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Abstract: In radar array signal processing, weak nonstationary polarization signal direction of arrival
(DOA) estimation is a challenging and significant issue when both strong and weak nonstationary
signals coexist. Time-frequency (T-F) analysis is an effective method to deal with nonstationary signals.
In the last decade, spatial time-frequency distributions (STFDs) have been proposed for multiple
dual-polarization antenna arrays and efficaciously used for nonstationary signal DOA estimation. In
this article, we introduced a novelty means for estimating weak nonstationary polarization signal
DOA by utilizing spatial polarimetric time-frequency distributions (SPTFDs) of cross terms when
there are strong nonstationary polarization interference signals and additive Gaussian white noise.
The cross terms’ SPTFDs are considered via a replaceability matrix for data covariance in multiple
signal classification (MUSIC) and the estimation of signal parameters using the rotational invariance
technique (ESPRIT). Combining the STFDs of cross terms with polarization information about weak
nonstationary signals improves signal DOA estimation accuracy. The combined MUSIC and ESPRIT
are used in the algorithm to further ensure the success probability and accuracy of DOA estimation.
Through simulation analyses, the proposed algorithm is more suitable for the required application
scenarios than other algorithms and is superior to other algorithms.

Keywords: time-frequency analysis; polarization direction of arrival estimation; cross terms; spatial
polarimetric time-frequency distribution

1. Introduction

Time-frequency analysis has been introduced for nonstationary signal analysis in
many fields, for instance, machine monitoring, speech, the automotive industry and
biomedicine [1–3]. In the last many years, the spatial dimension has been combined with
the time and frequency dimensions, including quadratic and higher-order time-frequency
distributions (TFDs), which resulted in spatial time-frequency distributions (STFDs) devel-
opment for nonstationary array signal processing [4–7]. The relation between the sensor
data TFDs and the source TFDs is confirmed by the steering mixing matrix. The sensor data
TFDs are similar to the traditional data covariance matrix in array signal processing [8,9].
This similarity has a guaranteed subspace algorithm to use the instantaneous frequency of
the source for signal DOA estimation. The MUSIC [10] and ESPRIT [11] algorithms based
on STFDs are superior to their counterparts based on the data covariance matrix when
utilized for the DOA estimation of nonstationary signals [4,12].

Polarization is generally not only used in satellite communications and wireless
but also in various radar array signal processing methods [13–16]. Antenna and target
polarization characteristics are generally applied in synthetic aperture radar (SAR) systems
and remote sensing [17,18]. Polarization information is included in airborne and spaceborne
platforms and meteorological radars [19]. Moreover, for target identification in the clutter,
polarization plays a significant role [20]. Polarization information has also been applied for
polarization sensitivity antenna arrays to promote signal parameter estimation performance,
which primarily includes time of arrival and DOA [21–23].
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The two significant fields of time-frequency analysis and polarization signal processing
have rarely cooperated in the same platform, despite the abundant research executed in each
field separately [24,25]. In this study, we propose SPTFDs based on cross terms for dual-
polarization arrays, where the signal T-F and polarized characteristics are simultaneously
sufficiently applied. The virtues of the SPTFDs based on cross terms are confirmed by
far-field narrow-band point signals incoming to the array. The polarized information
increases an additional degree of freedom of the STFDs, resulting in ameliorative signal
spatial resolution and DOA estimation accuracy.

When strong and weak nonstationary signals simultaneously arise, the weak target
signal auto terms are submerged into the background noise in the time-frequency analysis.
They are difficult to extract and use directly. The cross terms also contain weak target signal
information [26,27]. Unlike the suppression of cross terms [28,29], the SPTFD matrix is
constructed by the T-F points of cross terms to estimate the weak target signal DOA in this
algorithm [30,31].

SPTFDs are utilized for defining the polarimetric time-frequency MUSIC (PTF-MUSIC)
algorithm, combining the source T-F and polarized characteristics for nonstationary signal
polarization DOA estimation. The PTF-MUSIC algorithm is superior to the MUSIC algo-
rithms that merely consider polarization or T-F peculiarities. In addition, an ESPRIT-like
algorithm is proposed in [32]. The algorithm in this paper combines the characteristics
of the MUSIC and the ESPRIT algorithms to ensure success rate and accuracy. Rough
estimation and fine estimation are combined to ensure that the algorithm has a high success
rate and relatively accurate target direction estimation when strong and weak nonstationary
signals simultaneously arise.

This paper mainly solves the problem of the poor DOA estimation performance of
weak nonstationary polarized signals in the presence of strong nonstationary polarized
interference signals and additive white Gaussian noise. Polarization direction of arrival
estimation is proposed using dual algorithms based on time-frequency cross terms. Instead
of suppressing cross terms, the method uses cross terms. From a novel perspective, the
cross term contains weak target signal information and has an obvious antidiagonal matrix
structure which is easy to extract.

This paper includes the following sections. Section 2 describes polarization modeling
and discusses SPTFDs. Section 3 studies time-frequency point selection. Polarization
DOA estimation using dual algorithms based on T-F cross terms is introduced in Section 4.
Section 5 discusses the issues of spatial polarimetric correlations. The simulation analyses
are offered in Section 6, which demonstrates the proposed algorithm’s effectiveness.

2. Spatial Polarimetric Time-Frequency Distribution
2.1. Polarization Modeling

In Figure 1, the electric field of transverse electromagnetic (TEM) waves incoming to
the array can be expressed as

E(t) = Eθ(t)θ+ Eφ(t)φ =
[
Eθ(t) cos(θ) cos(φ)− Eφ(t) sin(φ)

]
x

+
[
Eθ(t) cos(θ) sin(φ) + Eφ(t) cos(φ)

]
y + Eθ(t) sin(θ)z,

(1)

where φ and θ are the azimuth and elevation spherical unit vectors of the signals. The x, y
and z are, respectively, rectangular coordinate unit vectors along the x, y and z directions.
For generality and succinctness, the signal and arrays are assumed in the x-y plane and the
y-z plane, respectively. Then, θ = 90◦(θ = −z), and

E(t) = −Eφ(t) sin(φ)x + Eφ(t) cos(φ)y + Eθ(t)z. (2)
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Figure 1. Dual-polarized antenna array.

s(t) is expressed as the source amplitude measured by the receiving reference antenna
sensor. The polarization auxiliary angle is γ ∈ [0, π/2] and the polarization phase difference
is η ∈ (−π, π]. s[v](t) and s[h](t) are the vertical and horizontal polarization components of
the signal source. Eθ(t) and Eφ(t) can be expressed by spherical fields as

Eθ(t) = s[v](t) = s(t) cos(γ), Eφ(t) = s[h](t) = s(t) sin(γ)ejη . (3)

A signal is linearly polarized if η = 0◦ or η = 180◦. Bringing (3) into (2) yields

E(t) = s(t)[− cos(γ) sin(φ)x + cos(φ) sin(γ)ejηy + cos(γ)z]. (4)

The N signals are assumed entering on the M dual-polarization antenna array. The
nth source’s dual-polarized components are

s[v]n (t) = sn(t) cos(γn) = cnvsn(t), s[h]n (t) = sn(t) sin(γn)ejηn = cnhsn(t), (5)

where the parameters cnv = cos(γn) and cnh = sin(γn)ejηn describe the vertical and
horizontal polarization coefficients. The signal source incident on the mth dual-polarization
antenna sensor expresses

y
m
(t) =

[
y[v]m (t), y[h]m (t)

]T
=

N

∑
n=1

[
a[v]nmEn · z, a[h]nmEn · y

]T

=
N

∑
n=1

[
a[v]nms[v]n (t), a[h]nms[h]n (t) cos(φn)

]T
,

(6)

where “ · ” is the dot product and En is the nth signal source electric field vector. a[v]nm

and a[h]nm are the mth elements of the vertical and horizontal polarization steering vectors,
a[v](φn) and a[h](φn), respectively. It is assumed that a[v](φ) and a[h](φ) are normalized

(
∥∥∥a[v](φ)

∥∥∥2
=
∥∥∥a[h](φ)

∥∥∥2
= M) and the array has been calibrated. In this paper, the

cos(φn) terms of the horizontal polarization array manifold can be introduced in the array
calibration. Therefore, they will not be considered. Equation (6) is simplified as

y
m
(t) =

[
a[v]nms[v]n (t), a[h]nms[h]n (t)

]T
= sn(t)

([
a[v]nm a[h]nm

]T
�
[

cnv cnh
]T)

= sn(t)anm � cn,
(7)

where cn = [cnv, cnh]
T =

[
cos(γn), sin(γn)ejηn

]T expresses the nth signal polarization
characteristic parameter.
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2.2. Spatial Polarimetric Time-Frequency Distributions

The fundaments of STFDs are discussed. The Cohen classes, especially the Wigner–Ville
distribution (WVD) and its peculiarities, are examined. The WVD formulation of a signal
x(t) is given by

Dxx(t, f ) =
∫∫

ϕ(t− u, τ)x
(

u +
τ

2

)
× x∗

(
u− τ

2

)
e−j2π f τdudτ, (8)

where t and f are, respectively, the time and frequency indexes, j is the imaginary unit
and * implies complex conjugate. The kernel ϕ(t, τ) is a function of the time and lag
variables and uniquely defines the TFDs. In this paper, all the integrals are from −∞ to ∞.

With the M dual-polarized antennas array, the data vector of each polarization is
expressed as

x[i](t) =
[

x[i]1 (t), x[i]2 (t), . . . , x[i]M(t)
]T

= y[i](t) + n[i](t)

= A[i](Φ)s[i](t) + n[i](t)(i = v or h),
(9)

where A[i](Φ) = [a1, a2, ..., aM]=[a(φ1), a(φ2), ..., (φM)] and a(φn) = −2π(n− 1)d sin φ/λ .
The array is a uniform linear array, and the array manifold vector is A, where each element
represents the wavepath difference reached by the electromagnetic wave. Therefore, the
DOA of the signal can be derived from the array manifold. The autopolarization STFDs
matrix of the data vector is defined as

Dx[i]x[i](t, f ) =
∫∫

ϕ(t− u, τ)x[i]
(

u +
τ

2

)
×
(

x[i]
(

u− τ

2

))H
e−j2π f τ,dudτ, (10)

where H is conjugate transpose. In the noise-free circumstance, (10) can be described as

Dx[i]x[i](t, f ) = A[i](Φ)Ds[i]s[i](t, f )
(

A[i](Φ)
)H

. (11)

Similarly, the cross-polarization STFDs matrix between two different polarization data
vectors can be described as

Dx[i]x[j](t, f ) =
∫∫

ϕ(t− u, τ)x[i]
(

u +
τ

2

)
×
(

x[j]
(

u− τ

2

))H
e−j2π f τdudτ, (12)

which becomes
Dx[i]x[j](t, f ) = A[i](Φ)Ds[i]s[j](t, f )

(
A[j](Φ)

)H
. (13)

On the basis of (9), the extended data vector of both polarizations can be established
thus:

x(t) =

[
x[v](t)
x[h](t)

]
=

[
A[v](Φ) 0

0 A[h](Φ)

][
s[v](t)
s[h](t)

]
+

[
n[v](t)
n[h](t)

]

=

[
A[v](Φ) 0

0 A[h](Φ)

][
Q[v]

Q[h]

]
s(t) +

[
n[v](t)
n[h](t)

]
= B(Φ)Qs(t) + n(t),

(14)

where

B(Φ) =

[
A[v](Φ) 0

0 A[h](Φ)

]
, (15)

is a block diagonal matrix and

Q =

[
Q[v]

Q[h]

]
, (16)



Electronics 2023, 12, 3575 5 of 19

is the signal polarization characteristic vector, where

q[v] = [cos(γ1), . . . , cos(γN)]
T, Q[v] = diag

(
q[v]
)

, (17)

q[h] =
[
sin(γ1)ejη1 , . . . , sin(γN)ejηN

]T
, Q[h] = diag

(
q[h]
)

. (18)

Then,

B(Φ)Q =

[
a[v](φ1)c1v · · · a[v](φn)cNv
a[h](φ1)c1h · · · a[h](φn)cNh

]
=
[

ã(φ1) · · · ã(φN)] . (19)

The matrix (19) can be considered as the extended mixing steering matrix, with ã(φn)
representing the spatial polarimetric extended characteristic vector. The spatial polarimetric
characteristic extended vector of the nth signal is

ã(φn) =

[
a[v](φn) cos(γn)

a[h](φn) sin(γn)ejηn

]
. (20)

Compared to a single-polarization array, the dual-polarization array doubles the
vectors’ spatial dimensionality. It is now possible to combine the spatial, polarized and T-F
information of the signals incoming to the array. For the dual-polarized data vector, the
SPTFDs matrix is described as

Dxx(t, f ) =
∫∫

ϕ(t− u, τ)x
(

u +
τ

2

)
× xH

(
u− τ

2

)
e−j2π f τdudτ. (21)

This matrix serves as a general framework where classical issues in radar array pro-
cessing can be resolved, for instance, DOA estimation. When the noise effect is neglectful,
the SPTFDs matrix is in connection with the signal TFDs matrix via

Dxx(t, f ) = B(Φ)QDss(t, f )QHBH(Φ). (22)

3. Time-Frequency Point Selection

The advantages of polarization DOA estimation based on T-F cross terms can only be
reflected if reasonable T-F points are selected for SPTFDs matrix establishment.

3.1. SPTFDs Properties

Consider an N × M whitening matrix W with unitary mixing matrix U = WA and

(WA)(WA)H = UUH = I, (23)

where I denotes the identity matrix. Pre- and postmultiplying Dxx(t, f ) by W results in the
whitened matrix, defined as

Dxx(t, f ) = WDxx(t, f )WH = UDss(t, f )UH, (24)

where the middle equation is from (22) and (23). The whitening step results in a linear model.
The whitening matrix is calculated as an inverse square root from the data covariance
matrix [33] or the STFDs matrix [4]. The whitening matrix is based on independent signals.
However, the SPTFDs matrix needs not the above condition. The SPTFDs matrix in (22) and
(24) guarantees the effective subspace algorithms to conduct a class of issues, for instance,
blind sources separation and high-resolution DOA estimation [34].
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3.2. Time-Frequency Point Properties and Categorization

The SPTFDs framework requires the signal T-F characteristics to satisfy one or two
conditions with adequate difference:

(1) The T-F points correspond to auto terms. That is, if Dsisj(t, f ) = (Dss(t, f ))ij, then

Dsisj(tn, fn) = δi,jDi,j,n. (25)

There is at least an nth T-F point for each N signal, such that Di,j,n 6= 0. δi,j represents
the Kronecker delta. Di,j,n is the value of the SPTFDs between the signals si and sj (or
si) at the T-F point.

(2) The T-F points correspond to cross terms. That is,

Dsisj(tn, fn) =
(
1− δi,j

)
Di,j,n. (26)

In the SPTFDs framework, the two assumptions imply that the signal T-F signatures
could not overlap strongly. For DOA estimation algorithms, the adequately different
signatures represent the signal’s known discriminating property.

The virtues of the T-F-based polarization DOA estimation algorithm may be merely
reflected when reasonable T-F points are selected for SPTFDs matrix establishment. The
algorithm’s key point is how to select reasonable T-F points. This paper’s objective is the
polarization DOA estimation of the weak nonstationary signal from strong nonstationary
signal interference. The signal source SPTFDs matrix is

Dss(t, f ) =
(

Ds1s1(t, f ) Ds1s2(t, f )
Ds2s1(t, f ) Ds2s2(t, f )

)
. (27)

The s1(t) and s2(t) are two polarization linear frequency modulation signals. The
four types of T-F points are described. The first type of T-F point is merely in connection
with auto terms. The TFDs matrix possesses a rank-one diagonal structure for those points.
The second type of T-F point is merely in connection with cross terms. The TFDs matrix
possesses an off-diagonal (a matrix is said to be off-diagonal if its diagonal entries are
zeros) structure for those points. Because their diagonal elements are zeros, the matrix is
considered to be off-diagonal. The third type of T-F point is in connection with both auto
terms and cross terms, however. The auto and cross terms do not exist in the fourth type
of T-F point. The TFDs matrices of the third and fourth types of T-F points have no clear
algebraic structure for those points. Therefore, they can not be straightforwardly utilized.

The diagonal and off-diagonal structures are frequently destroyed when the signals
are mixed. For DOA estimation, the first and second types of T-F points are effective
and important. Because there is effect in this situation, the third and fourth T-F points
should be abnegated. When there are both strong and weak nonstationary signals, in
this paper, the cross terms of SPTFDs are exploited to estimate weak nonstationary signal
DOA. Because of the high outstanding off-diagonal algebraic structure of the second type
of T-F points, a novelty polarization DOA estimation algorithm will exploit the SPTFDs
matrix decomposition technology of T-F cross terms. The relationship between cross terms’
SPTFDs and weak signal DOA is derived as follows. After cross terms extraction, the
source time-frequency distribution matrix is

Dssc(t, f ) =
(

0 Ds1s2(t, f )
Ds2s1(t, f ) 0

)
. (28)

Further, the SPTFDs matrix of cross terms is obtained as follows.

Dxxc(t, f ) =
[
ã(φ1) ã(φ2)

]
×
(

0 Ds1s2(t, f )
Ds2s1(t, f ) 0

)[
ãH(φ1)
ãH(φ2)

]
= ã(φ2)Ds2s1(t, f )ãH(φ1) + ã(φ1)Ds1s2(t, f )ãH(φ2).

(29)
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It can be seen from Equation (29) that the SPTFD matrix of cross terms still contains
the available DOA information of a weak target signal. The results provide theoretical
support for applying the SPTFDs matrix of cross terms to DOA estimation.

3.3. Time-Frequency Points Selection Procedures

By selecting cross term T-F points, the data cross-source TFDs will have the following
structure:

Dxxc(t, f ) = UDssc(t, f )UH, (30)

where Dssc(t, f ) is antidiagonal. The missing unitary matrix U is uniquely retrieved
by the joint antidiagonalization (JAD) of a combined set {Dxxc(ti, fi)|i = 1, . . . , q} of q
cross-source TFDs matrices. The JAD is explained by first noting that the problem of the
antidiagonalization of a single N × N matrix N is equivalent (this is due to the fact that the
Frobenius norm of a matrix is constant under unitary transform) to the maximization of
the criterion

C(N, V)
def
= −

N

∑
i=1

∣∣∣vH
i Nvi

∣∣∣2, (31)

over the set of unitary matrices V = [v1, · · · , vn]. Hence, the JAD of a set {Nk | k = 1, . . . , q}
of q matrices is defined as the maximization of the JAD criterion,

C(V)
def
=

q

∑
k=1

C(Nk, V) = −
q

∑
k=1

N

∑
i=1

∣∣∣vH
i Nkvi

∣∣∣2, (32)

under the same unitary constraint. A Jacobi-like algorithm has been derived for the maxi-
mization of the JAD criterion (32). The specific process is described below. (1) Determine
the whitening matrix Ŵ from the eigendecomposition of an estimate of the data covariance
matrix. (2) Compute the TFDs of the array output according to (22). (3) Select a set of T-F
points (usually corresponding to the high amplitude points of the signal T-F transform),
and then distinguish between auto term and cross term points using the above selection
procedure. (4) Determine the unitary matrix Û by maximizing the JD/JAD criterion applied
to the whitened TFD matrices computed at the selected T-F points. (5) Obtain an estimate
of the mixture matrix Â as Â = Ŵ#Û, where the superscript # denotes the pseudoinverse,
and an estimate of the source signals ŝ(t) as ŝ(t) = ÛHWx(t).

The success of the JD or JAD of TFDs matrices in determining the unitary matrix U
depends strongly on the correct selection of the auto and cross terms points. It is crucial
to have a selection procedure that is able to distinguish between auto and cross terms
points based only on the TFDs matrices of the observations. Here, we propose a selection
approach that exploits the antidiagonal structure of the cross-source TFDs matrices. More
precisely, we have

Trace(Dxxc(t, f )) = Trace
(

UDssc(t, f )UH
)
= Trace(Dssc(t, f )) ≈ 0. (33)

The T-F points’ automatic selection procedure is generally difficult, as described in
the following. In a whitening case, a matrix’s trace invariance for a unitary transform is
utilized to judge the cross terms’ existence. The matrices for the second type of T-F points
require the following condition:

trace
{

Dxx

(
kt, k f

)}
∥∥∥Dxx

(
kt, k f

)∥∥∥ < ε, (34)

where trace{} is matrix trace, ε is a positive small user-defined value and ‖‖ is the Frobenius
norm. The noise influence is further reduced by averaging the selected SPTFDs of cross
terms.
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Most procedures take advantage of a diagonal rank-one matrix for the auto terms.
The emphasis of this paper is to make use of the off-diagonalization characteristic of the
cross terms matrix. Firstly, cross terms not drowned by noise are extracted by the threshold
value. Then, the diagonal element of the cross terms is close to 0 for extracting the cross
terms further. The constructed SPTFDs are used for DOA estimation.

4. Polarimetric Time-Frequency DOA Estimation Using Dual Algorithms

The TF-MUSIC algorithm has recently been proposed for improving the spatial res-
olution of a good T-F peculiarity signal [35]. The algorithm in this paper provides the
extension for applying TF-MUSIC based on cross terms to polarization arrays. Consider
the spatial steering matrix

F(φ) =
1√
M

[
a[v](φ) 0

0 a[h](φ)

]
, (35)

corresponding to the signal DOA. Because
∥∥∥a[i](φ)

∥∥∥2
= M, FH(φ)F(φ) represents the iden-

tity matrix. To search in the spatial and polarimetric joint domains, the spatial polarization
vector is defined as:

f(φ, c) =
F(φ)c
‖F(φ)c‖ = F(φ)c, (36)

where c =
[
cv ch

]T represents a unit norm vector of the unknown polarization coefficient.

In (36), ‖F(φ)c‖ =
[
cHFH(φ)F(φ)c

]1/2
=
(
cHc

)1/2
= 1.

The PTF-MUSIC spectrum is provided via the following function:

P(φ) =
[
min

c
fH(φ, c)UnUH

n f(φ, c)
]−1

=
[
min

c
cHFH(φ)UnUH

n F(φ)c
]−1

, (37)

where Un is the noise subspace, which is from the SPTFDs matrix of the selected T-F points.
Selecting these points from high energy concentration regions can enhance the signal-to-
noise ratio (SNR), which makes the proposed algorithm more robust than the conventional
MUSIC counterparts. In (37), by obtaining the smallest eigenvalue of FH(φ)UnUH

n F(φ),
the items in parentheses are the fewest. This algorithm can execute the simple 2× 2 ma-
trix eigendecomposition, thus avoiding abundant polarization dimensionality operations.
Namely, the PTF-MUSIC spectrum can be simplified as

P(φ) = λ−1
min

[
FH(φ)UnUH

n F(φ)
]
, (38)

where λmin[·] represents solving the smallest eigenvalue. The signal DOA estimation value
is the angle coordinate corresponding to the spectrum’s highest value. For each DOA φn of
N signals, n = 1, 2, . . . , N, each signal polarization parameter can be estimated via

ĉ(φn) = vmin

[
FH(φn)UnUH

n F(φn)
]
, (39)

where vmin[·] is the eigenvector for the minimal eigenvalue λmin[·].
For achieving rotational invariance in the array, the M-element array can be divided

into two M− 1-element overlapping subarrays. The first and second subarray include,
respectively, the left-most and right-most M− 1 antennas, as shown in Figure 2. In addition,
the two subarrays’ steering matrices of the identically polarized sensors are, respectively,
A1 and A2. Namely, [

A2Q[v]

A2Q[h]

]
=

[
A1Q[v]

A1Q[h]

]
Ψ, (40)
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where the rotation operation Ψ is described as

Ψ = diag
[
e−j2π d

λ sin(φ1), ..., e−j2π d
λ sin(φN)

]
. (41)

Subarray1

Subarray2

………

Figure 2. Two overlapping subarrays.

The signal eigenvectors consist of the columns of Us acquired approximately from
the signal subspace, which is spanned by the SPTFD matrices. A transformation matrix T
satisfies

Us =

[
AQ[v]

AQ[h]

]
T. (42)

By utilizing the same transformation matrix T to the two subarrays’ steering matrices,
Us1 and Us2 are described as

Us1 =

[
A1Q[v]

A1Q[h]

]
T, (43)

Us2 =

[
A2Q[v]

A2Q[h]

]
T. (44)

According to the above two equations,

Us2 = Us1G. (45)

The matrix G satisfies
G = TΨT−1, (46)

where the matrix G eigenvalues are e−j2π d
λ sin(φn), n = 1, 2, . . . , N. For solving the matrix

G, the overdetermined Equation (46) is solved by the least squares approach and the total
least squares approach. In this paper, the least squares approach is used:

G =
(

UH
s1Us1

)−1
UH

s1Us2. (47)

At the low signal-to-noise ratio, the PTF-MUSIC algorithm has a higher success rate,
but the estimation error is slightly larger. On the contrary, although the estimation error
of the PTF-ESPRIT algorithm is small, the success rate of estimation is slightly lower.
With the increase in SNR, the performance of both is improved. Similarly, PTF-MUSIC
has the advantage of a high success rate, while PTF-ESPRIT has the advantage of small
error. This paper observes these characteristics and combines them. Based on the rough
estimation from PTF-MUSIC, the results obtained by PTF-ESPRIT are compared with the
rough estimation results. If the difference between the two is within 5 degrees, the results
of PTF-ESPRIT are selected. The success rate of estimation is guaranteed, and the accuracy
of estimation is improved as much as possible.

5. Spatial Polarization Correlations

The array spatial resolution capability is primarily related to the signal propagation
peculiarities. This lies in the normalized inner product of each array manifold vector.
For spatial and polarimetric dimensions problems, the spatial polarization correlation
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coefficient between the signal sources l and k is defined by the extended array manifold
ã(φ).

βl,k =
1
M

ãH(φk)ã(φl)

=
1
M

(
c∗k1cl1

(
a[v](φk)

)H
a[v](φl) +c∗k2cl2

(
a[h](φk)

)H
a[h](φl)

)
= c∗k1cl1β

[v]
l,k + c∗k2cl2β

[h]
l,k ,

(48)

where β
[i]
l,k = (1/M)

(
a[i](φk)

)H
a[i](φl) represents the spatial coefficient.

For the identical array manifolds between vertical and horizontal polarization,
a[v](φ) = a[h](φ) and β

[v]
l,k = β

[h]
l,k . The spatial polarization relation coefficient is the product

of the individual spatial coefficient and polarimetric coefficient:

βl,k = β
[v]
l,k ρl,k , (49)

with
ρl,k = cH

k cl = cos(γl) cos(γk) + sin(γl) sin(γk)ej(ηl−ηk), (50)

expressing the polarimetric coefficient. Particularly, ηnl = ηnk = 0 (linear polarization)
(50) simplifies to

ρl,k = cos(γl − γk). (51)

Since
∣∣ρl,k

∣∣ ≤ 1, the equality is satisfied only when two signal polarization states
are the same. The spatial polarization correlation coefficient is smaller than the single
spatial coefficient. The introduced algorithm enhances signal recognition via dropping the
correlation coefficient value with the polarization diversity. Namely, the signal recognition
is difficult to obtain via a monopolar spatial array manifold, a[v](φ) or a[h](φ). However,
the signals can be relatively easily identified by the extended spatial polarization array
manifold, ã(φ). This enhancement is more pronounced when there is a large spatial
correlation coefficient and small spatial polarization correlation coefficient.

6. Simulations Results

According to the development of DOA estimation described in the introduction of
this paper, some algorithms are summarized to compare the performance. The previous
algorithm will not be elaborated in this paper. A total of nine algorithms are compared
and analyzed in this section. Algorithm 1 is scalar MUSIC; Algorithm 2 is TF-MUSIC;
Algorithm 3 is polarized MUSIC; Algorithm 4 is PTF-MUSIC; Algorithm 5 is the estimation
of polarization DOA with eliminating strong interference. Algorithm 6 is TF-MUSIC based
on cross terms. Algorithm 7 is a polarization ESPRIT based on time-frequency cross terms.
Algorithm 8 is a polarization MUSIC based on time-frequency cross terms. Algorithm 9 is a
dual-algorithm polarization DOA estimation based on time-frequency cross terms, which
is the proposed algorithm in this paper. For convenience, these algorithms are referred to
as A1∼A9.

6.1. Time-Frequency Spectrum and Space Spectrum

Firstly, the cross terms extraction in time-frequency analysis was analyzed. The
simulation parameters were as follows. The array number was 4, and the array spacing
was half of a wavelength. The incidence angles of strong interference and weak signal
were 30 and 60, respectively. The auxiliary polarization angles were 45° and 20°. The
polarization phase differences were 0 degrees and 180 degrees. The extraction cross terms
parameter was 0.01. The jamming-to-signal ratio (JSR) of strong interference was 7 dB.
The decision threshold of the estimated result was 5 degrees. The normalized frequency
of strong interference was 0.2 to 0.4. The weak signal normalized frequency was 0 to 0.2.
The environment SNR was −4 dB. The time-frequency analysis algorithm was WVD. The
snapshot number was 512.
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The time-frequency spectrum of single-channel single-polarization is shown in Figure 3.
The time-frequency spectrum after cross terms extraction is shown in Figure 4. It was impos-
sible to obtain the weak nonstationary signal auto terms in the unprocessed time-frequency
spectrum. There are two main reasons for this difficulty. First, from the point of view of
position distribution, because the signal distribution is relatively concentrated, it is not
easy to distinguish in the background of noise. Second, from the perspective of energy size,
when the SNR is low, the signal energy is lower than the time-frequency spectrum noise
bottom, and the weak signal auto terms are submerged in the noise, further aggravating the
difficulty of resolving and extracting the weak signal auto terms. In Figure 4, the middle
part of the red dotted line represents the cross terms. The T-F cross terms of the strong and
weak nonstationary signals can be obtained by extracting cross terms processing. There
were some noisy T-F points, but the cross terms’ T-F points were clearly visible.

Snapshots Number
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Figure 3. Unprocessed time-frequency spectrum.
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Figure 4. The time-frequency spectrum after extracting the cross terms.

The weak nonstationary signal DOA was estimated on the basis of cross terms, and
the results are shown in Figure 5. It was almost difficult for A1∼A6 to distinguish and
estimate the weak signal, while A7 and A8 could obtain it. Among the weak signal results
estimated by the algorithms in Figure 5, Algorithms 7 and 8 have the highest credibility,
and they are also the basis for further estimation of DOA by the algorithm in this paper.
The final estimation results of the algorithm in this paper refer to the results of Algorithms
7 and 8. Figure 5 shows the spatial spectrum of a single DOA estimate, which is only a
qualitative analysis. The specific quantitative analysis of the algorithm proposed in this
paper (Algorithm 9) is given by the following simulation analysis. The estimated success
rate and specific accuracy were given by the following simulation.
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Figure 5. Comparison of weak signal results estimated by various algorithms.

6.2. Effect of SNR on Success Rate and RMSEs

The simulation conditions were the same as in Section 6.1. Among them, only the
environment SNR changed from−10 dB to 10 dB, and the step size was 1 dB. The number of
Monte Carlo cycles was 1000. The relationship curve between success rate and environment
SNR is shown in Figure 6, and the relationship curve between the root-mean-square errors
(RMSEs) and environment SNR is shown in Figure 7. With the increased environment SNR,
the success rate increased and the RMSEs decreased. A8 and A9 always had better success
rates than others, especially at low SNR. The RMSEs of A7 and A9 were consistently lower
than those of others, especially at high SNR. A9 was overall optimal, with a high success
rate and small RMSEs.
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Figure 6. The relationship curve between success rate and SNR.
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Figure 7. The relationship curve between RMSEs and environment SNR.
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6.3. Effect of JSR on Success Rate and RMSEs

The simulation conditions were the same as in Section 6.1. Among them, only the JSR
changed from 0 dB to 10 dB, and the step size was 1 dB. The relationship curve between
success rate and JSR is shown in Figure 8, and the relationship curve between RMSEs and
JSR is shown in Figure 9. With the increase in JSR, the success rate decreased, RMSEs
increased, and A6 almost failed. Due to the lack of polarization information assistance,
even in the cross terms, strong interference still affected the DOA estimation of weak signal.
The success rates of A8 and A9 were always better than others, especially when the JSR
was large. The RMSEs of A7 and A9 were always lower than others, especially when the
JSR was small. A9 was overall optimal, with a high success rate and small RMSEs.
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Figure 8. The relationship curve between success rate and JSR.
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Figure 9. The relationship curve between RMSEs and JSR.

6.4. Effect of Snapshot Number on Success Rate and RMSEs

The simulation conditions were the same as in Section 6.1. Among them, the only
snapshot numbers were 64, 128, 256, 512, and 1024. The relationship curve between success
rate and snapshot number is shown in Figure 10, and the relationship curve between
RMSEs and snapshot number is shown in Figure 11. With the increase in the snapshot
number, the success rate increased and the RMSEs decreased. The success rates of A8 and
A9 consistently outperformed the others. The RMSEs of A7 and A9 were always lower
than the others, especially when the snapshot number was larger. A9 was overall optimal,
with a high success rate and small RMSEs.
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Figure 10. The relationship curve between success rate and snapshots number.
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Figure 11. The relationship curve between RMSEs and snapshots number.

6.5. Effect of SNR and Epsilon on Success Rate and RMSEs

The simulation conditions were the same as in Section 6.1. Among them, the SNR
changed from −10 dB to 10 dB, and the step size was 1 dB. The epsilons were 0.1, 0.05,
and 0.01. The relationship curve between success rate and SNR and epsilon is shown in
Figure 12, and the relationship curve between RMSEs and SNR and epsilon is shown in
Figure 13. With the increase in SNR, the success rate increased and the RMSEs decreased. In
the case of high SNR, the smaller the cross terms extraction parameter in A9, the higher the
success rate and the smaller the RMSEs. At low SNR, the cross terms extraction parameter
in A9 had little effect on success rate and RMSEs. In other algorithms, the cross terms
extraction parameters had little effect on the success rate and RMSEs. A9 with small cross
terms extraction parameters was the overall best, with a high success rate and small RMSEs.
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Figure 12. The relationship curve between success rate and SNR and epsilon.
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Figure 13. The relationship curve between RMSEs and SNR and epsilon.

6.6. Effect of Polarization Error on Success Rate and RMSEs

The simulation conditions were the same as in Section 6.1. Among them, the auxil-
iary polarization angle and polarization phase difference of polarization parameter error
changed from 0 to 8 degrees, and the step size was 0.5 degrees, separately. The relation-
ship curve between the success rate and the auxiliary polarization angle error is shown
in Figure 14, and the relationship curve between RMSEs and the auxiliary polarization
angle error is shown in Figure 15. The relationship curve between the success rate and
the polarization phase difference error is shown in Figure 16, and the relationship curve
between RMSEs and the polarization phase difference error is shown in Figure 17.

A6 and A7 had low success rates and almost failed, and RMSEs had no reference
significance. A5 was almost unaffected by the estimation error of polarization parameters.
Without the assistance of time-frequency information, A5 was still affected by residually
strong interference, which weakened the parameters’ estimation error influence. The
success rate of A8 and A9 decreased, and the RMSEs increased with the increase in the
auxiliary polarization angle estimation error. For the auxiliary polarization angle estimation
error, A9 had the same approximate success rate as A8 and lower RMSEs than A8. For
the polarization phase difference estimation error, A9 and A8 were almost identical. The
effect of the polarization phase difference estimation error was little. It can be seen from
cn = [cnv, cnh]

T =
[
cos(γn), sin(γn)ejηn

]T that the polarization phase difference estimation
error affected the exponential part and had little effect on solving the noise subspace of the
SPTFDs matrix.
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Figure 14. The curve between the success rate and the auxiliary polarization angle error.
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Figure 15. The curve between RMSEs and the auxiliary polarization angle error.
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Figure 16. The curve between the success rate and the polarization phase difference error.
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Figure 17. The curve between RMSEs and the polarization phase difference error.

All of the above simulations are summarized below. (1) The cross terms can be
extracted. Algorithm 9 is feasible. (2) In many aspects, such as environmental SNR, JSR
and snapshot number, A9 is the best overall, with a high success rate and small RMSEs.
(3) The cross terms extraction parameters have little impact on the algorithm. When it is
small, A9 has better performance. (4) Among the polarization parameter estimation errors,
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the polarization auxiliary angle estimation error has a greater impact on the algorithm than
the polarization phase difference estimation error. Even if there is an estimation error, A9
still performs well.

7. Conclusions

A platform for dealing with the DOA estimation of weak nonstationary polarization
signals via utilizing T-F cross terms when both strong and weak signals coexist was pro-
posed. This platform, termed SPTFDs based on cross terms, uses the spatial, polarization
and T-F characteristics of the signals incident on the dual-polarized antenna array. The
signal source separation is based on their DOA, their polarization and T-F peculiarities.
The application of TFDs indicates the signal source time-varying frequency characteristics.
It considers cross terms’ T-F points with high energy concentrations when the weak non-
stationary signal is submerged in noise. The eigendecomposition of the SPTFDs matrix
from the T-F characteristics of the incident signals is utilized for defining the algorithm,
which is polarization DOA estimation using dual algorithms based on T-F cross terms. The
simulation results show that this algorithm is superior to the other existing DOA estimation
algorithms for weak nonstationary signals when strong and weak nonstationary signals
exist simultaneously.
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SNR signal-to-noise ratio
JSR jamming-to-signal ratio
RMSEs root-mean-square errors
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