent the convolution process of the
data stream.

The three operators compiled successfully in HLS were exported as custom IP cores
and integrated into a block design in the Vivado IDE. The ARM core scheduled the three
operators through the AXI bus in turn to achieve acceleration of the entire neural network
inference. At the same time, DMA was set up to move data and ensure the flow of data,
reducing the time required for memory access as shown in Figure 12.

4.3. FPGA Implementation of HISP Pipeline

Based on the specialized DPU, various traditional ISP submodules were implemented
on FPGA.

In the previous section, we verified through comparative experiments that DL algo-
rithms had better image restoration quality for Bayer domain images in low-light and
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high-noise environments; the bad pixel correction (BPC), black level correction (BLC), lens
shading correction (LSC), and Bayer noise reduction (BNR) were handled by DL algorithms.
Therefore, the traditional ISP submodules used to assist DL algorithms only included an
automatic white balance (AWB) module, denoising module, edge enhancement module
(EE), and gamma correction module.
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There are many algorithms for automatic white balance (AWB), such as the gray
world method, perfect reflector method, and dynamic threshold method. At present, there
are many AWB studies through neural networks [56–58], but considering that the final
implementation needs to be done through an FPGA, a simple calculation process for the
algorithm was necessary. Among the aforementioned algorithms, the gray world method
is not only simple to implement but also requires a small amount of computation, so it was
ultimately chosen as the automatic white balance implementation method.

First, calculate the average values of the R, G, and B channels, and set the K value as
half of the maximum value among the channels, which is 128. Then calculate the gains Kr,
Kg, and Kb [59]:

Kr = K/Raver;
Kg = K/Gaver;
Kb = K/Baver;

(6)

The new pixel value is the sum of the gain and K:

Rnew = R × Kr;
Gnew = G × Kg;
Bnew = B × Kb;

(7)

The denoise module uses a Gaussian filter to reduce noise, which follows a normal
distribution (Gaussian white noise) introduced by the sensor. The Gaussian filter essentially
performs a weighted average process on each pixel in the image. To implement this on an
FPGA, we can first abstract this problem as a convolution process between the image and a
Gaussian kernel [60]:

Iσ = I × Gσ (8)

The Gaussian kernel is equal to:

Gσ =
1

2πσ
e−(x2+y2)/2σ2

(9)
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The edge enhancement module (EE) includes the Sobel operator, Laplacian operator,
and Canny operator. The latest legacy algorithms also include FE [61], Edge Boxes [62],
and SemiContour [63]. After comparing the results of the implementation, the Laplacian
operator was ultimately chosen.

For a continuous function, the Laplacian operation is defined as:

∇2 f =
∂2 f
∂x2 +

∂2 f
∂y2 (10)

For digital images, the Laplacian operator can be simplified as:

g(i, j) = ∑k
r=−k ∑l

s=−l f (i− r, j− s)H(r, s) , i, j = 0, 1, 2 ∼ N − 1 (11)

The entire process can be seen as a convolution between the entire image and the
Laplacian operator. When K = 1 and I = 1, H(r,s) represents the Laplacian operator with the
following formula. H1 is the four-directional sharpening operator template, and H2 is the
eight-partition template:

H1 =

 0 −1 0
−1
0

4 −1
−1 0

 H2 =

 −1 −1 −1
−1
−1

8 −1
−1 −1

 (12)

When implemented on an FPGA, the H2 operator needs to be stored in a 3 × 3 register
group first. Then, the image is converted to grayscale, and the grayscale pixels are cached
row by row into another 3 × 3 register group. The stored values of the corresponding
position registers are multiplied by nine booth multipliers, and the results are added to the
original pixels to obtain the new pixel values at the corresponding positions. The entire
process is implemented through pipelining.

Gamma correction requires a nonlinear transformation of the brightness level to make
the image’s brightness and color more vivid. To implement gamma correction on an FPGA,
a truth table needs to be stored in ROM to correspond to the gamma curve for lookup and
to perform calculations for the nonlinear function.

After implementing all the submodules, they are connected to the hardware accelera-
tion unit to form a system-level HISP design as shown in Figure 13.
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5. Results
5.1. Optimal Acceleration Scheme

Comparing the three different approaches of using ARM CPU with Ubuntu OS and
a Tengine framework, using ARM + Tengine to call DLA for acceleration, and using
bare-metal scheduling of specialized DPU, we evaluated their performance from differ-
ent perspectives.

We used different software frameworks to infer UNet under the Intel x86 i7 series
CPU of a personal computer. The purpose was to use the inference speed of the 3600 MHz
high-frequency CPU to give readers an idea of the scale and running time of the UNet
network. Then, we compared it with the final DPU acceleration solution to reflect the
superiority of the solution in terms of speed. At the same time, we also listed the running
time of edge inference solutions such as ARM CPU and NVDLA, showing the dominant
performance of the FPGA DPU implementation solution at the low frequency of 200 MHz
at the edge.

For the edge inference scenario (ARM CPU and FPGA only), this study ran the
same model of the same algorithm through ARM CPU, ARM CPU + NVDLA, and ARM
CPU + DPU schemes. The dedicated DPU solution for UNet stood out with the lowest
latency without any software framework support. As shown in Table 3, in the absence
of accelerators, the edge ARM CPU took a full 3785.9 ms to calculate the large number
of convolutions in the network. With the blessing of DPU, this number was reduced to
423.75 ms, achieving an acceleration ratio of 8.93×. Moreover, for deconvolution and max
pool, the calculation latency of the DPU was as low as 2.46 ms and 97.10 ms, achieving an
impressive speedup ratio of 46.30× and 36.49×, respectively. The total inference latency of
the entire algorithm was reduced from 7675 ms to 523.28 ms, achieving a speedup ratio
of 14.67×. The premise of the above results is that the ARM CPU inference is accelerated
by parallel computing by the Tengine framework, and the DPU will only bring greater
improvement to the edge CPU without deploying the deep learning framework.

Table 3. Latency and power consumption of the same UNet model running on different hardware,
software, and operating systems (the best-performing results are bold in the table).

Device
Frequency

(MHz) OS Software
Lantency (ms) Total On-Chip

Power (Watt)Conv Maxpool Deconv Total

x86 CPU 3600 Windows
10

Python
3.6.4 127,835.99 2776.71 32,452.11 166,625.00 125

x86 CPU 3600 Windows
10 C (gcc 8.1) 16,679.21 11.47 3829.87 21,551.00 125

x86 CPU 3600 Ubuntu
18.04

Tengine
Lite 1.0 289.00 5.40 287.30 609.36 125

ARM CPU 1333 Ubuntu
18.04

Tengine
Lite 1.0 3785.90 113.9 3543.50 7675.00 0.52

ARM CPU +
DLA on FPGA 1333 & 200 Ubuntu

18.04
Tengine
Lite 1.0 2958.32 79.73 2763.39 6007.23 3.85

ARM CPU +
DPU on FPGA 1333 & 200 - - 423.75 2.46 97.10 523.28 4.04

The dedicated DPU solution was not only faster than the results of ARM or even
Intel i7 x86 CPUs but also had the best performance in terms of power consumption,
development cycle, and flexibility, making it undoubtedly the best choice for accelerating
deep learning algorithms in HISP.

5.2. Optimal Task Allocation Scheme

Due to the fact that the DPU mainly served the purpose of improving the algorithm
inference speed and increasing the lower limit of HISP’s real-time performance, the main
metric we focused on in designing the DPU was the inference speed. However, when
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designing the entire HISP pipeline, we needed to consider the image processing effects,
latency, and hardware resource consumption of the added modules as a whole. The
intuitive output is shown in Figure 14.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 27 
 

 

Table 3. Latency and power consumption of the same UNet model running on different hardware, 

software, and operating systems (the best-performing results are bold in the table). 

Device 
Frequency 

(MHz) 
OS Software 

Lantency (ms) Total On-Chip 

Power (Watt) Conv Maxpool Deconv Total 

x86 CPU 3600 
Windows 

10 
Python 3.6.4 127,835.99 2776.71 32,452.11 166,625.00 125 

x86 CPU 3600 
Windows 

10 
C (gcc 8.1) 16,679.21 11.47 3829.87 21,551.00 125 

x86 CPU 3600 
Ubuntu 

18.04 
Tengine Lite 1.0 289.00 5.40 287.30 609.36 125 

ARM CPU 1333 
Ubuntu 

18.04 
Tengine Lite 1.0 3785.90 113.9 3543.50 7675.00 0.52 

ARM CPU +  

DLA on FPGA 
1333 & 200 

Ubuntu 

18.04 
Tengine Lite 1.0 2958.32 79.73 2763.39 6007.23 3.85 

ARM CPU +  

DPU on FPGA 
1333 & 200 - - 423.75 2.46 97.10 523.28 4.04 

The dedicated DPU solution was not only faster than the results of ARM or even Intel 

i7 x86 CPUs but also had the best performance in terms of power consumption, develop-

ment cycle, and flexibility, making it undoubtedly the best choice for accelerating deep 

learning algorithms in HISP. 

5.2. Optimal Task Allocation Scheme 

Due to the fact that the DPU mainly served the purpose of improving the algorithm 

inference speed and increasing the lower limit of HISP’s real-time performance, the main 

metric we focused on in designing the DPU was the inference speed. However, when de-

signing the entire HISP pipeline, we needed to consider the image processing effects, la-

tency, and hardware resource consumption of the added modules as a whole. The intui-

tive output is shown in Figure 14. 

 

Figure 14. Output images of 10 different HISP implementations. 

In order to facilitate the experiment, reduce the time of simulation and iteration, and 

at the same time not affect the effect of UNet when processing images, we chose the input 

Figure 14. Output images of 10 different HISP implementations.

In order to facilitate the experiment, reduce the time of simulation and iteration,
and at the same time not affect the effect of UNet when processing images, we chose the
input resolution of 256 × 256 and specially designed it. In actual application scenarios,
latency, power consumption, and resource consumption may increase. Table 4 Compares
the outputs of different pipelines using a no-reference IQA scoring system.

Table 4. Comparing the ground truth, DLISP output, and the output of 10 HISP pipelines using a
no-reference IQA scoring system (the best-performing results are bold in the table).

BRISQUE PIQE NIQE NIMA RankIQA ABS

Gt 42.62 69.36 5.03 4.79 2.97 8.70
DL 46.44 80.92 5.52 3.13 2.19 5.40

Pipeline 1 51.01 77.08 5.53 3.44 2.50 7.90
Pipeline 2 54.93 83.12 5.00 3.50 2.04 6.50
Pipeline 3 45.01 60.21 5.42 3.59 1.92 6.20
Pipeline 4 49.82 78.45 5.58 3.20 1.94 3.10
Pipeline 5 39.90 52.73 5.70 3.47 2.31 8.30
Pipeline 6 45.57 57.26 5.15 3.41 1.90 4.70
Pipeline 7 50.30 69.20 4.93 3.27 2.18 7.00
Pipeline 8 57.01 80.89 4.99 3.23 1.81 4.00
Pipeline 9 46.11 68.27 4.79 3.25 2.38 7.70
Pipeline 10 54.70 66.09 4.90 3.19 1.92 4.60

In the whole HISP, the DPU realizes the real low power consumption. In the end,
it is part of the traditional module that really determines the final power consumption,
and the final power consumption and resources will double with the increase of the input
image resolution.

Therefore, when implementing the traditional module, we focused on the speed of
inference, the consumption of hardware resources, and the size of the power consumption
as shown in Table 5.
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Table 5. On-chip hardware resource consumption and power consumption of traditional modules in
the 10 HISP pipelines.

Lantency
(Microseconds)

Hardware Resource Consumption Power
(Watts)LUTs Registers BRAMs

Pipeline 1 968 120 182 0 4.611
Pipeline 2 965 128 216 0 6.319
Pipeline 3 970 327 319 0 6.964
Pipeline 4 968 213 52 1.5 3.823
Pipeline 5 1650 376 423 0 8.562
Pipeline 6 1651 492 293 1.5 7.712
Pipeline 7 1657 384 457 0 8.575
Pipeline 8 1655 270 190 1.5 5.435
Pipeline 9 2327 433 527 0 10.182
Pipeline 10 2328 526 561 1.5 9.313

In this part, several typical RGB domain image processing submodules including AWB,
gamma, EE, and denoise were connected with the DPU part to form a total of 10 different
HISP pipelines.

First of all, in order to give a definite solution to the optimal division of labor of HISP,
it was necessary to perform IQA on the output of each HISP pipeline. Through the previous
analysis and demonstration, it was preliminarily found that the edge enhancement (EE,
i.e., sharpening) module can significantly improve the quality of the image output by the
neural network model. The results proved that the effect of edge enhancement (EE) was
not disappointing. Among the 10 implementation schemes, the average score of the result
of adding the EE unit was 0.02 higher than that of the experimental group without it in the
NIMA IQA system and 1.64 higher in the ABS evaluation system.

For brightness and color processing, we selected two modules, AWB and gamma.
The experiment showed that under these six types of IQA systems, the average score of
the pipeline participated by the AWB module was 0.13, 0.56, and 3.87 higher than that of
gamma in NIMA, RankIQA, and ABS.

In RankIQA, the simple solution of DPU + AWB was at the top of the list. At the
same time, in the manual blind evaluation, it was obvious that AWB greatly improved the
amount of image information that the human eye can perceive, which is far higher than the
impact achieved by other modules.

It can be said that in the face of image processing with low light and high noise, AWB
is an absolutely indispensable module of HISP as shown in Figure 15.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 27 
 

 

result of adding the EE unit was 0.02 higher than that of the experimental group without 

it in the NIMA IQA system and 1.64 higher in the ABS evaluation system. 

For brightness and color processing, we selected two modules, AWB and gamma. 

The experiment showed that under these six types of IQA systems, the average score of 

the pipeline participated by the AWB module was 0.13, 0.56, and 3.87 higher than that of 

gamma in NIMA, RankIQA, and ABS. 

In RankIQA, the simple solution of DPU + AWB was at the top of the list. At the same 

time, in the manual blind evaluation, it was obvious that AWB greatly improved the 

amount of image information that the human eye can perceive, which is far higher than 

the impact achieved by other modules. 

It can be said that in the face of image processing with low light and high noise, AWB 

is an absolutely indispensable module of HISP as shown in Figure 15. 

 

Figure 15. The specific performance of the EE, AWB, and gamma modules in HISP. 

At the same time, the denoise module did not play the key role as imagined. In each 

pipeline, the addition of the denoise module showed little improvement in image quality. 

The specific improvement is shown in Figure 16. 

 

Figure 16. The impact of adding a denoising module to the image quality in HISP. Despite consum-

ing additional resources, the score improvement was minimal or even decreased. 

Figure 15. The specific performance of the EE, AWB, and gamma modules in HISP.



Electronics 2023, 12, 3525 20 of 25

At the same time, the denoise module did not play the key role as imagined. In each
pipeline, the addition of the denoise module showed little improvement in image quality.
The specific improvement is shown in Figure 16.
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additional resources, the score improvement was minimal or even decreased.

Among the 10 HISP pipelines, as shown in Figure 17, the implementation of HISP
pipeline5: DPU + AWB + EE scheme achieved the best performance and scored 39.90,
52.73, and 8.3 points, respectively, in the three IQA systems, BRISQUE, PIQE, and ABS. Its
performance in BRISQUE and PIQE even exceeded that of the ground truth image, and the
score in NIMA was also close to the highest score.
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Figure 17. HISP pipeline5: DPU + AWB + EE shows excellent performance in traditional IQA.

In addition to processing effects and output quality, we also needed to pay attention to
the resource consumption and time delay of hardware implementation. As the size of the
image increased, the consumption of various resources and power on the FPGA increased
exponentially, so these must also be taken into account if you want to obtain the optimal
effect when implementing it. For instance, the gamma module and AWB module had
similar power consumption and resource consumption, and AWB had a significantly better
effect, while denoise did not play an ideal role in the case of consuming a lot of resources
and delay.
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Therefore, in terms of the quality of the output image alone, AWB and EE were the
modules with the best effect and the greatest impact, while modules such as gamma and
denoise did not bring considerable improvement while consuming additional resources.

Considering the optimal effect plus reasonable power consumption and resource
consumption, the optimal division of labor for HISP should be to hand over bad pixel cor-
rection (BPC), black level correction (BLC), lens shading correction (LSC), and Bayer noise
removal (BNR) and demosaicing functions to the deep learning algorithm for reasoning,
and on this basis let the AWB and EE modules be responsible for image quality in the RGB
domain’s further improvement.

The optimal structure of HISP should be DPU + AWB + EE. Under this structure,
implementation through FPGA consumed 376 LUTs and 423 register resources, the entire
HISP pipeline delay was 524.93 ms, and achieved a BRISQUE score of 39.90, PIQE score of
52.73, NIQE score of 5.70, RankIQA score of 3.47, NIMA score of 2.31, and ABS score of 8.3.

In the HISP implemented by FPGA, the inference time of the DPU part was 523.28 ms,
and the power consumption was 4.04 watts. The pushing time of the traditional module
pipeline was 1.65 ms, and the power consumption was 8.56 watts. The total inference
time of HISP was 524.93 ms, and the total power consumption was 12.6 watts. For edge
inference, HISP provides a reliable and efficient solution.

6. Conclusions and Future Work
6.1. Conclusions

Based on the challenges of edge image processing, this paper proposes a novel hetero-
geneous image signal processor (HISP) pipeline that combines traditional ISP and deep
learning ISP (DLISP) techniques. The proposed pipeline provides a low-cost and fully
replicable solution for edge image processing, achieving a BRISQUE score of 39.90, PIQE
score of 52.73, NIQE score of 5.70, RankIQA score of 3.47, NIMA score of 2.31, ABS score of
8.3, and a single processing time of 524.93 ms with only 8.56 W power.

The paper has three main contributions. First, it provides a detailed analysis of the
strengths and weaknesses of traditional ISP and DLISP, and proposes the concept of HISP
to combine the two, leveraging their advantages while minimizing their drawbacks. Sec-
ond, the paper integrates different traditional ISP modules with DLISP to create multiple
pipelines, which are evaluated through multiple dimensions of image quality assessment
(IQA). The paper proposes the HISP allocation plan that achieves the optimal balance
among processing speed, resource consumption, and development difficulty. Third, the pa-
per implements a dedicated DPU for UNet on FPGA, achieving a 14.67× acceleration ratio.
Additionally, the paper details design of a heterogeneous ISP that combines traditional ISP
and DLISP based on the optimal division of labor, all on FPGA, resulting in the best image
quality in edge scenarios.

The research shows that the proposed HISP pipeline is effective in edge image process-
ing scenarios and can be replicated as low-cost solutions. The combination of traditional ISP
and DLISP not only minimized their drawbacks but also improved the overall performance
of image processing. The use of FPGA and specific DPU for UNet also greatly improved
the efficiency of deep learning processing in edge scenarios.

In conclusion, this paper presents a promising solution for edge image processing,
combining traditional ISP and DLISP techniques in a heterogeneous image signal processor
pipeline. This research provides important insights into the challenges and opportunities of
edge image processing, and offers a roadmap for the development of low-cost and effective
solutions for edge image processing.

6.2. Future Work

The current tests and experiments are mainly faced with extreme scenes of low light
and high noise. Although these two types of scenes show the advantages of DLISP and
HISP in image processing, to completely replace the traditional method, it is still necessary
to conduct extensive data collection and comparative experiments on common scenes
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to ensure the versatility of the final product. Moreover, deep learning algorithms are
evolving at an incredible pace. Applications that require cameras such as autonomous
driving, metaverse, drones, and VR are also opening up a broad market for ISP algorithms.
Because algorithm applications such as YOLOv5-tassel and HYDRO-3D continue to emerge,
HISP will face more challenges in different application scenarios. According to the latest
research, we are focusing on new directions and next-generation technologies, including
quantum artificial intelligence, which typically leads to astonishing nonlinear classification
capabilities, robustness to noise, and better signal processing results [64–67]. Therefore,
designing more universal and novel algorithms is an important task in the future.

In addition, the IQA scheme we established mainly adopts the existing general scheme.
The texture detail of an image with a high PSNR or SSIM score does not necessarily
correspond to the visual habits of the human eye. Therefore, more effective image quality
indicators are synthesized in this study. However, the above problems still exist. For
example, according to interviews with reviewers in the ABS scoring system, we found that
EE provides an extremely obvious and intuitive improvement in the perception of human
vision, even if humans do not know what has changed in the image, but at first glance,
they can feel that the picture passing through EE is clearer and more detailed. Furthermore,
it can be seen from the experiments that the evaluation results of various latitudes are
often inconsistent, and the quantified scores are not accurate enough. Therefore, we hope
to formulate a follow-up image quality evaluation system in edge scenes, through the
combination of traditional algorithms and deep learning methods, that can obtain the
results that are most consistent with naked-eye vision and CV algorithms.

Furthermore, the results of this project are applicable to edge inference, which is
of great significance to edge image processing. However, the implementation on FPGA
requires sufficient experience and workload. In the future, we plan to develop a toolchain
that will accelerate the end-to-end implementation of algorithms to FPGA HISP and
facilitate short-cycle product development.

Finally, we will try our best to cooperate with enterprises to realize tape-out and mass
production of HISP products on the basis of complete verification.
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