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Abstract: As the Artificial Intelligence of Things (AIOT) and ubiquitous sensing technologies have
been leaping forward, numerous scholars have placed a greater focus on the use of Impulse Radio
Ultra-Wide Band (IR-UWB) radar signals for Region of Interest (ROI) population estimation. To
address the problem concerning the fact that existing algorithms or models cannot accurately detect
the number of people counted in ROI from low signal-to-noise ratio (SNR) received signals, an
effective 1DCNN-LSTM model was proposed in this study to accurately detect the number of targets
even in low-SNR environments with considerable people. First, human-induced excess kurtosis was
detected by setting a threshold using the optimized CLEAN algorithm. Next, the preprocessed IR-
UWB radar signal pulses were bundled into frames, and the resulting peaks were grouped to develop
feature vectors. Subsequently, the sample set was trained based on the 1DCNN-LSTM algorithm
neural network structure. In this study, the IR-UWB radar signal data were acquired from different
real environments with different numbers of subjects (0–10). As indicated by the experimental results,
the average accuracy of the proposed 1DCNN-LSTM model for the recognition of people counting
reached 86.66% at ROI. In general, a high-accuracy, low-complexity, and high-robustness solution in
IR-UWB radar people counting was presented in this study.

Keywords: IR-UWB radar; excess kurtosis; 1DCNN-LSTM; people counting

1. Introduction

As AIOT [1] and pervasive sensing technology have been rapidly advancing, the
development of smart homes, the smart industry, and smart security fields has been
boosted over the past few years. Under this context, several problems are triggered (e.g.,
abnormal crowd flow leading to stampede events, inaccurate business analysis in critical
areas, as well as low level of indoor security). Accordingly, numerous scholars worldwide
have used sensors to analyze the people counting [2,3] and population density [4] in a
fixed area ROI over the past few years. In the literature [5], the video image extraction of
features was adopted to address the problem of people counting. However, the critical
disadvantage of video-image-based algorithms is that they can be easily affected by lighting
conditions, viewpoint diversity, and spatial complexity, and their performance fluctuates
wildly. Under extreme conditions (e.g., fog and smoke), video-image-based algorithms
exhibit poor performance or even fail to work; they are prone to problems regarding the
disclosure of personal privacy. Moreover, most video-image-based algorithms collect high-
resolution HD images or videos as the training samples, and the algorithms consume huge
memory and computational space. Thus, researchers have placed their focus on Radio
Frequency (RF)−based algorithms [6,7]. RF-based people counting methods [8] are mainly:
WiFi-based people counting methods and Radio Frequency Identification (RFID)−based
people counting methods. WiFi-based people counting methods include the following two:
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on the one hand, there is the use of RSSI [9] in WiFi for people counting. On the other
hand, it is categorized using a Channel State Information (CSI) [10] subcarrier variation
rule of the WiFi physical layer. However, since WiFi signals can be easily interfered with
via the multipath effect, it cannot indicate the subject information timely and accurately,
leading to the dilemma of low recognition accuracy. An RFID-based [7,8] people counting
method is not convenient for daily use and maintenance due to the considerable number
of RF sensor devices required. Besides RF-based people counting methods, there are
also detection methods using (Passive Infrared Detectors) PIR [11] and thermal imaging-
based techniques [12]. PIR-based detection methods are simple in principle and in terms
of equipment and exhibit low algorithmic complexity; however, they are susceptible
to detection failures under the effect of the surrounding temperature. The advantage
of the thermal imaging-based detection method is that it can be applied to low-light
environments. However, the disadvantage is that it is still as susceptible to the effect of
ambient temperature as the PIR-based detection method. Furthermore, thermal imaging-
based detection methods consume more computational resources since the algorithms
exhibit higher complexity.

Ultra-Wide Band (UWB) technology complies with the communication band of
3.1–10.6 GHz, which was mandated by the U.S. FCC in 2002 [13]. UWB uses a higher
and wider frequency band compared to other communication technologies. The popular
Bluetooth and WiFi communications use a narrow bandwidth of 2.4 GHz and 5 GHz,
respectively, and are very high power, as shown in Figure 1. IR-UWB radar transmits data
using non-positive-wave pulses in the nanosecond (ns) to picosecond (ps) range, which
occupies bandwidths up to several gigahertz so that the maximum data rate can be up
to a few hundred meters per second. It can be seen that the use of pulse radio technol-
ogy in the physical layer of the air interface of UWB technology is used to increase the
data transmission rate of the physical layer. A comparison of conventional narrowband
communication systems with the transceivers of IR-UWB shows a clear difference in the
way the two technologies are implemented. Narrowband systems generally use sinusoidal
carrier modulation to realize spectrum migration, the channel transmits the RF-tuned
signal, and the receiver needs to demodulate after down-conversion step by step to recover
the original information. In contrast, IR-UWB directly sends broadband narrow pulses
after spectrum shaping. The channel transmits baseband signals, and the receiver is mainly
a correlation detector, which is much simpler in structure than the traditional narrowband
communication system. IR-UWB technology solves the significant problems related to
propagation that plague conventional wireless technology and has the advantages of insen-
sitivity to channel fading, low power spectral density of the transmitted signal, low system
complexity, and centimeter-level positioning accuracy. Therefore, UWB technology offers
low strength, high discrimination, excellent non-contact performance, and anti-interference
performance. In recent years, applications based on UWB technology have sprung up, such
as their use in the detection of physical signs such as breathing and heartbeat [14], non-
contact subject target trajectory recording [15], and target location determination in large
indoor scenes [16].
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In recent years, many scholars have focused on people counting methods based on
pulsed radar [17] as well as Frequency Modulated Continuous Wave (FMCW) radar [18]
because of their low or even negligible influence in terms of light or ambient temperatures,
their high resolution in terms of people or objects, and their lack of related issues such as
those relating to personal privacy. IR-UWB radar-based people counting methods generally
have the following two branches, one is Line of Interest (LOI), which is the detection of
people standing on the same line at a certain fixed angle, for example, in [19,20]. The
authors used IR-UWB radar sensors to explore the LOI of person counting on a certain
line people counting. The second is ROI, i.e., people counting on a fixed size for a fixed
region, which is also the concern of the research in this paper. In [21], the authors use an
iterative algorithm to detect the local maxima of IR-UWB radar signals to count people.
In the paper [22], the authors simulate the theoretical model of UWB signals. In [23], the
authors proposed an algorithm based on principal clustering to analyze the distribution of
selected magnitudes with distance and number of people. In papers [24,25], the authors
detect each signal caused by a person from the received radar echoes, thus determining
the number of people. However, due to the influence of the surrounding environment, the
received radar echoes are often interspersed with and contain clutter caused by multipath
effects. This detection method is not accurate in counting the number of individuals.

Many scholars have been working on problems related to electromagnetic interference,
scattering, and multipath effects in recent years. The article [26] investigates the problem
of electromagnetic solid interference suppression without a priori information in non-
cooperative scenarios, the issue of near-field EMI suppression is investigated, and the
proposed algorithm effectively suppresses strong EMI without a priori knowledge while
effectively capturing the target signal. In the article [27], the authors proposed a method to
effectively solve the problem of near-area electromagnetic scattering of scatterers under
external field irradiation. The method is based on the Helmholtz equation discretized using
the finite element method. In dealing with the reverberation and interference fields of
the signal, the authors [28] have combined the minimum variance distortionless response
(MVDR) beamformer with Multi-Channel Linear Prediction (MCLP) to achieve active noise
reduction. In order to effectively deal with multipath propagation of signals, the article [29]
addresses the reverberation of radar echo data. It proposes an alternative to conventional
reverberation estimation for use in time-frequency sequence to deal with reverberation. At
the same time, in order to solve the multipath effect of IR-UWB radar echoes, the authors
in [23] used the Probabilistic Model (PM) to analyze the variation rule of amplitude with the
distance of the selected radar echoes to determine the number of individuals in the target
area. Still, this algorithm is not applicable to cases where there are too many people in the
target area. The authors in [30] proposed an algorithm to count the number of individuals
in the target area under the condition of there being too many persons in an area using
image feature extraction of 2D signals. However, this algorithm is unable to do anything
for IR-UWB radar signals with low SNR.

To address the complexity of the current domestic and international research on the
analysis of IR-UWB radar signals, it is difficult to accurately detect the number of people
counted in the ROI from low SNR signals using the existing solutions. For this reason, in this
study, an effective 1DCNN-LSTM algorithm is proposed to accurately detect the number of
targets, even under the conditions of low SNR environments with considerable people. In the
literature [31], Convolutional Neural Network (CNNs) [32] techniques have been adopted
for the spontaneous filtering of noisy signals from the received signals and images while
extracting effective features by constructing a model. Existing research suggested that CNNs
apply to the extraction of features with non-temporal dependencies [33] or features that show
more significant local differences. However, the received signals were time series with high
time dependencies, such that the CNN technique should be adopted alone.

Long Short-Term Memory (LSTM) networks refer to a particular version of RNN
that contain cyclic feedback designed to process time series [34]. Thus, the LSTM layer is
capable of encoding information regarding class-specific features across time [35]. Given
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this finding, a model architecture combining CNN and LSTM networks was proposed in
this study, considering the temporal characteristics of IR-UWB radar signals.

The remaining parts of this study are given below. The IR-UWB radar signals are
modeled in Section 2. Section 3 describes the proposed people counting classification model
in detail. The performance assessment of the experiments and the analysis of the results
are placed in Section 4 of the paper. The last section summarizes the work of this study.

2. Signal Preprocessing
2.1. IR-UWB Radar Principle

Due to the presence of various interfering information, noise, and multipath effects
in all existing experimental environments, the raw echoes received by IR-UWB radar will
cover considerable useless information. Accordingly, extracting useful information from
the raw echoes containing many interfering signals and clutter signals for the estimation of
the number of people is a major challenge in this study. To simplify the experimental model
for quantitative analysis and to focus on the improvement of the experimental scheme and
algorithm, the experimental object is in the ROI area. The IR-UWB transmitter is located
on the top of the device, and the receiver is placed under the device. The experimental
schematic is shown in Figure 2.
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In this study, the sampling of IR-UWB signals conformed to time series, i.e., on time-
domain information. The sampling comprised two parts: (1) sampling the time-domain
information of the propagation of a single echo pulse signal from the IR-UWB radar, which
was termed fast-time sampling, and (2) defining a time axis for the sequential order of the
pulse signals received by the IR-UWB radar, which was termed slow-time sampling. The
IR-UWB radar emitted a pulse signal, s(t), with the following expression [36]:

s(t) = VTXe−
t2

2τ2 cos(2π fct) (1)

where VTX denotes the amplitude value of the IR-UWB signal, τ represents the effective
width of the pulse (−10 db), fc expresses the frequency of the carrier, and t is the fast
time-domain time under a single slow time sample. The IR-UWB radar transmitter will
receive the pulse signal in Equation (1) through a series of reflections, and the analog signal
will be converted into a digital signal. The received signal Λk[n] of the converted digital is
given below:

Λk[n] =
Zt
∑

i=1

nt
∑

j=1
δts(nTs − τt)

+
Zt
∑

i=1

nm
∑

j=1
δms(nTs − τm)

+
Zc
∑

j=1
δcs(nTs − τc) + ωk[n]

(2)
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In the given equation, the quantities represented by Zt and Zc correspond to the noise
levels in the subject and the environment, respectively. Moreover, nt and nm represent the
multipath effect noise signals arising from the reflected signal of the ith subject target and
the ith target, respectively. δt expresses the value of the amplitude of the IR-UWB radar
signal emitted by the subject. Furthermore, δm and δc denote the effect of multipath effects
from the environment on the IR-UWB radar signal and the amplitude of the clutter signal,
respectively. n represents the sampling index point in the first case of the frame, while k
represents the sequential value of the slow time sampling. ωk[n] denotes the Gaussian noise
value in each frame 1 case. For the proposed specific IR-UWB radar system, N represents
the number of samples, and the respective slow-time sampling frame comprised N fast-time
sampling points, which is denoted as n = [0, N − 1]. By obtaining the above-mentioned
frames, the temporal variation of the subject target can be represented using a cumulative
two-dimensional signal matrix.

Following Equation (2), Λk[n] can be obtained. In the following, we will first perform
an integration of the sampling points along the fast time series, and every B bin of Λk was
integrated into one interval. Thus, the fast-time samples of Λk were divided into bN/Bc
intervals, with b.c denoting downward rounding. Next, the maximum value of the B bins
was used for assignment. The signal after the above processing can be expressed as:

xk[m] = Max({|Λk[(m− 1)B]|, |Λk[(m− 1)B + B− 1]|}) (3)

where m = [1, Nl ]. To effectively solve the static clutter in the environment, the running
average method [21] was adopted to eliminate Λk[n] in Equation (2). For the IR-UWB
radar received signals in Equation (2), the human signals were masked by clutter signals
arising from reflections from non-human objects (e.g., walls, ceilings, and columns). Ac-
cordingly, the clutter was characterized by less motion, thus becoming less time-varying
than human signals. The running average method refers to a technique that employs the
above-described characteristics to suppress the clutter signals with less time-varying per
time, which is expressed in Equation (4):

yk[n] = Λk[n]− ck[n]
= Λk[n]− αck−1[n] + Λk[n]− αΛk[n]

(4)

where ck[n] denotes the noise signal obtained from the kth pulse. yk[n] denotes the orig-
inal IR-UWB signal, excluding the noise signal arising from the environment, and α is a
weighting factor that determines how many signals with small variations over time are
considered clutter. The clutter signal of the second pulse can be calculated using the clutter
signal of the previous pulse and the current received pulse signal.

2.2. Clutter Suppression

After using the running average method on the IR-UWB signal, to further improve
the SNR and suppress the radar clutter, the sampled signal yk[n] in this study was filtered
as follows. Work from the literature [37] highlighted that the experimental environment
(including temperature and humidity values; dielectric constant), multipath effect, and so
forth, will affect IR-UWB signals; therefore, a Butterworth filter was adopted to reduce the
noise of IR-UWB signals, and the transfer function can be expressed as follows.

|H(Θ)|2 =
1

1 + (Θ/Θc)
2N f

(5)

where Θc denotes the frequency value of the cutoff and N f represents the filter order. In this
study, we considered the complexity of the algorithm as well as the overall performance of
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the filters. Through the feedback of the experimental results two fifth-order filters were
selected, i.e., N f set to 5. Next, the normalized cutoff frequency was given.

Θnc =
Θc

fk
(6)

fk is the frequency during fast-time sampling. We obtain the following equation
after performing the filtering operation on the slow time sample point n on the fast time
sample yk[n].

yk[n] = b1Wk[n] + b2Wk−1[n] + . . . + bNb+1Wm−Nb [n]
−a2Wm−1[n]− . . .− aNa+1Wm−Na [n]

(7)

where Na = 5 means the order of the low pass filter is 5. Similarly, Nb = 5 means the
order of the high pass filter is also set to 5. ai and bi denote the filter coefficients. Moreover,
in this study, we adopted a smoothing filter, which is more commonly used, to suppress
non-stationary noise signals.

Sk[n] =
1
µ

µ(k+1)−1

∑
m=µk

yk[n] (8)

where k is a value from 1 to bM/µc, and b.c denotes downward rounding. To enhance
the SNR of the IR-UWB signals while suppressing the non-stationary noise signals, seven
values are averaged over the slow time sampling interval, i.e., µ is set to 7.

2.3. Adaptive Gain Control

Due to the presence of distance-dependent signal attenuation in IR-UWB radar signals,
the reflected signals turn out to be weaker when a person’s position is far away from the
sensors. Thus, in the proposed people counting system, the above problem is compensated
for by using the Adaptive Gain Control (AGC) process to minimize the distance dependence
of the signal. The AGC process is conducted by multiplying Sk[n] with the distance-
compensated signal q(t), as expressed in Equation (9).

Ψk[n] = Sk[n]q[n]
q[n] = (ct/2)β (9)

where Ψk[n] denotes the kth pulse passing through the final preprocessing of the AGC
process. c indicates the velocity of light, and β is a constant that controls the degree of
attenuation of the signal strength. Excess kurtosis can be used to extract non-Gaussian
signals and to also determine their position in frequency. Excess kurtosis Ekurt(Ψk[n]) is
shown in the following equation:

Ekurt(Ψk[n]) =
γ4
γ2

2
− 3

= E{Ψk [n]}4{
E[Ψk [n]

2]
}2 − 3 (10)

where γ2 denotes the second-order center distance of the overall sample. Likewise, γ4
is fourth-order. E represents the expectation of the sample. Figure 3a,b present the
raw and preprocessed IR-UWB radar signals received concerning three people in the
ROI region, respectively. As depicted in Figure 3, the signals of the people turned out
to be more prominent when the raw IR-UWB radar signals were preprocessed, as pre-
sented in Figure 3b. Lastly, the preprocessed IR-UWB radar signal comprised human
signals, multipath signals, and noise signals. The above-mentioned multipath and noise
signals interfered with accurate coefficient estimation and require further processing to
resolve them.
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3. Proposed Method

In the present section, the process of bundling preprocessed signal pulses into frames
and then forming a feature vector from the respective formed frame is illustrated. First,
artificially induced signal peaks were detected using a modified CLEAN algorithm by
changing the threshold value. Next, the formed peaks were grouped to form a feature
vector. Lastly, the feature vector was calculated for the respective number of people from 0
to 10, and the classifier was trained using the created database as the training data.

3.1. Improved CLEAN Algorithm for Peak Detection

The effect of multipath and noise signals present in the preprocessed signal should
be minimized to ensure the accurate estimation of person counts. Accordingly, it is imper-
ative to effectively suppress the above-described unwanted signals and only extract the
signals corresponding to people. The CLEAN algorithm was modified to detect only the
people’s peaks in the input signal [21]. The algorithm detected human peaks by removing
multiplexed signals located in the vicinity of the human signal and treating signals below a
certain intensity as noise. The detailed algorithm is expressed as follows (Algorithm 1).

Algorithm 1 Improved CLEAN algorithm based on IR-UWB Radar signal threshold

1: Procedure Ekurt(pk[n])
2: Ekurt(pk[n])←Preprocessed signal
3: Tn←Noise threshold
4: Tm←Multipath threshold
5: fk[n]←Output signal
6: calculate p̃k[n] = Ekurt(pk[n])
7: do
8: calculate z = maxt[ p̃k[n]], τ = argmaxt[ p̃k[n]]
9: if z ≥ maxn[ p̃k(τ − Tm : τ + Tm)] B Remove multipath
10: then fk[n] = z
11: end if p̃k(τ − Tm : τ + Tm) = 0
12: while z > Tn B Remove noise
13: return fk[n]
14: End procedure

In the above-mentioned process, the critical point is to remove the noise signal and
multipath signal through proper thresholding noise threshold Tn and multipath threshold
Tm. However, in the case of people moving randomly, it is almost impossible to set the
optimal thresholds to enable accurate extraction of human signals. As depicted in Figure 4,
increasing Tn removed more noisy signals, whereas it also removed human signals with
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small signal strength. On the other hand, decreasing Tm increased the probability of
detecting small human signals and the probability of detecting noisy signals. For multipath
signals, increasing Tm removed multipath signals more efficiently, whereas signals from
humans located in close proximity cannot be separated. In contrast, decreasing Tm can
accurately separate people in close proximity, but the multipath signal was also detected.
In brief, the trade-off between increasing and decreasing the values of Tn and Tm makes it
difficult to set the optimal value.
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3.2. Feature Vector Extraction

The proposed algorithm used multiple thresholds to extract human signals instead
of a single threshold. Moreover, it addressed the above problem by removing the re-
dundant information generated in the process through a later dimensionality reduction
operation. First, the human signal was extracted by changing thnoise to (0.3thnoise, 0.6thnoise,
1.3thnoise, 1.6thnoise) in accordance with the noise signal threshold Tn. Moreover, the extrac-
tion algorithm was performed by changing thmpath to (0.3thmapath, 0.6thmapath, 1.3thmapath,
1.6thmapath) following the average multipath signal threshold Tm. Through the above-
mentioned process, human signals can be extracted for a wide variety of cases. Lastly, the
extraction algorithm was performed a total of 25 times.

Based on the human signals extracted by changing the threshold, the algorithm formed
a frame using the W signals in the slow time direction and then extracted the feature vector
from it. Given W, the nth slow time-indexed frame F(Tn ,Tm)[n] is expressed as shown in
Equation (11).

F(Tn ,Tm)[n]

=


f
(Tn ,Tm)

n [1] f
(Tn ,Tm)

n+1 [1] · · · f
(Tn ,Tm)

n+W−1[1]
f
(Tn ,Tm)

n [2] f
(Tn ,Tm)

n+1 [2] · · · f
(Tn ,Tm)

n+W−1[2]
...

...
. . .

...
f
(Tn ,Tm)

n [Np] f
(Tn ,Tm)

n+1 [Np] · · · f
(Tn ,Tm)

n+W−1[Np]

 (11)

where fk
(Tn ,Tm)[i] denotes the person signal extracted using the threshold (Tn, Tm). K

represents the slow time index, and i expresses the fast time index. Np denotes the pulse
size of the sampling received signal.

A signal variable depending entirely on the number of people can be defined based on
each of the formed frames. First, with the increase in the number of people, the number of
peaks in the extracted signal increases. Thus, the number of peaks in the frame excluding 0
was calculated to define C1

(Tn ,Tm), as expressed in Equation (12). Second, as the number of
people increased, the signal peaks increased with time. Accordingly, after the distance value
was fixed, the variance value of the signal peaks over time was calculated, and the average
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of each variance value obtained by distance was calculated to define C2
(Tn ,Tm), as shown

in Equation (13). Lastly, a frame-by-frame feature vector can be formed by calculating
C1

(Tn ,Tm) and C2
(Tn ,Tm) for the respective frame.

C1
(Tn ,Tm) = Counti,k( fk

(Tn ,Tm)
[i] > 0) (12)

C2
(Tn ,Tm) =

Ni
∑

i=1
Vark( fk

(Tn ,Tm)
[i])

Ni
(13)

Since human signals were acquired in a total of 25 threshold combinations, 25 frames
were acquired for the respective impulse signal. In addition, following the above equation,
two feature variables were calculated per frame, such that a total of 50 feature variables can
be calculated from the W signal. Thus, a feature vector can be formed with the respective
feature variable as an element, as defined by the following equation.

v = [d1, d2, . . . , d50]
T (14)

where
d1 = C1

(0.4thnoise ,0.4thmpath)

d2 = C2
(0.4thnoise ,0.4thmpath)

d3 = C3
(0.7thnoise ,0.4thmpath)

...
d49 = C1

(1.6thnoise ,1.6thmpath)

d50 = C2
(1.6thnoise ,1.6thmpath)

(15)

Lastly, from each Q frames of data, a feature vector can be formed, i.e., a training
database can be built, as expressed in Equation (16).

V = [v1 v2 · · · vQ]

= [

v1,1 v1,2 · · · v1,Q
v2,1 v2,2 · · · v2,Q

...
...

. . .
...

v50,1 v50,2 · · · v50,Q

]
(16)

3.3. 1DCNN-LSTM Model

In general, CNNs comprise multiple convolutional layers adopted to distinguish
and extract features, and pooling operations are performed after the convolutional oper-
ations. CNNs have been extensively employed in feature extraction and classified into
1-dimensional 1DCNN and 2-dimensional 2DCNN following the dimensionality of the
input sequence [38]. Usually, 2DCNN is primarily applied to feature extraction of images,
e.g., in the literature [39,40], whereas IR-UWB radar echo signals belong to one-dimensional
time series signals, such that 1DCNN more significantly applies to 2DCNN to represent
IR-UWB radar signals. Moreover, the model of 1DCNN is more straightforward than
that of 2DCNN, and 1DCNN exhibits lower computational complexity [41]. Furthermore,
if 2DCNN is used to process time-series IR-UWB radar echo signals, additional signal
transformations are required. Thus, 1DCNN was selected instead of 2DCNN.

Accordingly, since IR-UWB signals present time-varying and noise components that
should be different from the practical target signals, the idea of LSTM networks was
adopted. In this study, a first framework was proposed, utilizing IR-UWB signals from
LSTM networks to differentiate between perceived subject targets in ROI ambient envi-
ronments as well as multipath effects and noise. The proposed deep learning network
architecture (Figure 5) incorporated a 1DCNN-LSTM design. It covered a wide variety of
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components (e.g., a Batch Norm for network stabilization during training, three convolu-
tional layers, two maximal pooling layers, a bi-directional LSTM layer, as well as a fully
connected layer).
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In this study, a nested 11-fold cross-validation method was adopted for hyperpa-
rameter optimization. The training set was divided into 11 sub-training sets of the same
size according to the number of people from 0 to 10. The 11-fold cross-cycle validation is
performed outside the nested sets, where 6 sub-training sets are used for training, and the
remaining 5 are test sets for testing purposes. Moreover, cross-cycle validation with the
same external is performed inside each nesting. Lastly, we set the hyperparameters via the
use of Cohen’s kappa values. In each CNN layer, as shown in Figure 5, the input layer of the
CNN layer is set to have a fixed step size of 2 and the same for the kernel. In the proposed
1DCNN-LSTM model, the Adam optimizer is used for the optimization operation [42],
while the Henormal initializer is chosen for the initialization of training [43]. In this study,
the earliest patient stop is set to 15, and the learning rate is 0.002, while the loss function
uses the cross-entropy function. The proposed 1DCNN-LSTM model is trained in Python
3.6 with the Keras framework [44], while the open-source training platform TensorFlow [45]
is used. In the proposed 1DCNN-LSTM model, the features are continuously extracted
layer by layer from the lower to the higher-level features. Lastly, the higher-level features
are used for training, i.e., to reach the input layer of Softmax. Note that in the convolutional
layer, each unit is subjected to a batch normalization and activation function layer after the
convolutional operation to improve the overall robustness and performance of the network
in the proposed 1DCNN-LSTM model [46]. In this study, the total number of classes was
set to 11 based on the size of the number of people in the ROI region (0–10), so the size of
the output layer of the model is 11. Table 1 shows the 1DCNN-LSTM architecture of the
proposed deep learning network.
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Table 1. The proposed 1DCNN-LSTM architecture for deep learning networks.

Layer Types Activation Functions Filter Size and
Kernel Size Output Amount of

Parameters

Input Layer - - 50 × 300 -
Batch Norm_1 - - 50 × 300 360

1D Convolutional Layer_1 ReLu 128 and 1 × 9 128 × 150 46,144
Maximum pooling layerl_1 2 × 1 128 × 75 -
1D Convolutional Layer_2 ReLu 256 and 1 × 5 38 × 256 41,908
1D Convolutional Layer_3 ReLu 512 and 1 × 3 19 × 512 98,560
Maximum pooling layer_2 - 2 × 1 9 × 512 -

LSTM Layer Sigmoid 512 512 1,583,912
Fully Connected Layer ReLu - 121 33,132

Output Layer Softmax - 11 130

CNNs use local filters for convolution operations, i.e., they use local submatrices and
local filters for inner product operations, and the convolution layer will use multiple such
local filters to compute multiple output matrices, which are referred to as feature layers.
For the proposed method, N is the input sequence of the IR-UWB radar, x0

i is the value of
each window after data segmentation, and its input data are defined as:

x0
i = [x1, x2, · · · xN ] (17)

Additionally, the detailed operation of the convolutional layer is as follows:

Jc =
∑M

m=1 ∑N
n=1 R[m, n]

M× N
(18)

where l denotes the amount of layers of convolution, j represents the amount of feature
map layers, f expresses the activation function, bj denotes the bias term of the jth feature
layer, M represents the number of convolution kernels, i.e., the number of local filters, x is
the output of the l − 1th layer, which for the first layer is the initial input data of the model,
and ω

j
m expresses the value of the weights of the jth feature map of each layer.

The activation function takes on critical significance in artificial neural network mod-
eling. It can learn and gain insights into very complex and nonlinear functions, such that
the activation function layer was introduced to the proposed model. For the proposed
1DCNN-LSTM model, the activation function in the hidden layer used the ReLu function
in Equation (19), such that the gradient descent or vanishing problem can be effectively
avoided [47], which is expressed as:

σ(zj) =
eZj

K
∑

k=1
eZj

, j = 1, 2, 3, . . . , K (19)

The Softmax function serves as the activation function for the output layer, expressed
as follows.

θt = θt−1 − ρ∆θ J(θ; x(i:x+n); y(i:y+n)) (20)

In Equation (20), the vectors x and y denote the subject target’s output and predicted
output, respectively. ρ denotes the learning rate, and ∆θ expresses the value of the gra-
dient operator. In this study, cross entropy was selected as the loss function, denoted as
J(θ, x, y), for the 1DCNN-LSTM model. This loss function was utilized in relation to the
parameter set θ.

J(θ, x, y) = −
N

∑
i=1

xi log yi (21)
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where the cross entropy denotes the difference between the amount of information con-
tained in y and the amount of information contained in x. The smaller its value, the closer
the number of people the proposed model estimates to the practical value.

Since the received IR-UWB radar signals were time-series data, LSTM is recom-
mended [48]. LSTM is capable of avoiding the situation of long-term dependencies using
RNN networks. Moreover, the LSTM network exhibited high resolution in processing
time-series datasets. The structure of the LSTM cell is presented in Figure 6, and the LSTM
unit is expressed by Equation (22):

Inputt = σ(WInput[Yt−1, Xt] + bInput)
Forgett = σ(WForget[Yt−1, Xt] + bForget)
Outputt = σ(WOutput[Yt−1, Xt] + bOutput)
Memoryt = Forgett ×Memoryt−1 + Inputt × tangent(WMemory[Yt−1, Xt] + bMemory)
Yt = Outputt × tangent(Memoryt)
Ωt = so f tmax(WYYt + bY)

(22)

where X represents the input sequence denoted as X = [X1, . . . , XN ], where N expresses
the temporal length of the input sequence. Inputt represents the unit state of the LSTM
input gate, whereas Outputt expresses the unit state of the output gate. Moreover, Forgett
denotes the unit state of the forget gate, while Memoryt represents the state of the storage
unit. The unit output of the LSTM unit is denoted as Yt, and the final output sequence is
expressed as Ωt. tangent denotes the Hyperbolic Tangent function. σ denotes the Sigmoid
function. W and b denote the input weights and bias vectors regarding the inputs of the
LSTM unit, respectively.
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4. Experimental Results and Analysis

A comprehensive set of experiments was performed to assess the efficacy of the
proposed 1DCNN-LSTM-based model. In this regard, we collected data in a meticulous
manner and presented a detailed account of the data collection process. Furthermore, we
provide an analysis of the results obtained from processing the collected data, shedding
light on the outcomes achieved through the proposed model. To verify the performance
of the proposed system, this section elaborates on the performance parameters such as
data collection, accuracy, confusion matrix, and ROC curves, and we also compare the
experimental performance of different algorithms.

4.1. Data Collection

For the data collection process in this study, an IR-UWB radar sensor provided by
Xethru was employed. The specific model employed was the X4M02, and its physical
diagram is displayed in Figure 7. Detailed specifications of the radar sensor can be found
in Table 2. During the experiment, the IR-UWB radar sensor was mounted on a tripod at
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a height of 1.5 m above the ground. Additionally, a laptop computer was connected to
facilitate data acquisition.
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Table 2. IR-UWB radar system parameters.

Radar Parameters Value

Carrier frequency 7.29 GHz
Bandwidth 1.4 GHz

Elevation range [−65, +65]
Azimuth range [−65, +65]
Sampling rate 23.328 GHz

Detecting range 0–10 m

Experiments were performed in a typical scenario. The experiments were performed in
two different locations, the first in an open outdoor environment (Figure 8a) and the second
in a room with walls, ceiling, and so forth on all sides, which was termed an indoor open
environment (Figure 8b). The experiments were performed in a right-angled sector space
with a radius of 6 m and a center angle of 90◦. An X4M02 radar was mounted at a height of
1.5 m at the position of the sector apex. The experiment was performed by 10 volunteers,
including six males and four females. To protect the privacy of the volunteers, we did not
disclose information (e.g., volunteer photographs) in the picture. The information on the
volunteers is listed in Table 3.
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Table 3. Physical information of volunteers.

Volunteer 1 2 3 4 5 6 7 8 9 10

Gender Male Male Male Male Male Male Female Female Female Female
Height (cm) 175 183 173 170 178 169 165 170 166 163
Weight (kg) 76 85 89 65 80 62 52 58 55 60

Next, radar signals were acquired for the respective number of people with a minimum
of 0 and a maximum of 10 to form a feature vector database and train an IDCNN-LSTM
classifier. Thus, with the aim of recording the absolute situation and relative situation cases
as comprehensively as possible for the people, the volunteers fell into the ROI detection
area. The volunteers’ movements were completely randomized (e.g., standing, swaying,
and walking), i.e., each person was allowed to move freely within the experimental space
to try to be as dispersed as possible. Each person was given 24,576 received pulses for
training purposes, while the X4M02 radar can transmit and receive 48 pulses per second,
thus creating one frame for every 48 pulses, forming 512 frames. The training and test
datasets were created using a sliding method along the slow time axis. To be specific, an
extraction was performed, and then five frames were followed and slid back to initiate
a new extraction. The above-described method was adopted to form the training and
test datasets. Thus, the 300 s raw data produced 60 samples. The respective case ranged
from 0 to 10 people. Lastly, a dataset was generated containing 1024 samples. Due to the
partitioning of the dataset for the respective case, the data of 768 samples were applied to
the IDCNN-LSTM classifier, and the data of the remaining 256 samples were employed for
testing. The amount of training data can exert certain effects on the estimation performance
of the classifier, such that the estimation accuracy is increased with more training data [49].
However, the improvement in accuracy is not linear with more training data, and data
collection is time-consuming and labor-intensive, so choosing an appropriate sample size
is essential.

4.2. Performance Evaluation
4.2.1. Accuracy of the Algorithm

In the present section, the aim is to assess the performance of the proposed algorithm
by defining two types of accuracies. The first type is the true accuracy, while the second
one refers to the accuracy with an error of ±1 or less. The above-mentioned accuracies can
be calculated using the following equations:

pζT =
∑

Πζ

i=1 v
(
n̂ζi − ζ

)
Πζ

× 100% (23)

pζE =
∑

Nζ

i=1 θ
(
n̂ζi − ζ

)
Nζ

× 100% (24)

where pζT represents the true accuracy, while pζE corresponds to the accuracy with an
error of ±1 or less. The variable ζ denotes the total number of tests for a specific scenario
involving Πζ people. n̂ζi denotes the ith time denotes the estimated number of tests in the
case of ζ people, and the functions v and θ are defined as follows:

v(n̂ζi − ζ) =

{
1, n̂ζi = ζ
0, n̂ζi 6= ζ

(25)

θ(n̂ζi − ζ) =


1,
∣∣n̂ζi − ζ

∣∣ < 1
1,
∣∣n̂ζi − ζ

∣∣ = 1
0,
∣∣n̂ζ i − ζ

∣∣ > 1
(26)
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To assess the effect of the number of subjects on the accuracy of the proposed model,
a control experiment is set up according to the two accuracy assessment indexes set in
Equations (23) and (24). In the outdoor empty environment and indoor empty environment,
respectively, the number of subjects increases sequentially from 0 to 10. Figure 9 presents
the test results, where Figure 9a presents the practical accuracy, and 9b is the accuracy
within error ±1.
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As depicted in Figure 9a, the true accuracies of the proposed model in both environ-
ments (outdoor and indoor open environments) decrease to different degrees with the
increasing number of subjects, and the true accuracy declines more slowly in the outdoor
open environment compared with the indoor open environment. In the indoor open envi-
ronment, when the number of people in the ROI region reaches 4, the accuracy decreases to
below 90% for the first time. Still, in the outdoor open environment, when the amount of
people in the ROI region reaches 6, the accuracy declines to below 90% for the first time.
The reason for the above result is that in the indoor open environment, there are walls
around, and the rebar and concrete in the walls affect the IR-UWB radar echoes. Thus,
the true accuracy in the outdoor open environment is generally better than in the indoor
open environment.

Figure 9b presents the accuracies within ±1 error using Equation (24) for two different
experimental environments (i.e., outdoor and indoor open environments). As depicted
in Figure 9b, in the outdoor open environment, the accuracy within error ±1 achieved
an accuracy of 90% in detecting the number of people in the ROI area within 0–6. As an
experimental control group, in the indoor open environment, the accuracy within error
±1 reached 90% in detecting the number of people in the ROI area within 0–3, and the
accuracy was 80% when the subject target reached 8. Based on the calculation, the test
results of 89.37% true accuracy and 92.10% accuracy within error ± 1 on average in an
outdoor open environment were obtained, and the experimental results are listed in Table 4.
In another indoor open environment, an average of 83.96% in terms of of true accuracy
and 86.60% in terms of accuracy within error ± 1 of the test results were achieved. The
experimental results are listed in Table 5.

Table 4. Outdoor open environment.

Number of People 1 2 3 4 5 6 7 8 9 10 Average

True Accuracy/% 100.00 99.84 97.16 97.53 90.29 90.03 84.74 90.52 82.14 74.13 76.71
Accuracy with error ±1/% 100.00 100.00 99.72 95.76 96.06 94.17 93.78 89.02 90.05 75.10 79.41
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Table 5. Indoor open environment.

Number of People 1 2 3 4 5 6 7 8 9 10 Average

True Accuracy/% 100.00 98.35 94.14 96.27 89.27 83.49 78.27 78.90 65.76 64.59 74.49
Accuracy with error ±1/% 100.00 97.23 96.09 93.68 89.83 83.37 89.10 80.75 78.66 69.99 73.87

4.2.2. Confusion Matrix

In this section, we will assess the performance of the 1DCNN-LSTM model proposed
for this study using a confusion matrix. A confusion matrix, also known as an error
matrix, is a commonly employed tool for visually evaluating the performance of supervised
learning algorithms. In two subject environments (including an outdoor open environment
and an indoor open environment), the number of subjects is estimated from 0 to 10 using
the 1DCNN-LSTM model proposed in this study. The results of the confusion matrix for
the outdoor open environment are shown in Figure 10, and the results of the confusion
matrix for the indoor open environment are shown in Figure 11.
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Figure 10 presents the confusion matrix of different detection numbers in the outdoor
open environment, where the horizontal coordinate represents the practical value of the
detection numbers in the ROI region of the practical test environment. The vertical coor-
dinate represents the predicted value of the people counting in the ROI region using the
proposed 1DCNN-LSTM model to predict the people counting in the IR-UWB radar signals.
First, the results suggested that the prediction accuracy declined with the gradual increase
in the subject targets, with the maximum prediction of 0 and 1 as the maximum value of
100% and the minimum prediction of 10 as the minimum value of 69.88%. The reason
for this result is that when the number of people in the ROI region gradually increased,
a multipath effect was significantly formed, generating considerable multipath signals
and thus leading to inaccurate prediction. Second, due to the setting of the experimental
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environment in this study, we failed to fix the position of the subjects. In other words, the
participants were granted to walk around freely in the ROI area. The randomness of the sub-
ject targets resulted in some errors in the number of predictions using the 1DCNN-LSTM
model proposed in this study. In addition, due to the increase in the number of people, the
neighboring feature vectors overlapped, resulting in an increase or decrease in the number
of predictions (e.g., the predictions of eight and nine people). Although there was a certain
probability of prediction error in the above case, this prediction error was limited to the
number of neighboring predictions by calculating the number of predictions. Thus, the
accuracy with error ±1/% in the previous section was counted. Lastly, as indicated by
the confusion matrix of different detection numbers in the outdoor open environment in
Figure 10, although there was a certain false detection rate, the overall tendency was under
a high accuracy rate, especially during the detection of five people or less, the detection
accuracy rate was as high as 90%. Furthermore, the average accuracy rate was calculated
as 89.37% in the outdoor open environment, thus confirming the high accuracy rate of the
proposed model in this study.
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Figure 11 presents the confusion matrix for different detection numbers in the indoor
empty environment, the horizontal coordinate represents the real value of the detection
numbers in the ROI region of the practical test environment, and the vertical coordinate
represents the prediction value of the number of people obtained using the 1DCNN-LSTM
model. Similar to the outdoor empty environment, the prediction accuracy tended to
decrease with the increasing number of people in the ROI region, with the maximum
being the case of detecting 0 people with 100% detection accuracy and the minimum being
the case of detecting 10 people with only 61.53% detection accuracy. As indicated by the
comparison of Figures 10 and 11 for the outdoor empty environment, the accuracy of the
1DCNN-LSTM model in the indoor environment was overall lower than that in the outdoor
environment. The reason for this result is the presence of walls and ceilings in the indoor
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open environment, which can also lead to the generation of more multipath signals. As
depicted in Figure 11, the 1DCNN-LSTM model proposed in this study was robust due
to the low echo SNR generated by IR-UWB radar in indoor environments. However, the
proposed model can still have a high accuracy in low SNR environments, and it is only
when detecting approximately up to eight people that the model accuracy drops below 80%.
Moreover, the average accuracy was calculated as 83.96% in the outdoor open environment,
thus proving the high accuracy and robustness of the proposed model in this study.

4.2.3. ROC Curve and CDF

To further validate the performance of the proposed 1DCNN-LSTM model in
two experimental environments (outdoor and indoor open environments) excerpted when
the subject target was three, the Receiver Operating Characteristic (ROC) curves as well
as the Cumulative Distribution Function (CDF), the experimental results were plotted in
Figures 12a and 12b, respectively. The ROC curves, indicating the different thresholds
that can be applied to the classifier’s output when the classifier’s output is binary (e.g.,
an instance belongs to a certain class or not), were represented in this subsection for the
predicted number of three people.
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Figure 12a shows the ROC curves in different experimental environments obtained
under the number of targets of three. As indicated by the horizontal coordinate FPR, the
proposed 1DCNN-LSTM model was misclassified as a negative case. As indicated by the
vertical coordinate TPR, the proposed 1DCNN-LSTM model was correctly categorized
and was a positive case. As depicted in Figure 12a, the ROC curve in the outdoor open
environment was above the indoor open environment. On the other hand, it can be better
understood using another metric, i.e., the total Area under Curve (AUC) area below the
ROC curve. As depicted in Figure 12a, the AUC area in the outdoor open environment was
larger than that in the indoor open environment, which was calculated as 0.96 in the out-
door open environment and 0.88 in the indoor open environment. Figure 12b presents the
CDF plots of the different subjective environments with the number of people of only three
by using the proposed 1DCNN-LSTM model, which is the probability density function
(CDF). CDF is capable of representing the effect of error accumulation, with the horizontal
coordinate representing the recognition error rate and the vertical axis representing the
CDF value. Maximum accuracy was achieved in the outdoor open environment, where
approximately 92% of the test data achieved an error rate of less than 10%. Minimum
accuracy was achieved in the indoor open environment, where approximately 63% of the
test data achieved an error rate of less than 10%. Notably, in the outdoor open environment,
the cumulative distribution function of the error rate was in the upper part of the indoor
open environment, i.e., the closer the curve to the upper left, the better the recognition
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effect of the classification, and the more accurate the results. In other words, the closer it is
to the number of people in the region, the closer it is to the true value of the ROI. In general,
the proposed 1DCNN-LSTM model is capable of maintaining a good recognition resolu-
tion in both subject environments and conforming to the universal subject environment
for detection.

4.2.4. Performance Evaluation of Different Methods

Several existing typical ROI region people counting detection algorithms were com-
pared using ROC curves to further analyze and validate the performance of the proposed
model. We trained different algorithms using the same training samples and test sets in
an outdoor open environment as well as an indoor open environment. The experimental
results are presented in Figures 13a and 13b, respectively.
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Figure 13a,b present the average ROC curves for the data obtained from five people
counting algorithms are plotted for the same training samples and test set in an outdoor
open environment and indoor open environment, respectively. The five algorithms include
(1) the 1DCNN-LSTM algorithm that we proposed, (2) a CNN-based algorithm, (3) the
PDF-ML algorithm, (4) a clustering-based algorithm, and (5) the OS-CFAR algorithm. As
depicted in Figure 13a,b, the proposed 1DCNN-LSTM algorithm is highly competitive,
i.e., higher accuracy algorithms are effective. We found that the OS-CFAR algorithm
has lower accuracy and effectiveness, i.e., the AUC area is minimum. Furthermore, the
average accuracy, average recall, and average F1-score of the classification algorithms were
calculated. The detailed results of the calculations are listed in Table 6. As depicted in
Table 6, the average accuracy of the proposed algorithm in this study reached up to 86.66%,
higher than the remaining four comparison algorithms, i.e., the 1DCNN-LSTM algorithm
proposed in this study exhibited high accuracy.

Table 6. Mean accuracy, recall, and F1-score for different algorithms.

Papers Published Year Algorithm Accuracy(%) Recall(%) F1-Score(%)

[50] 1988 OS-CFAR 51.09 43.75 45.17
[21] 2017 Clustering-Based 61.60 58.02 59.83
[23] 2017 PDF-ML 65.50 60.37 63.06
[36] 2021 CNN-Based 70.72 67.10 69.21

This study 1DCNN-LSTM 86.66 83.73 85.61
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5. Discussion

This study aimed at designing algorithms that can effectively differentiate people
counting in the ROI region with high accuracy and ease of implementation. For people
counting using IR-UWB conventional methods, it is difficult to set the optimal threshold
due to using a single threshold, and there exists a problem that people counting cannot be
determined at low SNR under the effects of multipath and noise signals. In this study, a
1DCNN-LSTM-based excess kurtosis people counting system was proposed using IR-UWB
radar signals. Using actual IR-UWB radar sensors, we validate the algorithm’s performance
in two open environments. We found that the greater the subject’s weight, the more
reflected signals the radar picks up, which increases the number of pulse frames, which
may cause the algorithm to experience an increased counting error rate. In order to control
the variable to reduce the variability caused by weight, we selected the same volunteers
(as shown in Table 3) as experimental subjects. In this paper, the ROI region, we simulate
the actual application scenarios such as shopping malls, halls, outdoor, and other open
environments. We set the size of the experimental environment as a 6 m × 6 m open
environment. However, even so, when we apply the proposed 1DCNN-LSTM algorithm to
the complex environment in the laboratory, we find that it is also effective because we use
the running average method to eliminate the static clutter in the background. At the same
time, we use the Butterworth filter to improve the SNR of IR-UWB radar signals. Non-static
noise signals mainly influence IR-UWB radar signals in complex environments, so it is wise
to use smoothing filters to suppress non-static noise signals.

Thus, this study was subjected to the following limitations. In this study, the data
were collected only in a stationary scene, the effects exerted by scene migration were
ignored, and only an empty environment was considered not a complex experimental
scene with more clutter (e.g., computers and obstacles). Accordingly, in subsequent re-
search, the relevant research will be conducted on the following two points. (1) Training
via data-enhanced training networks or other datasets is conducted to enhance the scene
migration generalization ability of the proposed algorithm. (2) Moreover, relevant experi-
mental studies are conducted for complex experimental scenarios to refine and optimize
the algorithm.

6. Conclusions

In this study, a 1DCNN-LSTM-based excess kurtosis people counting system was
proposed, using IR-UWB radar signals. The proposed algorithm solved the problem of
optimal threshold setting by extracting the human signals to form a feature vector using
different thresholds. A feature vector from the respective formed frame was developed by
bundling the preprocessed IR-UWB radar signal pulses into frames. The human-induced
excess kurtosis was detected using a modified CLEAN algorithm by varying the threshold
value. Next, the formed peaks were grouped for subsequent training and validation. The
performance of the proposed model for different detection ROIs and different subjects was
analyzed, and the experiments were performed in outdoor and indoor open environments.
Based on the calculation, the test results of 89.37% true accuracy and 92.10% accuracy
within ±1 error on average were obtained in the outdoor open environment. In addition,
the average 83.96% true accuracy and 86.60% accuracy within error±1 were obtained in the
indoor open environment. As indicated by the results, the algorithm can apply to scenarios
with large detection angles and large detection ranges while exhibiting high stability.
Furthermore, the algorithm achieved high accuracy, robustness, and ease of implementation
through comparative experiments compared with other people counting detection methods
proposed over the past few years. The proposed 1DCNN-LSTM algorithm had an average
accuracy of 86.66% for recognizing ROIs. The proposed 1DCNN-LSTM algorithm can
be used for IR-UWB radar for sensing the people counting field. The algorithm can
be effectively applied to monitor the number of people in a focused area as it is not
affected by conditions such as illumination, and at the same time, privacy issues can be
effectively avoided.
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