
Citation: Baek, U.-J.; Kim, B.; Park,

J.-T.; Choi, J.-W.; Kim, M.-S. A

Multi-Task Classification Method for

Application Traffic Classification

Using Task Relationships. Electronics

2023, 12, 3597. https://doi.org/

10.3390/electronics12173597

Academic Editors: Yichuang Sun,

Haeyoung Lee, Oluyomi Simpson

and Martin Reisslein

Received: 20 July 2023

Revised: 6 August 2023

Accepted: 21 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Multi-Task Classification Method for Application Traffic
Classification Using Task Relationships
Ui-Jun Baek 1, Boseon Kim 2 , Jee-Tae Park 1, Jeong-Woo Choi 1 and Myung-Sup Kim 1,*

1 Department of Computer and Information Science, Korea University, Sejong-si 30019, Republic of Korea;
pb1069@korea.ac.kr (U.-J.B.); pjj5846@korea.ac.kr (J.-T.P.); choigoya97@korea.ac.kr (J.-W.C.)

2 Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea;
boseon12@kisti.re.kr

* Correspondence: tmskim@korea.ac.kr

Abstract: As IT technology advances, the number and types of applications, such as SNS, content,
and shopping, have increased across various fields, leading to the emergence of complex and diverse
application traffic. As a result, the demand for effective network operation, management, and analysis
has increased. In particular, service or application traffic classification research is an important area of
study in network management. Web services are composed of a combination of multiple applications,
and one or more application traffic can be mixed within service traffic. However, most existing
research only classifies application traffic by service unit, resulting in high misclassification rates
and making detailed management impossible. To address this issue, this paper proposes three
multitask learning methods for application traffic classification using the relationships among tasks
composed of browsers, protocols, services, and application units. The proposed methods aim to
improve classification performance under the assumption that there are relationships between tasks.
Experimental results demonstrate that by utilizing relationships between various tasks, the proposed
method can classify applications with 4.4%p higher accuracy. Furthermore, the proposed methods can
provide network administrators with information about multiple perspectives with high confidence,
and the generalized multitask methods are freely portable to other backbone networks.

Keywords: application traffic classification; network management; multitask learning

1. Introduction

With the recent advancement of IT technology, web services have become increasingly
important in daily life, and due to the influence of COVID-19, the use of video streaming
and online shopping has dramatically increased as indoor activity time has prolonged [1].
As a result, the demand for monitoring and analyzing network traffic, including application
traffic classification and traffic prediction, has increased due to the emergence of complex
and diverse application traffic resulting from the increase in the number and types of
applications, such as SNS (Social Network Service), content streaming, and shopping.
In particular, application traffic classification research is essential for effective network
monitoring and analysis [2]. It can be widely used in areas such as cloud service pricing,
resource planning, traffic control, and network security. For instance, in schools or public
institutions, network resources can be restricted to limit non-work-related traffic, and
companies subscribing to cloud services can classify the traffic of the services they use to
subscribe to the appropriate services without unnecessary consumption.

Web services are software systems for application interaction between different types
of computers on the network and can be composed of a combination of multiple applica-
tions. Therefore, the traffic generated by web services is also composed of a combination of
traffic generated by various applications. However, most existing research only classifies
network traffic by service unit and application unit, and this approach is similar to MCC

Electronics 2023, 12, 3597. https://doi.org/10.3390/electronics12173597 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173597
https://doi.org/10.3390/electronics12173597
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0006-9369-5244
https://doi.org/10.3390/electronics12173597
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173597?type=check_update&version=1

Electronics 2023, 12, 3597 2 of 18

(Multiclass Classification) shown in Figure 1. This can result in misclassification of mixed
traffic in a service that includes multiple services or application traffic. For example, the
traffic flow of Googlefonts in the Naver service and the traffic flow of Googlefonts in the
YouTube service represent two different ground truths, even though they are both under the
same sub-service. This can confuse the learning model when learning the characteristics of
the traffic. Moreover, simply classifying multiple sub-service traffic or application traffic
within a service only by service unit makes detailed management impossible. To address
this issue, this paper proposes a method for classifying traffic using the relationships among
four tasks, as shown in MTC (Multitask Classification) in Figure 1. Multitask learning
(MTL) [3] is applied in a variety of fields, with the aim of simultaneously learning multiple
related tasks so that the knowledge contained in one task is used for other tasks to improve
the generalization performance of all tasks [4]. Ref. [5] performs multitask learning through
the task lists provided by CICIDS 2017 [6], ISCX VPN-nonVPN 2016 [7], and ISCX Tor
2016 [8]. The task lists include normal/abnormal application categories, detailed applica-
tions, encryption, etc. Ref. [9] performed multitask learning through the task list provided
by ISCX VPN-nonVPN 2016, which includes a total of three task lists. Ref. [10] performed
multitask learning by creating a new task called Bandwidth and Duration from the QUIC
and ISCX datasets. Unfortunately, there are not many multitask-based classification meth-
ods in the field of network traffic classification, and this is also often dependent on the
task list provided by the dataset. Therefore, various tasks that can improve generalization
performance in the field of network traffic classification need to be proposed. We set the
goal of improving classification performance under the assumption that the tasks are not
completely independent and have relationships among them. For instance, when using the
Edge browser, a web browser released by Microsoft, Microsoft traffic mainly occurs when
using the Edge browser to access web services. Similarly, when using the Firefox browser,
Mozilla traffic mainly occurs when using the Firefox browser to access web services. In
another case, the YouTube service communicates using the HTTP/3 protocol, and most of
the traffic using the HTTP/3 protocol occurs within the YouTube service. The proposed
method includes four tasks for traffic classification, and classifies accurate services and sub-
services or applications by performing four tasks simultaneously using MTC. In addition,
the proposed method provides detailed classification results for traffic, which can satisfy
various requirements of network administrators. Our representative contributions include
the following:

(i). Improved classification accuracy: improved classification performance considering re-
lationships between multiple tasks (browsers, HTTP protocols, applications, services);

(ii). Generalizability and portability of the four multitask classification methods: the
generalized classification model for multiple classifications improves classification
performance across diverse backbone networks;

(iii). Possibility to monitor and analyze from multiple perspectives: network administrators
can gain more detailed information and insights into the traffic occurring on the
networks under their jurisdiction when monitoring and analyzing their networks.

This paper is structured as follows: Related research is described in Section 2 following
the introduction. Section 3 provides a detailed explanation of the proposed method, and
Sections 4 and 5 describe the experimental setup and results, respectively. Finally, in
Section 6, the conclusion and future research are discussed, concluding this paper.

Electronics 2023, 12, 3597 3 of 18Electronics 2023, 12, x FOR PEER REVIEW 3 of 19

Figure 1. Overview of classification types.

This paper is structured as follows: Related research is described in Section 2 follow-
ing the introduction. Section 3 provides a detailed explanation of the proposed method,
and Sections 4 and 5 describe the experimental setup and results, respectively. Finally, in
Section 6, the conclusion and future research are discussed, concluding this paper.

2. Related Works
2.1. Task Description

This subsection describes four tasks of the proposed methodology. The first task is
browser classification, where browsers are graphical user interface-based software appli-
cations that enable bidirectional communication between users and web servers, allowing
the display of HTML documents or files. The labels included in the browser classification
task are Chrome, Edge, and Firefox, whose combined usage accounts for the majority of
global browser usage. Ref. [11] proposed real-time lightweight identification of HTTPS
clients based on network monitoring and SSL/TLS fingerprinting and reported that 95.4%
of HTTPS network traffic could be retrieved by the proposed method. Additionally, the
study reported that the handshake fingerprints of SSL/TLS, including the cipher suite list
of different clients, differ. This indicates that prior information about the browser or com-
munication client can influence the classification results. The second task is protocol clas-
sification, where collected protocols include HTTP/1.1, HTTP/2 (HTTPS), and HTTP/3.
HTTP/1.1 is one of the HTTP protocol versions released in 1999 and is still the most widely
used. HTTPS refers to the second major version of the HTTP protocol, which was released
in 2015. HTTP/3 is the third major version of the HTTP protocol, which was released in
2020, and uses the QUIC (Quick UDP Internet Connections) protocol instead of the TCP
protocol used in previous versions, providing faster and more reliable data transfer. Web
applications utilize various HTTP protocol versions, and the protocol version can serve as
useful prior information for classifying specific applications. Ref. [12] proposes a method
to improve the service classification performance by using the protocol classification re-
sults of the application traffic test dataset as prior information in the service classification
process. The third task is service classification, where services are defined as software sys-
tems for interaction between different types of computers on the network, consisting of
Aladin, Amazon, Google, Nate, Naver, and YouTube. For convenience, the services referred to
in this paper denote the top-level service that includes multiple applications or sub-ser-

Figure 1. Overview of classification types.

2. Related Works
2.1. Task Description

This subsection describes four tasks of the proposed methodology. The first task is
browser classification, where browsers are graphical user interface-based software applica-
tions that enable bidirectional communication between users and web servers, allowing
the display of HTML documents or files. The labels included in the browser classification
task are Chrome, Edge, and Firefox, whose combined usage accounts for the majority of
global browser usage. Ref. [11] proposed real-time lightweight identification of HTTPS
clients based on network monitoring and SSL/TLS fingerprinting and reported that 95.4%
of HTTPS network traffic could be retrieved by the proposed method. Additionally, the
study reported that the handshake fingerprints of SSL/TLS, including the cipher suite
list of different clients, differ. This indicates that prior information about the browser or
communication client can influence the classification results. The second task is protocol
classification, where collected protocols include HTTP/1.1, HTTP/2 (HTTPS), and HTTP/3.
HTTP/1.1 is one of the HTTP protocol versions released in 1999 and is still the most widely
used. HTTPS refers to the second major version of the HTTP protocol, which was released
in 2015. HTTP/3 is the third major version of the HTTP protocol, which was released in
2020, and uses the QUIC (Quick UDP Internet Connections) protocol instead of the TCP
protocol used in previous versions, providing faster and more reliable data transfer. Web
applications utilize various HTTP protocol versions, and the protocol version can serve as
useful prior information for classifying specific applications. Ref. [12] proposes a method to
improve the service classification performance by using the protocol classification results of
the application traffic test dataset as prior information in the service classification process.
The third task is service classification, where services are defined as software systems for
interaction between different types of computers on the network, consisting of Aladin,
Amazon, Google, Nate, Naver, and YouTube. For convenience, the services referred to in this
paper denote the top-level service that includes multiple applications or sub-services. The
fourth task is application classification, where applications or sub-services responsible
for specific interactions within a service are identified. For example, Google Fonts and
Gstatic are applications (sub-services) provided by Google, while search.naver and pstatic
are applications provided by Naver. In other words, a service may consist of multiple
applications or sub-services. The four tasks selected in this study are closely interconnected,
and when performing each task, the other tasks can serve as valuable prior information.

Electronics 2023, 12, 3597 4 of 18

2.2. Classification Type

This subsection describes the types and definitions of classification tasks. Classification
tasks can be divided into BC (Binary Classification), MCC (Multiclass Classification), MLC
(Multi-label Classification), and MTC (Multitask Classification), as shown in Figure 1.

BC is a classification task with two classes, where each sample can be labeled with only
one class. For example, in an anomaly classification task to distinguish between anomaly
and benign, the user can assign a label to each sample with only one of the two classes.
There have been many studies on detecting the presence of malicious traffic in network
traffic data [13–15].

MCC is a classification task with more than two classes, where each sample can be
labeled with only one class. The majority of research in the field of application traffic
classification is focused on MCC, where various application traffic types are labeled with a
single label. For example, in the application classification task [7], to distinguish between
Mail, File Transfer, P2P, VoIP, Streaming, and Chat, the user can assign a label to each
sample with only one of the six classes.

MLC is a classification task in which multiple labels are assigned to each sample, equal
to the number of possible classes when there are multiple classes. For example, in a weather
classification task that includes seven classes, such as clear, cloudy, snow, rain, fog, thunder,
and hail, the user can assign one or more labels from the seven classes to each sample.

MTC is a Multiclass–Multioutput Classification. MTC is used in the proposed method-
ology, where there are multiple tasks, and the user can assign only one label for
each task.

2.3. Structured Inference Neural Network

The Structured Inference Neural Network (SINN) was inspired by a deep learning-
based method that utilizes various label relationships to improve image classification
performance by using a cumulative label prediction neural network [16]. In this neural
network, structural graph formation is possible through relationships between labels, and
different interpretations of various units are possible for representing images. For example,
an image can be represented in terms of indoor or outdoor, specific location, and specific
object units. As a result, SINN is a structural inference neural network that can model
relationships between labels by considering dependencies between classification units
through CNN and RNN. Figure 2a shows a baseball field image that can be represented as
a structural graph, as shown in Figure 2b. The baseball field in Figure 2a belongs to the
scene unit’s artificial outdoor, the scene attribute unit’s sports field or artificial element,
the detailed scene unit’s home plate, and the object unit’s field, baseball bat, baseball,
grass, and person classes, which are all represented by the structural graph in Figure 2b
and are represented by red nodes. If the image belongs to the indoor class at the scene
unit, the baseball bat object cannot be present, as the baseball bat object is dependent on
artificial outdoor, which serves as evidence for using SINN. Inspired by these structured
representations, we propose four units (browser, protocol, application, service) to represent
traffic flows and use them to perform MTC.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 19

(a) (b)

Figure 2. These represent a baseball field image (a) and its corresponding structural graph (b). (a)
Baseball field image. (b) An image of a baseball field represented as a structural graph.

2.4. DL-Based Spatial-Temporal Feature Extraction
In this section, we describe the deep learning-based spatial and temporal feature ex-

traction methods used in the multitask learning approach.
CNN is the most widely used method for extracting spatial features, especially for

processing images or video data. CNNs are inspired by the structure of the visual cortex
in animals, which has layers of neurons that are sensitive to specific visual features. Simi-
larly, CNNs have layers that extract hierarchical representations of the input image or
video, starting from low-level features, such as edges, and gradually moving towards
high-level features, such as object parts and whole objects. The basic component of a CNN
is the convolutional layer, which applies a set of filters or kernels to the input image, ex-
tracting local features that are then pooled and passed on to the next layer. We utilized
two famous CNN-based backbone networks and two deep learning architectures pro-
posed in previous studies to clearly demonstrate the contribution of applying the MTC
method. The first one is Lenet [17], an initial model designed for handwritten digit recog-
nition. Lenet consists of two convolutional layers, pooling layers and fully connected lay-
ers, and its model structure is shown in Figure 2. The second backbone network is Resnet
[18] (Residual Network), a deep learning architecture proposed to solve the gradient van-
ishing problem that occurs in deep neural networks. Resnet solves the gradient vanishing
problem by introducing skip connections, direct connections that skip several layers in the
network, unlike traditional CNN architectures. Resnet still shows good performance in
various fields. Ref. [19] proposes MISCNN (Multi-Input Shape Convolutional Neural Net-
work) that utilizes various input forms that can be derived from fixed-length packet bytes.
By observing packets from various angles through the different forms that can be derived
from a single input, it shows a significant improvement in performance compared to pre-
vious research. Ref. [20] proposes HAST-IDS (Hierarchical Spatialtemporal Features-
based Intrusion Detection System), an intrusion detection system that uses CNN to learn
spatial features of packets and LSTM to learn temporal features between multiple packets.
HAST-IDS performs a classification of multiple normal and abnormal traffic, and experi-
ments show that HAST-IDS outperforms other approaches in terms of accuracy, detection
rate, and FAR.

RNN (Recurrent Neural Network) is a type of deep learning that is used to handle
sequential data [21]. RNN has the advantage of being able to solve the long-term depend-
ency problem by using the output of the previous step as the input of the current step,
thereby reflecting the previous information in the current processing. However, RNNs
can suffer from vanishing gradient and exploding gradient problems. To solve this prob-
lem, a model based on RNN called GRU (Gated Recurrent Unit) was proposed [22], and
this paper applies GRU to extract temporal features. GRU has the advantage of faster
learning speed and the ability to handle longer sequences than RNN. GRU combines the
hidden state and cell state used in RNN into one and updates it using two gates: the up-
date gate and the reset gate. The update gate determines how much information to update
using the current input and previous state, and the reset gate determines how much the

Figure 2. These represent a baseball field image (a) and its corresponding structural graph (b).
(a) Baseball field image. (b) An image of a baseball field represented as a structural graph.

Electronics 2023, 12, 3597 5 of 18

2.4. DL-Based Spatial-Temporal Feature Extraction

In this section, we describe the deep learning-based spatial and temporal feature
extraction methods used in the multitask learning approach.

CNN is the most widely used method for extracting spatial features, especially for
processing images or video data. CNNs are inspired by the structure of the visual cortex in
animals, which has layers of neurons that are sensitive to specific visual features. Similarly,
CNNs have layers that extract hierarchical representations of the input image or video,
starting from low-level features, such as edges, and gradually moving towards high-level
features, such as object parts and whole objects. The basic component of a CNN is the
convolutional layer, which applies a set of filters or kernels to the input image, extracting
local features that are then pooled and passed on to the next layer. We utilized two famous
CNN-based backbone networks and two deep learning architectures proposed in previous
studies to clearly demonstrate the contribution of applying the MTC method. The first one
is Lenet [17], an initial model designed for handwritten digit recognition. Lenet consists of
two convolutional layers, pooling layers and fully connected layers, and its model structure
is shown in Figure 2. The second backbone network is Resnet [18] (Residual Network), a
deep learning architecture proposed to solve the gradient vanishing problem that occurs in
deep neural networks. Resnet solves the gradient vanishing problem by introducing skip
connections, direct connections that skip several layers in the network, unlike traditional
CNN architectures. Resnet still shows good performance in various fields. Ref. [19]
proposes MISCNN (Multi-Input Shape Convolutional Neural Network) that utilizes various
input forms that can be derived from fixed-length packet bytes. By observing packets from
various angles through the different forms that can be derived from a single input, it shows a
significant improvement in performance compared to previous research. Ref. [20] proposes
HAST-IDS (Hierarchical Spatialtemporal Features-based Intrusion Detection System), an
intrusion detection system that uses CNN to learn spatial features of packets and LSTM to
learn temporal features between multiple packets. HAST-IDS performs a classification of
multiple normal and abnormal traffic, and experiments show that HAST-IDS outperforms
other approaches in terms of accuracy, detection rate, and FAR.

RNN (Recurrent Neural Network) is a type of deep learning that is used to handle
sequential data [21]. RNN has the advantage of being able to solve the long-term depen-
dency problem by using the output of the previous step as the input of the current step,
thereby reflecting the previous information in the current processing. However, RNNs can
suffer from vanishing gradient and exploding gradient problems. To solve this problem,
a model based on RNN called GRU (Gated Recurrent Unit) was proposed [22], and this
paper applies GRU to extract temporal features. GRU has the advantage of faster learning
speed and the ability to handle longer sequences than RNN. GRU combines the hidden
state and cell state used in RNN into one and updates it using two gates: the update gate
and the reset gate. The update gate determines how much information to update using the
current input and previous state, and the reset gate determines how much the previous
state is forgotten. Through this, GRU can solve the long-term dependency problem while
mitigating problems that arise during the learning process.

2.5. MTC-Based Traffic Classification

Ref. [5] proposes the use of multitask deep neural network in federated learning
(MT-DNN–FL) to simultaneously perform network anomaly detection, VPN (Tor) traffic
recognition, and traffic classification tasks. They report that the multitasking approach
reduces training time overhead compared to multiple single-task models. Experimental
results conducted on well-known datasets, such as CICIDS2017, ISCXVPN2016, and ISX-
Tor2016, demonstrate that the proposed method achieves superior anomaly detection and
classification performance compared to baseline models in a centralized training archi-
tecture. Ref. [10] proposes the use of multitask learning to predict the bandwidth and
duration of network traffic flows while simultaneously classifying the traffic into different
classes. Predicting bandwidth and duration does not require extensive labeling efforts or

Electronics 2023, 12, 3597 6 of 18

specific environments, allowing for the utilization of abundant training data. This approach
significantly reduces the number of labeled samples required for traffic class prediction.
Furthermore, the predicted bandwidth and duration can be applied in ISPs for resource
allocation, routing, and QoS purposes. The experiments conducted on the QUIC and ISCX
VPN-nonVPN datasets demonstrate that the multitask learning approach outperforms
single-task learning and transfer learning methods. Ref. [9] proposed a novel multimodal
multitask deep learning approach called DISTILLER. This approach is designed to address
the challenges of encrypted traffic and diverse network visibility in traffic classification.
DISTILLER leverages deep learning techniques to automatically extract complex patterns
from various modalities of traffic and simultaneously solve multiple traffic categorization
problems. The authors evaluate DISTILLER using public datasets and report superior per-
formance compared to state-of-the-art deep learning architectures. Ref. [23] proposes a new
multimodal deep learning framework called MIMETIC. MIMETIC overcomes performance
limitations by leveraging the diversity of traffic data and achieves superior performance
compared to existing single-modal deep learning-based traffic classification methods. It also
highlights the effectiveness of multimodal deep learning in classifying traffic by capturing
the characteristics of diverse traffic that carry information.

3. Proposed Method

In this chapter, we describe three multitasking learning methods that can learn rela-
tionships between tasks.

3.1. MTC-Based Traffic Classification
3.1.1. Single Task Single Inference

To compare with the proposed three multitask learning methods, we introduce the
ST–SI (Single Task–Single Inference) learning method used in existing application traffic
classification research. With ST–SI, a main classifier performs the main classification of
one task through a single classifier. As shown in Figure 3, ST–SI uses four independent
models for the four tasks of browser, protocol, service, and application. Figure 4a shows the
structure of the model that performs the browser classification using the extracted features
from the flow as the input to the backbone network. The output of the Figure 3a model is
one of the three classes of the browser task. Similarly, Figure 3b–d are models responsible
for each task, such as protocol, service, and application.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 19

(a) (b) (c) (d)

Figure 3. Overview of ST–SI (Single Task–Single Inference). (a) ST–SI-based browser classification;
(b) ST–SI-based browser classification; (c) ST–SI-based browser classification; and (d) ST–SI-based
browser classification.

3.1.2. Multitask
The first multitask learning method is MT (Multitask), which performs four main

classifications simultaneously through four main classifiers. As shown in Figure 4, a single
model is used to perform the four tasks of browser, protocol, service, and application. The
features extracted from the backbone network are input to each main classifier responsible
for the four tasks to predict a single class for each of the four tasks. In this case, each main
classifier has an error weight equal to 0.25, meaning that the model learns with equal effort
on all four tasks. There may be some common information between the four tasks, and
the interactions between them can complement each other and improve performance.
Also, by handling multiple tasks and learning common patterns, models that are more
robust and flexible for new tasks can be created.

Figure 4. Overview of MT (Multitask).

3.1.3. Multitask Single Inference
The second multitask learning method is MT–SI (Multitask–Single Inference), which

performs the pre-classification of four tasks simultaneously through four pre-classifiers.
Then, using the pre-classification results, a main classifier performs the main classification
of one task. As shown in Figure 5, the MT–SI learning method uses four independent
models for the four tasks of browser, protocol, service, and application. Figure 5a shows
the structure of the model that performs the browser classification using the extracted
features from the flow as input to the four pre-classifiers and one main classifier. Similarly,
Figure 5b–d are models responsible for each task, such as protocol, service, and applica-
tion. The error weight of the four pre-classifiers in the model is set to 0.1, and the main
classifier is set to 0.6. The spatial features generated by the backbone network are input to
the pre-classifiers to output classification results (probability of belonging to each class),

Figure 3. Overview of ST–SI (Single Task–Single Inference). (a) ST–SI-based browser classification;
(b) ST–SI-based browser classification; (c) ST–SI-based browser classification; and (d) ST–SI-based
browser classification.

Electronics 2023, 12, 3597 7 of 18

Electronics 2023, 12, x FOR PEER REVIEW 7 of 19

(a) (b) (c) (d)

Figure 3. Overview of ST–SI (Single Task–Single Inference). (a) ST–SI-based browser classification;
(b) ST–SI-based browser classification; (c) ST–SI-based browser classification; and (d) ST–SI-based
browser classification.

3.1.2. Multitask
The first multitask learning method is MT (Multitask), which performs four main

classifications simultaneously through four main classifiers. As shown in Figure 4, a single
model is used to perform the four tasks of browser, protocol, service, and application. The
features extracted from the backbone network are input to each main classifier responsible
for the four tasks to predict a single class for each of the four tasks. In this case, each main
classifier has an error weight equal to 0.25, meaning that the model learns with equal effort
on all four tasks. There may be some common information between the four tasks, and
the interactions between them can complement each other and improve performance.
Also, by handling multiple tasks and learning common patterns, models that are more
robust and flexible for new tasks can be created.

Figure 4. Overview of MT (Multitask).

3.1.3. Multitask Single Inference
The second multitask learning method is MT–SI (Multitask–Single Inference), which

performs the pre-classification of four tasks simultaneously through four pre-classifiers.
Then, using the pre-classification results, a main classifier performs the main classification
of one task. As shown in Figure 5, the MT–SI learning method uses four independent
models for the four tasks of browser, protocol, service, and application. Figure 5a shows
the structure of the model that performs the browser classification using the extracted
features from the flow as input to the four pre-classifiers and one main classifier. Similarly,
Figure 5b–d are models responsible for each task, such as protocol, service, and applica-
tion. The error weight of the four pre-classifiers in the model is set to 0.1, and the main
classifier is set to 0.6. The spatial features generated by the backbone network are input to
the pre-classifiers to output classification results (probability of belonging to each class),

Figure 4. Overview of MT (Multitask).

3.1.2. Multitask

The first multitask learning method is MT (Multitask), which performs four main
classifications simultaneously through four main classifiers. As shown in Figure 4, a single
model is used to perform the four tasks of browser, protocol, service, and application. The
features extracted from the backbone network are input to each main classifier responsible
for the four tasks to predict a single class for each of the four tasks. In this case, each main
classifier has an error weight equal to 0.25, meaning that the model learns with equal effort
on all four tasks. There may be some common information between the four tasks, and the
interactions between them can complement each other and improve performance. Also, by
handling multiple tasks and learning common patterns, models that are more robust and
flexible for new tasks can be created.

3.1.3. Multitask Single Inference

The second multitask learning method is MT–SI (Multitask–Single Inference), which
performs the pre-classification of four tasks simultaneously through four pre-classifiers.
Then, using the pre-classification results, a main classifier performs the main classification
of one task. As shown in Figure 5, the MT–SI learning method uses four independent
models for the four tasks of browser, protocol, service, and application. Figure 5a shows
the structure of the model that performs the browser classification using the extracted
features from the flow as input to the four pre-classifiers and one main classifier. Similarly,
Figure 5b–d are models responsible for each task, such as protocol, service, and application.
The error weight of the four pre-classifiers in the model is set to 0.1, and the main classifier
is set to 0.6. The spatial features generated by the backbone network are input to the
pre-classifiers to output classification results (probability of belonging to each class), which
are merged with the previously generated spatial features. The main classifier performs
the main task using the classification results and and spatial features of four pre-classifiers.
The common information shared among tasks extracted during the training process of the
pre-classifiers enhances the classification performance of the main classifier.

Electronics 2023, 12, 3597 8 of 18

Electronics 2023, 12, x FOR PEER REVIEW 8 of 19

which are merged with the previously generated spatial features. The main classifier per-
forms the main task using the classification results and and spatial features of four pre-
classifiers. The common information shared among tasks extracted during the training
process of the pre-classifiers enhances the classification performance of the main classifier.

(a) (b) (c) (d)

Figure 5. Overview of MT–SI (Multitask–Single Inference). (a) MT–SI-based browser classification;
(b) MT–SI-based browser classification; (c) MT–SI-based browser classification; and (d) MT–SI-
based browser classification.

3.1.4. Multitask Multi Inference
The third multitask learning method is MT–MI (Multitask–Multi Inference), which

performs the pre-classification of four tasks simultaneously through four pre-classifiers.
Then, using the pre-classification results, four main classifiers perform the main classifi-
cation of four tasks simultaneously. As shown in Figure 6, the MT–MI learning method
uses a single model for the four tasks of browser, protocol, service, and application. The
error weight of each pre-classifier in the model is set to 0.05, and each main classifier is set
to 0.2. The spatial features produced by the backbone network are input to the pre-classi-
fiers, which output pre-classification results for each task. The pre-classification results are
merged with the previously extracted spatial features and input to each main classifier to
perform the corresponding task. The MT–MI method differs from MT in that it performs
a brief pre-classification before performing each main classification and uses the results
when performing the main classification.

Figure 5. Overview of MT–SI (Multitask–Single Inference). (a) MT–SI-based browser classification;
(b) MT–SI-based browser classification; (c) MT–SI-based browser classification; and (d) MT–SI-based
browser classification.

3.1.4. Multitask Multi Inference

The third multitask learning method is MT–MI (Multitask–Multi Inference), which per-
forms the pre-classification of four tasks simultaneously through four pre-classifiers. Then,
using the pre-classification results, four main classifiers perform the main classification of
four tasks simultaneously. As shown in Figure 6, the MT–MI learning method uses a single
model for the four tasks of browser, protocol, service, and application. The error weight
of each pre-classifier in the model is set to 0.05, and each main classifier is set to 0.2. The
spatial features produced by the backbone network are input to the pre-classifiers, which
output pre-classification results for each task. The pre-classification results are merged
with the previously extracted spatial features and input to each main classifier to perform
the corresponding task. The MT–MI method differs from MT in that it performs a brief
pre-classification before performing each main classification and uses the results when
performing the main classification.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 19

Figure 6. Overview of MT–MI (Multitask–Multi Inference).

3.2. Dataset Description
This section describes the dataset collected for validating the proposed methodology.

When collecting data in a typical environment, traffic unrelated to the target web service
can be collected due to the background services that are running. Therefore, a Docker
platform that can be isolated from the host network is a good choice. The traffic dataset
was collected using Selenium in containers on a Docker platform and consists of six types
of web service traffic.

For the three additional tasks, apart from web service traffic, the labeling methods
are as follows:
• Service: labeled at the time of collection;
• Browser: labeled at the time of collection;
• HTTP protocol: check the HTTP version of the GET or POST method response header

when the protocol of the traffic flow is HTTP (perform the same process after decryp-
tion in the case of HTTPS);

• Application: check the Request URL for HTTP or the Service name indicator (SNI) in
the Transport Layer Security (TLS) layer for HTTPS.
The collected dataset consists of 10,497 bidirectional flows, and the task-specific dis-

tribution is shown in Figure 7. In this figure, the value of each pie is in the form; the num-
ber of bi-flows, its percentages. The browser task consists of Chrome, Edge, and Firefox,
with Chrome and Firefox accounting for a high percentage. The protocol task consists of
HTTP/1.1, HTTP/2, and HTTP/3, with HTTP/2 accounting for a high percentage. The ser-
vice task consists of Aladin, Amazon, Google, Nate, Naver, and YouTube, with all six account-
ing for an equal ratio. The application unit consists of Aladin, Amazon, Google, Nate, Naver,
YouTube, Microsoft, Mozilla, and Etc, with Google and Mozilla accounting for a high percent-
age. To prevent excessive granularity, labeling was performed for traffic that belongs to
major applications, and traffic that does not belong to the eight major applications was
assigned to the Etc class.

Figure 8 shows the protocol ratio by service, with most services primarily using
HTTP/2, but Aladin and Nate services have a relatively high percentage of using the
HTTP/1.1 protocol. Also, since the YouTube service uses the QUIC protocol, the percentage
of using the HTTP/3 protocol is high.

Figure 6. Overview of MT–MI (Multitask–Multi Inference).

Electronics 2023, 12, 3597 9 of 18

3.2. Dataset Description

This section describes the dataset collected for validating the proposed methodology.
When collecting data in a typical environment, traffic unrelated to the target web service
can be collected due to the background services that are running. Therefore, a Docker
platform that can be isolated from the host network is a good choice. The traffic dataset
was collected using Selenium in containers on a Docker platform and consists of six types
of web service traffic.

For the three additional tasks, apart from web service traffic, the labeling methods are
as follows:

• Service: labeled at the time of collection;
• Browser: labeled at the time of collection;
• HTTP protocol: check the HTTP version of the GET or POST method response header

when the protocol of the traffic flow is HTTP (perform the same process after decryp-
tion in the case of HTTPS);

• Application: check the Request URL for HTTP or the Service name indicator (SNI) in
the Transport Layer Security (TLS) layer for HTTPS.

The collected dataset consists of 10,497 bidirectional flows, and the task-specific distri-
bution is shown in Figure 7. In this figure, the value of each pie is in the form; the number
of bi-flows, its percentages. The browser task consists of Chrome, Edge, and Firefox, with
Chrome and Firefox accounting for a high percentage. The protocol task consists of HTTP/1.1,
HTTP/2, and HTTP/3, with HTTP/2 accounting for a high percentage. The service task
consists of Aladin, Amazon, Google, Nate, Naver, and YouTube, with all six accounting for an
equal ratio. The application unit consists of Aladin, Amazon, Google, Nate, Naver, YouTube,
Microsoft, Mozilla, and Etc, with Google and Mozilla accounting for a high percentage. To
prevent excessive granularity, labeling was performed for traffic that belongs to major
applications, and traffic that does not belong to the eight major applications was assigned
to the Etc class.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 19

Figure 9 shows the application ratio by browser, and the ratio of applications used
by the company that developed each browser is high.

Table 1 shows the application ratio by service, indicating that one or more applica-
tions are mixed within a single service traffic.

(a) (b) (c) (d)

Figure 7. The task-specific distribution. (a) Browser distribution. (b) Protocol distribution. (c) Ser-
vice distribution. (d) Application distribution.

Figure 8. The protocol ratio by service.

Figure 9. The browser ratio by service.

Table 1. The application ratio by service.

Service Aladin Amazon Google Nate Naver YouTube Microsoft Mozilla Etc

Aladin 1778 447 364 50 5 1 660 251
100% 25.1% 20.5% 2.8% 0.3% 0.1% 37.1% 14.1%

Amazon 1632 873 27 4 2 612 114
100% 53.5% 1.7% 0.2% 0.1% 37.5% 7

Google 1479 707 102 2 668

Figure 7. The task-specific distribution. (a) Browser distribution. (b) Protocol distribution. (c) Service
distribution. (d) Application distribution.

Figure 8 shows the protocol ratio by service, with most services primarily using
HTTP/2, but Aladin and Nate services have a relatively high percentage of using the
HTTP/1.1 protocol. Also, since the YouTube service uses the QUIC protocol, the percentage
of using the HTTP/3 protocol is high.

Figure 9 shows the application ratio by browser, and the ratio of applications used by
the company that developed each browser is high.

Table 1 shows the application ratio by service, indicating that one or more applications
are mixed within a single service traffic.

Electronics 2023, 12, 3597 10 of 18

Electronics 2023, 12, x FOR PEER REVIEW 10 of 19

Figure 9 shows the application ratio by browser, and the ratio of applications used
by the company that developed each browser is high.

Table 1 shows the application ratio by service, indicating that one or more applica-
tions are mixed within a single service traffic.

(a) (b) (c) (d)

Figure 7. The task-specific distribution. (a) Browser distribution. (b) Protocol distribution. (c) Ser-
vice distribution. (d) Application distribution.

Figure 8. The protocol ratio by service.

Figure 9. The browser ratio by service.

Table 1. The application ratio by service.

Service Aladin Amazon Google Nate Naver YouTube Microsoft Mozilla Etc

Aladin 1778 447 364 50 5 1 660 251
100% 25.1% 20.5% 2.8% 0.3% 0.1% 37.1% 14.1%

Amazon 1632 873 27 4 2 612 114
100% 53.5% 1.7% 0.2% 0.1% 37.5% 7

Google 1479 707 102 2 668

Figure 8. The protocol ratio by service.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 19

Figure 9 shows the application ratio by browser, and the ratio of applications used
by the company that developed each browser is high.

Table 1 shows the application ratio by service, indicating that one or more applica-
tions are mixed within a single service traffic.

(a) (b) (c) (d)

Figure 7. The task-specific distribution. (a) Browser distribution. (b) Protocol distribution. (c) Ser-
vice distribution. (d) Application distribution.

Figure 8. The protocol ratio by service.

Figure 9. The browser ratio by service.

Table 1. The application ratio by service.

Service Aladin Amazon Google Nate Naver YouTube Microsoft Mozilla Etc

Aladin 1778 447 364 50 5 1 660 251
100% 25.1% 20.5% 2.8% 0.3% 0.1% 37.1% 14.1%

Amazon 1632 873 27 4 2 612 114
100% 53.5% 1.7% 0.2% 0.1% 37.5% 7

Google 1479 707 102 2 668

Figure 9. The browser ratio by service.

Table 1. The application ratio by service.

Service Aladin Amazon Google Nate Naver YouTube Microsoft Mozilla Etc

Aladin
1778 447 364 50 5 1 660 251
100% 25.1% 20.5% 2.8% 0.3% 0.1% 37.1% 14.1%

Amazon
1632 873 27 4 2 612 114
100% 53.5% 1.7% 0.2% 0.1% 37.5% 7

Google 1479 707 102 2 668
100% 47.8% 6.9% 0.1% 45.2%

Nate
1788 1 76 537 10 2 597 565
100% 0.1% 4.2% 30% 0.6% 0.1% 33.4% 31.6%

Naver
1603 17 1022 101 451 12
100% 1.1% 63.8% 6.3% 28.1% 0.7%

YouTube
2217 1122 226 81 777 11
100% 50.6% 10.2% 3.7% 35% 0.5%

4. Experiments

In this chapter, we describe the parameters used in the experiments. The experiments
were performed with various parameters, and a total of 576 experiments were conducted
by combining five types of parameters.

The first parameter is the four learning methods described in the methodology. The
second parameter is the number of packets within a flow, which has three values of 4,
9, and 16. The third parameter is the packet size, which has four values of 324, 400, 484,
and 576 (bytes). The fourth parameter is the backbone network, which has four values of
LeNet, ResNet, HAST-IDS, and MISCNN. The four backbone networks are used as the
backbone network within each learning method during the experiments. HAST-IDS [20] is
an intrusion detection system that uses CNN to learn spatial features and LSTM to learn

Electronics 2023, 12, 3597 11 of 18

temporal features. MISCNN is a CNN-based service classification that utilizes various
input forms that can be derived from fixed-length packet bytes [19]. The fifth parameter is
the input form, which has three values: CP, MP, and MPG. CP (Concatenated Packet input)
is an input form that collects and merges the first N bytes of packets within a flow, and
extracts features by inputting them to the backbone network, as shown in Figure 10a. MP
(Multiple Packet input) is an input form that inputs the first N bytes of packets within a
flow to independent backbone networks, and merges the extracted features as shown in
Figure 10b. MPG (Multiple Packet input with GRU) has the same form as MP but considers
the temporal aspect of packets by inputting the extracted features to GRU, as shown in
Figure 10c. A total of 576 experiments are conducted by combining the five parameters.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 19

100% 47.8% 6.9% 0.1% 45.2%

Nate
1788 1 76 537 10 2 597 565
100% 0.1% 4.2% 30% 0.6% 0.1% 33.4% 31.6%

Naver
1603 17 1022 101 451 12
100% 1.1% 63.8% 6.3% 28.1% 0.7%

YouTube
2217 1122 226 81 777 11
100% 50.6% 10.2% 3.7% 35% 0.5%

4. Experiments
In this chapter, we describe the parameters used in the experiments. The experiments

were performed with various parameters, and a total of 576 experiments were conducted
by combining five types of parameters.

The first parameter is the four learning methods described in the methodology. The
second parameter is the number of packets within a flow, which has three values of 4, 9,
and 16. The third parameter is the packet size, which has four values of 324, 400, 484, and
576 (bytes). The fourth parameter is the backbone network, which has four values of Le-
Net, ResNet, HAST-IDS, and MISCNN. The four backbone networks are used as the back-
bone network within each learning method during the experiments. HAST-IDS [20] is an
intrusion detection system that uses CNN to learn spatial features and LSTM to learn tem-
poral features. MISCNN is a CNN-based service classification that utilizes various input
forms that can be derived from fixed-length packet bytes [19]. The fifth parameter is the
input form, which has three values: CP, MP, and MPG. CP (Concatenated Packet input) is
an input form that collects and merges the first N bytes of packets within a flow, and
extracts features by inputting them to the backbone network, as shown in Figure 10a. MP
(Multiple Packet input) is an input form that inputs the first N bytes of packets within a
flow to independent backbone networks, and merges the extracted features as shown in
Figure 10b. MPG (Multiple Packet input with GRU) has the same form as MP but consid-
ers the temporal aspect of packets by inputting the extracted features to GRU, as shown
in Figure 10c. A total of 576 experiments are conducted by combining the five parameters.

(a) CP (b) MP (c) MPG

Figure 10. Overview of flow input type. (a) Input type CP (Concatenated Packet Input); (b) input
type MP (Multiple Packet Input); and (c) input type MPG (Multiple Packet Input w/GRU).

5. Experiment Results
In this chapter, we focus on comparing the classification performance based on the

learning method, the number of packets within a flow, the packet size, the backbone net-
work, and the input type.

Figure 10. Overview of flow input type. (a) Input type CP (Concatenated Packet Input); (b) input
type MP (Multiple Packet Input); and (c) input type MPG (Multiple Packet Input w/GRU).

5. Experiment Results

In this chapter, we focus on comparing the classification performance based on the
learning method, the number of packets within a flow, the packet size, the backbone
network, and the input type.

5.1. Comparison of Task Performance According to Parameters
5.1.1. MT Method and Backbone Network

Figure 11 represents the browser classification accuracy based on the multitask ap-
proach and backbone network. Figure 11a shows the highest accuracy achieved when
applying different experimental parameters to a fixed multitask approach and backbone
network. From the perspective of the multitasking approach, methods that utilize the multi-
tasking approach generally achieve higher accuracy compared to the single-task approach,
except for when using the Resnet backbone. In terms of the backbone network, Resnet
consistently demonstrates good results in browser classification, with the combination
of Resnet and MT–SI showing the highest accuracy. Figure 11b represents the standard
deviation of the accuracy for combinations of different experimental parameters applied to
a fixed multitask approach and backbone network. Overall, experiments that apply the
multitask approach tend to have lower standard deviations, indicating that providing prior
information to the model is beneficial for generalization. Figure 12 represents the accuracy
of HTTP protocol classification based on different multitask approaches and backbone
networks. In terms of multitask approaches, except for the case with the Lenet backbone,
the method with the application of MT-SI shows higher accuracy. In terms of backbone
networks, MISCNN demonstrates overall better results in protocol classification.

Electronics 2023, 12, 3597 12 of 18

Electronics 2023, 12, x FOR PEER REVIEW 12 of 19

5.1. Comparison of Task Performance According to Parameters
5.1.1. MT Method and Backbone Network

Figure 11 represents the browser classification accuracy based on the multitask ap-
proach and backbone network. Figure 11a shows the highest accuracy achieved when ap-
plying different experimental parameters to a fixed multitask approach and backbone net-
work. From the perspective of the multitasking approach, methods that utilize the multi-
tasking approach generally achieve higher accuracy compared to the single-task ap-
proach, except for when using the Resnet backbone. In terms of the backbone network,
Resnet consistently demonstrates good results in browser classification, with the combi-
nation of Resnet and MT–SI showing the highest accuracy. Figure 11b represents the
standard deviation of the accuracy for combinations of different experimental parameters
applied to a fixed multitask approach and backbone network. Overall, experiments that
apply the multitask approach tend to have lower standard deviations, indicating that
providing prior information to the model is beneficial for generalization. Figure 12 repre-
sents the accuracy of HTTP protocol classification based on different multitask approaches
and backbone networks. In terms of multitask approaches, except for the case with the
Lenet backbone, the method with the application of MT-SI shows higher accuracy. In
terms of backbone networks, MISCNN demonstrates overall better results in protocol clas-
sification.

Figure 13 represents the accuracy of service classification based on different multitask
approaches and backbone networks. In terms of multitask approaches, except for the case
with the Lenet backbone, the method with the application of multitask approaches shows
higher accuracy. In terms of backbone networks, HAST-IDS demonstrates overall better
results in service classification.

Figure 14 illustrates the accuracy of application classification based on different mul-
titask approaches and backbone networks. Except for the MISCNN backbone, single-task
approaches show better performance. However, it can be observed that when applying
multitask approaches, the model’s variance is not significant.

(a) (b)

Figure 11. Browser classification accuracy according to the MT method and backbone network. (a)
The highest accuracy among the combinations of experimental parameters; (b) standard deviation
of the results within the combination. (a) Best accuracy. (b) The standard deviation of accuracies.

Figure 11. Browser classification accuracy according to the MT method and backbone network.
(a) The highest accuracy among the combinations of experimental parameters; (b) standard deviation
of the results within the combination. (a) Best accuracy. (b) The standard deviation of accuracies.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 19

(a) (b)

Figure 12. Protocol classification accuracy according to the MT method and backbone network. (a)
Best accuracy. (b) The standard deviation of accuracies.

(a) (b)

Figure 13. Service classification accuracy according to the MT method and backbone network. (a)
Best accuracy. (b) The standard deviation of accuracies.

(a) (b)

Figure 14. Application classification accuracy according to the MT method and backbone network.
(a) Best accuracy. (b) The standard deviation of accuracies.

5.1.2. Performance Comparison by the Number of Tasks
This section describes the performance comparison based on the number of tasks as

an additional experiment. Assuming that tasks are not completely independent and have
relationships with each other, we compare the performance based on the number of tasks
to demonstrate more accurately the classification of other tasks by utilizing the relation-
ships between tasks. We conduct experiments to see if the service classification accuracy
improves when the service task is trained with other tasks. To compare the service classi-
fication accuracy, the service task is included in all experimental cases. The performance
results based on the number of tasks are shown in Table 2. We can observe that the service
classification accuracy improves when the service and application tasks are trained sim-
ultaneously and when the service, browser, protocol, and application tasks are trained
simultaneously. In other words, when training with the application task included, the ser-
vice classification accuracy improves. Furthermore, we can confirm that the service clas-
sification accuracy is the highest when all four tasks are trained simultaneously. Thus, we

Figure 12. Protocol classification accuracy according to the MT method and backbone network.
(a) Best accuracy. (b) The standard deviation of accuracies.

Figure 13 represents the accuracy of service classification based on different multitask
approaches and backbone networks. In terms of multitask approaches, except for the case
with the Lenet backbone, the method with the application of multitask approaches shows
higher accuracy. In terms of backbone networks, HAST-IDS demonstrates overall better
results in service classification.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 19

(a) (b)

Figure 12. Protocol classification accuracy according to the MT method and backbone network. (a)
Best accuracy. (b) The standard deviation of accuracies.

(a) (b)

Figure 13. Service classification accuracy according to the MT method and backbone network. (a)
Best accuracy. (b) The standard deviation of accuracies.

(a) (b)

Figure 14. Application classification accuracy according to the MT method and backbone network.
(a) Best accuracy. (b) The standard deviation of accuracies.

5.1.2. Performance Comparison by the Number of Tasks
This section describes the performance comparison based on the number of tasks as

an additional experiment. Assuming that tasks are not completely independent and have
relationships with each other, we compare the performance based on the number of tasks
to demonstrate more accurately the classification of other tasks by utilizing the relation-
ships between tasks. We conduct experiments to see if the service classification accuracy
improves when the service task is trained with other tasks. To compare the service classi-
fication accuracy, the service task is included in all experimental cases. The performance
results based on the number of tasks are shown in Table 2. We can observe that the service
classification accuracy improves when the service and application tasks are trained sim-
ultaneously and when the service, browser, protocol, and application tasks are trained
simultaneously. In other words, when training with the application task included, the ser-
vice classification accuracy improves. Furthermore, we can confirm that the service clas-
sification accuracy is the highest when all four tasks are trained simultaneously. Thus, we

Figure 13. Service classification accuracy according to the MT method and backbone network.
(a) Best accuracy. (b) The standard deviation of accuracies.

Figure 14 illustrates the accuracy of application classification based on different multi-
task approaches and backbone networks. Except for the MISCNN backbone, single-task
approaches show better performance. However, it can be observed that when applying
multitask approaches, the model’s variance is not significant.

Electronics 2023, 12, 3597 13 of 18

Electronics 2023, 12, x FOR PEER REVIEW 13 of 19

(a) (b)

Figure 12. Protocol classification accuracy according to the MT method and backbone network. (a)
Best accuracy. (b) The standard deviation of accuracies.

(a) (b)

Figure 13. Service classification accuracy according to the MT method and backbone network. (a)
Best accuracy. (b) The standard deviation of accuracies.

(a) (b)

Figure 14. Application classification accuracy according to the MT method and backbone network.
(a) Best accuracy. (b) The standard deviation of accuracies.

5.1.2. Performance Comparison by the Number of Tasks
This section describes the performance comparison based on the number of tasks as

an additional experiment. Assuming that tasks are not completely independent and have
relationships with each other, we compare the performance based on the number of tasks
to demonstrate more accurately the classification of other tasks by utilizing the relation-
ships between tasks. We conduct experiments to see if the service classification accuracy
improves when the service task is trained with other tasks. To compare the service classi-
fication accuracy, the service task is included in all experimental cases. The performance
results based on the number of tasks are shown in Table 2. We can observe that the service
classification accuracy improves when the service and application tasks are trained sim-
ultaneously and when the service, browser, protocol, and application tasks are trained
simultaneously. In other words, when training with the application task included, the ser-
vice classification accuracy improves. Furthermore, we can confirm that the service clas-
sification accuracy is the highest when all four tasks are trained simultaneously. Thus, we

Figure 14. Application classification accuracy according to the MT method and backbone network.
(a) Best accuracy. (b) The standard deviation of accuracies.

5.1.2. Performance Comparison by the Number of Tasks

This section describes the performance comparison based on the number of tasks
as an additional experiment. Assuming that tasks are not completely independent and
have relationships with each other, we compare the performance based on the number
of tasks to demonstrate more accurately the classification of other tasks by utilizing the
relationships between tasks. We conduct experiments to see if the service classification
accuracy improves when the service task is trained with other tasks. To compare the
service classification accuracy, the service task is included in all experimental cases. The
performance results based on the number of tasks are shown in Table 2. We can observe
that the service classification accuracy improves when the service and application tasks are
trained simultaneously and when the service, browser, protocol, and application tasks are
trained simultaneously. In other words, when training with the application task included,
the service classification accuracy improves. Furthermore, we can confirm that the service
classification accuracy is the highest when all four tasks are trained simultaneously. Thus,
we can see that the service classification task’s accuracy improves when trained with
other tasks.

Table 2. The average accuracy comparison by the number of tasks.

Task
Accuracy (Service)

Service Browser Protocol Application
√

86.124% ± 0.541%
√ √

88.698% ± 0.723%
√ √

89.028% ± 0.613%
√ √

90.357% ± 0.568%
√ √ √

89.52% ± 1.195%
√ √ √

89.81% ± 0.733%
√ √ √

90.286% ± 0.735%
√ √ √ √

90.512% ± 0.827%

5.2. Ablation Study
5.2.1. Number of Packets and Backbone Network

Figure 15 illustrates the difference in accuracy based on the change in packet count. In
browser and service classification, the accuracy increases as the packet count increases. On
the other hand, in protocol and application classification, the accuracy remains similar or
decreases as the packet count increases. These results show a consistent trend regardless of
the backbone network used.

Electronics 2023, 12, 3597 14 of 18

Electronics 2023, 12, x FOR PEER REVIEW 14 of 19

can see that the service classification task’s accuracy improves when trained with other
tasks.

Table 2. The average accuracy comparison by the number of tasks.

Task
Accuracy (Service)

Service Browser Protocol Application
√ 86.124% ± 0.541%
√ √ 88.698% ± 0.723%
√ √ 89.028% ± 0.613%
√ √ 90.357% ± 0.568%
√ √ √ 89.52% ± 1.195%
√ √ √ 89.81% ± 0.733%
√ √ √ 90.286% ± 0.735%
√ √ √ √ 90.512% ± 0.827%

5.2. Ablation Study
5.2.1. Number of Packets and Backbone Network

Figure 15 illustrates the difference in accuracy based on the change in packet count.
In browser and service classification, the accuracy increases as the packet count increases.
On the other hand, in protocol and application classification, the accuracy remains similar
or decreases as the packet count increases. These results show a consistent trend regard-
less of the backbone network used.

Figure 15. Task-specific classification accuracy based on the number of packets and backbone net-
work.

5.2.2. Packet Length and Backbone Network
Figure 16 illustrates the difference in accuracy based on the change in packet length.

Except for Lenet, there is not a significant variation in accuracy based on the packet length.

Figure 16. Task-specific classification accuracy based on packet length and backbone network.

Figure 15. Task-specific classification accuracy based on the number of packets and backbone network.

5.2.2. Packet Length and Backbone Network

Figure 16 illustrates the difference in accuracy based on the change in packet length.
Except for Lenet, there is not a significant variation in accuracy based on the packet length.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 19

can see that the service classification task’s accuracy improves when trained with other
tasks.

Table 2. The average accuracy comparison by the number of tasks.

Task
Accuracy (Service)

Service Browser Protocol Application
√ 86.124% ± 0.541%
√ √ 88.698% ± 0.723%
√ √ 89.028% ± 0.613%
√ √ 90.357% ± 0.568%
√ √ √ 89.52% ± 1.195%
√ √ √ 89.81% ± 0.733%
√ √ √ 90.286% ± 0.735%
√ √ √ √ 90.512% ± 0.827%

5.2. Ablation Study
5.2.1. Number of Packets and Backbone Network

Figure 15 illustrates the difference in accuracy based on the change in packet count.
In browser and service classification, the accuracy increases as the packet count increases.
On the other hand, in protocol and application classification, the accuracy remains similar
or decreases as the packet count increases. These results show a consistent trend regard-
less of the backbone network used.

Figure 15. Task-specific classification accuracy based on the number of packets and backbone net-
work.

5.2.2. Packet Length and Backbone Network
Figure 16 illustrates the difference in accuracy based on the change in packet length.

Except for Lenet, there is not a significant variation in accuracy based on the packet length.

Figure 16. Task-specific classification accuracy based on packet length and backbone network. Figure 16. Task-specific classification accuracy based on packet length and backbone network.

5.2.3. Input Type and Backbone Network

Figure 17 represents the difference in accuracy based on the input type. In Lenet and
Resnet, there is not a significant variation in accuracy based on the input type. However, in
HAST-IDS and MISCNN, MPG generally exhibits higher accuracy in most tasks.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 19

5.2.3. Input Type and Backbone Network
Figure 17 represents the difference in accuracy based on the input type. In Lenet and

Resnet, there is not a significant variation in accuracy based on the input type. However,
in HAST-IDS and MISCNN, MPG generally exhibits higher accuracy in most tasks.

Figure 17. Task-specific classification accuracy based on input type and backbone.

5.2.4. Overall
Task-specific overall results based on parameters are shown in Table 3. The following

table summarizes the parameters of the model that show the highest performance for each
task and backbone network. The multitask learning-based model shows high classifica-
tion accuracy in the browser, protocol, service, and application tasks, with high accuracy
mainly observed between packet lengths of 9 and 16. High accuracy is also observed be-
tween packet sizes of 400 and 576, with MP or MPG input type showing high accuracy.
When using the multitask learning method for all task classifications, higher classification
accuracy is achieved than the conventional ST–SI learning method.

Table 3. Best task-specific classification accuracy based on parameters. LN: Lenet; RN: Resnet; HI:
HAST-IDS; MC: MISCNN; NP: number of packets; PL: packet length; IT: input type; MT: MT
method.

Browser Protocol Service Application

LN RN HI MC LN RN HI MC LN RN HI MC LN RN HI MC
NP 16 16 16 16 16 16 16 16 9 4 4 4 16 9 or 16 9 16

PL 576 576 484 324 400 400 324 576 484 576 576 324 484
400 or

576 484 400

IT MPG CP MPG CP MPG CP MPG CP MP CP MPG MPG MP
MP or
MPG MPG MPG

MT MTSI MTSI MTSI MTSI STSI MTSI MTSI MTSI STSI MTSI MT MT MTSI
MT or
MTSI MTSI MTSI

Acc 0.965 0.97 0.964 0.965 0.994 0.994 0.993 0.994 0.866 0.89 0.909 0.898 0.958 0.957 0.965 0.972

5.2.5. Confusion Matrix for the Service Task
This section compares the confusion matrices of the service task for ST–SI and MT

learning methods. Figure 18a shows the confusion matrix of the service task for the ST–SI
learning method. The horizontal axis represents the actual labels, and the vertical axis
represents the predicted labels. The result of predicting YouTube as Aladin in the service
task classification using the ST–SI learning method is 8.5, which can be predicted to be a
misclassification due to the YouTube streaming API call in the Aladin product description.
Figure 18b shows the confusion matrix of the service task for the MT learning method.
The result of predicting YouTube as Aladin in the service task classification using the MT
learning method is 1.2, which has a lower probability of misclassification than the ST–SI
learning method. In addition, the result of predicting YouTube as Google in the service task

Figure 17. Task-specific classification accuracy based on input type and backbone.

5.2.4. Overall

Task-specific overall results based on parameters are shown in Table 3. The following
table summarizes the parameters of the model that show the highest performance for each
task and backbone network. The multitask learning-based model shows high classification
accuracy in the browser, protocol, service, and application tasks, with high accuracy mainly
observed between packet lengths of 9 and 16. High accuracy is also observed between
packet sizes of 400 and 576, with MP or MPG input type showing high accuracy. When
using the multitask learning method for all task classifications, higher classification accuracy
is achieved than the conventional ST–SI learning method.

Electronics 2023, 12, 3597 15 of 18

Table 3. Best task-specific classification accuracy based on parameters. LN: Lenet; RN: Resnet; HI:
HAST-IDS; MC: MISCNN; NP: number of packets; PL: packet length; IT: input type; MT: MT method.

Browser Protocol Service Application

LN RN HI MC LN RN HI MC LN RN HI MC LN RN HI MC

NP 16 16 16 16 16 16 16 16 9 4 4 4 16 9 or 16 9 16

PL 576 576 484 324 400 400 324 576 484 576 576 324 484 400 or 576 484 400

IT MPG CP MPG CP MPG CP MPG CP MP CP MPG MPG MP MP or MPG MPG MPG

MT MTSI MTSI MTSI MTSI STSI MTSI MTSI MTSI STSI MTSI MT MT MTSI MT or MTSI MTSI MTSI

Acc 0.965 0.97 0.964 0.965 0.994 0.994 0.993 0.994 0.866 0.89 0.909 0.898 0.958 0.957 0.965 0.972

5.2.5. Confusion Matrix for the Service Task

This section compares the confusion matrices of the service task for ST–SI and MT
learning methods. Figure 18a shows the confusion matrix of the service task for the ST–SI
learning method. The horizontal axis represents the actual labels, and the vertical axis
represents the predicted labels. The result of predicting YouTube as Aladin in the service
task classification using the ST–SI learning method is 8.5, which can be predicted to be a
misclassification due to the YouTube streaming API call in the Aladin product description.
Figure 18b shows the confusion matrix of the service task for the MT learning method.
The result of predicting YouTube as Aladin in the service task classification using the MT
learning method is 1.2, which has a lower probability of misclassification than the ST–SI
learning method. In addition, the result of predicting YouTube as Google in the service
task classification using the ST–SI learning method is 5.7, which can be predicted to be
a misclassification due to similar traffic between Google and YouTube as they belong to
the same company’s platform. The result of predicting YouTube as Google in the service
task classification using the MT learning method is 0.6, which has a lower probability of
misclassification than the ST–SI learning method. The service task confusion matrix shows
that the misclassification of YouTube into other classes has been improved. Figure 19a shows
the confusion matrix of the application task for the ST–SI learning method. The result of
predicting Google as YouTube in the application task classification using the ST–SI learning
method is 54.6, which can be predicted to be a misclassification due to similar traffic
between Google and YouTube as they belong to the same company’s platform. Figure 19b
shows the confusion matrix of the application task for the MT learning method. The result
of predicting Google as YouTube in the application task classification using the MT learning
method is 25.8, which has a lower probability of misclassification than the ST–SI learning
method. The application task confusion matrix shows that the misclassification of Google
into YouTube has been improved.

Electronics 2023, 12, 3597 16 of 18

Electronics 2023, 12, x FOR PEER REVIEW 16 of 19

classification using the ST–SI learning method is 5.7, which can be predicted to be a mis-
classification due to similar traffic between Google and YouTube as they belong to the same
company’s platform. The result of predicting YouTube as Google in the service task classi-
fication using the MT learning method is 0.6, which has a lower probability of misclassifi-
cation than the ST–SI learning method. The service task confusion matrix shows that the
misclassification of YouTube into other classes has been improved. Figure 19a shows the
confusion matrix of the application task for the ST–SI learning method. The result of pre-
dicting Google as YouTube in the application task classification using the ST–SI learning
method is 54.6, which can be predicted to be a misclassification due to similar traffic be-
tween Google and YouTube as they belong to the same company’s platform. Figure 19b
shows the confusion matrix of the application task for the MT learning method. The result
of predicting Google as YouTube in the application task classification using the MT learning
method is 25.8, which has a lower probability of misclassification than the ST–SI learning
method. The application task confusion matrix shows that the misclassification of Google
into YouTube has been improved.

(a) (b)

Figure 18. Confusion matrix for the service task. (a) Confusion matrix for the service task of ST–SI;
(b) confusion matrix for the service task of MT–SI.

(a) (b)

Figure 19. Confusion matrix for the application task. (a) Confusion matrix for the application task
of ST–SI; (b) confusion matrix for the application task of MT–SI.

Figure 18. Confusion matrix for the service task. (a) Confusion matrix for the service task of ST–SI;
(b) confusion matrix for the service task of MT–SI.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 19

classification using the ST–SI learning method is 5.7, which can be predicted to be a mis-
classification due to similar traffic between Google and YouTube as they belong to the same
company’s platform. The result of predicting YouTube as Google in the service task classi-
fication using the MT learning method is 0.6, which has a lower probability of misclassifi-
cation than the ST–SI learning method. The service task confusion matrix shows that the
misclassification of YouTube into other classes has been improved. Figure 19a shows the
confusion matrix of the application task for the ST–SI learning method. The result of pre-
dicting Google as YouTube in the application task classification using the ST–SI learning
method is 54.6, which can be predicted to be a misclassification due to similar traffic be-
tween Google and YouTube as they belong to the same company’s platform. Figure 19b
shows the confusion matrix of the application task for the MT learning method. The result
of predicting Google as YouTube in the application task classification using the MT learning
method is 25.8, which has a lower probability of misclassification than the ST–SI learning
method. The application task confusion matrix shows that the misclassification of Google
into YouTube has been improved.

(a) (b)

Figure 18. Confusion matrix for the service task. (a) Confusion matrix for the service task of ST–SI;
(b) confusion matrix for the service task of MT–SI.

(a) (b)

Figure 19. Confusion matrix for the application task. (a) Confusion matrix for the application task
of ST–SI; (b) confusion matrix for the application task of MT–SI.
Figure 19. Confusion matrix for the application task. (a) Confusion matrix for the application task of
ST–SI; (b) confusion matrix for the application task of MT–SI.

6. Conclusions

This paper proposes a multitask learning method for application traffic classification
using the relationships between browser, protocol, service, and application tasks. Three
multitask learning methods, Multitask, Multitask Single Inference, and Multitask Multi-
Inference, are proposed according to the pre-classification status and the number of main
classifications. The experimental results show that more accurate application traffic classifi-
cation can be achieved by utilizing the relationships between tasks. The practicality of the
proposed learning methods has been demonstrated through experiments, and accuracy
has been improved by 4.4%p on average while maintaining real-time performance. This
means that simple model improvements allow network administrators to obtain more ac-
curate classification results without further consideration of the resources of the hardware
on which the existing classification model is installed. Specifically, experimental results
suggest that if a service is called with another application that does not belong to it, it

Electronics 2023, 12, 3597 17 of 18

is likely to be misclassified in terms of service classification, and that the combination of
service and application tasks solves this problem. In addition, applications provided in
the form of APIs by Google appear to be confusing in classifying other services, but this
is also mitigated by the application of multitask learning. Although the combination of
service and application tasks has shown high classification accuracy improvements, there
is also a small improvement in the combination with the proposed browser and protocol
tasks. Also, the multitask learning method can provide accurate and detailed classification
results for application traffic, making it widely applicable for various purposes of traffic
analysis. Network administrators can receive classification results about the browser (96.5%
accuracy), protocol (99.4% accuracy), service (90.9%), and application (97.2% accuracy)
of web traffic. Moreover, the experimental results show that the proposed method can
be applied to various existing research models. Furthermore, the proposed generalized
method of multitasking learning can be combined with state-of-the-art high-performance
classification models and has shown high performance in combination with the four back-
bone networks presented in this study. In future research, we plan to improve the multitask
learning method to achieve higher performance by analyzing which classes are difficult
to classify in the browser, protocol, service, and application tasks. Several limitations are
set for future research. First, the consideration of the gradient conflict problem that may
arise in multitask learning has not been addressed. The model’s parameters need to be
adjusted to satisfy the loss functions for various tasks simultaneously, but the loss functions
of different tasks typically have gradients in different directions, which can degrade the
performance of multitask learning or make the learning process more difficult. Therefore,
there is a need to improve performance through appropriate techniques such as weight
sharing or adjustment of loss functions [24]. Second, optimization of the backbone network
is another challenge. The backbone network used in this study was only employed to
validate multitask learning through newly proposed tasks, so there is a need for model
structure adjustments and various parameter adjustments to enhance its capabilities.

Author Contributions: Conceptualization, M.-S.K.; methodology, U.-J.B.; software, B.K.; validation,
B.K.; formal analysis, U.-J.B.; investigation, J.-T.P. and J.-W.C.; resources, B.K., J.-T.P. and J.-W.C.;
data curation, U.-J.B.; writing—original draft preparation, U.-J.B. and B.K.; writing—review and
editing, U.-J.B. and M.-S.K.; visualization, J.-W.C.; supervision, M.-S.K.; project administration,
M.-S.K.; funding acquisition, M.-S.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Technology Innovation Program grant funded By the
Ministry of Trade, Industry and Energy (MOTIE, Republic of Korea) and the Korea Evaluation
Institute of Industrial Technology (KEIT) (No. 20008902, Development of SaaS SW Management
Platform based on 5Channel Discovery technology for IT Cost Saving) and was supported by
“Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education (MOE) (2021RIS-004).

Data Availability Statement: The dataset and codes presented in this study are available in re-
quest from the primary author https://github.com/pb1069/A-Multi-task-Classification-Method-for-
Application-Traffic-Classification-Using-Task-Relationships (accessed on 20 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. GITNUX. Internet Traffic Statistics And Trends in 2023. Available online: https://blog.gitnux.com/internet-traffic-statistics/

(accessed on 7 August 2023).
2. Azab, A.; Khasawneh, M.; Alrabaee, S.; Choo, K.-K.R.; Sarsour, M. Network traffic classification: Techniques, datasets, and

challenges. Digit. Commun. Netw. 2022, in press. [CrossRef]
3. Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
4. Thung, K.-H.; Wee, C.-Y. A brief review on multi-task learning. Multimed. Tools Appl. 2018, 77, 29705–29725. [CrossRef]
5. Zhao, Y.; Chen, J.; Wu, D.; Teng, J.; Yu, S. Multi-Task Network Anomaly Detection Using Federated Learning. In Proceedings

of the 10th International Symposium on Information and Communication Technology, Hanoi, Vietnam, 4–6 December 2019;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 273–279.

https://github.com/pb1069/A-Multi-task-Classification-Method-for-Application-Traffic-Classification-Using-Task-Relationships
https://github.com/pb1069/A-Multi-task-Classification-Method-for-Application-Traffic-Classification-Using-Task-Relationships
https://blog.gitnux.com/internet-traffic-statistics/
https://doi.org/10.1016/j.dcan.2022.09.009
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1007/s11042-018-6463-x

Electronics 2023, 12, 3597 18 of 18

6. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In Proceedings of the International Conference on Information Systems Security and Privacy, Funchal, Portugal,
22–24 January 2018; Volume 1, pp. 108–116.

7. Draper-Gil, G.; Lashkari, A.H.; Mamun MS, I.; Ghorbani, A.A. Characterization of Encrypted and VPN Traffic Using Time-Related
Features. In Proceedings of the 2nd International Conference on Information Systems Security and Privacy, Rome, Italy, 19–21
February 2016; SCITEPRESS—Science and and Technology Publications: Rome, Italy, 2016; pp. 407–414.

8. Lashkari, A.H.; Gil, G.D.; Mamun MS, I.; Ghorbani, A.A. Characterization of tor traffic using time based features. In Proceedings
of the International Conference on Information Systems Security and Privacy, Porto, Portugal, 19–21 February 2017; SciTePress:
Setúbal, Portugal, 2017; pp. 253–262.

9. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A. DISTILLER: Encrypted Traffic Classification via Multimodal Multitask Deep
Learning. J. Netw. Comput. Appl. 2021, 183–184, 102985. [CrossRef]

10. Rezaei, S.; Liu, X. Multitask Learning for Network Traffic Classification. In Proceedings of the 2020 29th International Conference
on Computer Communications and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020; pp. 1–9.

11. Husák, M.; Čermák, M.; Jirsík, T.; Čeleda, P. HTTPS Traffic Analysis and Client Identification Using Passive SSL/TLS Fingerprint-
ing. Eurasip J. Info. Secur. 2016, 2016, 6. [CrossRef]

12. Li, K.; Lang, B.; Liu, H.; Chen, S. SSL/TLS Encrypted Traffic Application Layer Protocol and Service Classification. In Proceedings
of the Embedded Systems and Applications, Academy and Industry Research Collaboration Center (AIRCC), Vienna, Austria, 26
March 2022; pp. 237–252.

13. Hwang, R.-H.; Peng, M.-C.; Huang, C.-W.; Lin, P.-C.; Nguyen, V.-L. An Unsupervised Deep Learning Model for Early Network
Traffic Anomaly Detection. IEEE Access 2020, 8, 30387–30399. [CrossRef]

14. Ullah, I.; Mahmoud, Q.H. Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks.
IEEE Access 2021, 9, 103906–103926. [CrossRef]

15. Su, T.; Sun, H.; Zhu, J.; Wang, S.; Li, Y. BAT: Deep Learning Methods on Network Intrusion Detection Using NSL-KDD Dataset.
IEEE Access 2020, 8, 29575–29585. [CrossRef]

16. Hu, H.; Zhou, G.-T.; Deng, Z.; Liao, Z.; Mori, G. Learning Structured Inference Neural Networks with Label Relations. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; IEEE: Las Vegas, NV, USA, 2016; pp. 2960–2968.

17. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

19. Baek, U.; Kim, B.; Park, J.; Choi, J.; Kim, M. MISCNN: A Novel Learning Scheme for CNN-Based Network Traffic Classification.
In Proceedings of the 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS), Takamatsu, Japan,
28–30 September 2022; pp. 1–6.

20. Wang, W.; Sheng, Y.; Wang, J.; Zeng, X.; Ye, X.; Huang, Y.; Zhu, M. HAST-IDS: Learning Hierarchical Spatial-Temporal Features
Using Deep Neural Networks to Improve Intrusion Detection. IEEE Access 2018, 6, 1792–1806. [CrossRef]

21. Learning Representations by Back-Propagating Errors|Nature. Available online: https://www.nature.com/articles/323533a0
(accessed on 16 July 2023).

22. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078.

23. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapè, A. MIMETIC: Mobile Encrypted Traffic Classification Using Multimodal Deep
Learning. Comput. Netw. 2019, 165, 106944. [CrossRef]

24. Liu, B.; Liu, X.; Jin, X.; Stone, P.; Liu, Q. Conflict-averse gradient descent for multi-task learning. Adv. Neural Inf. Process. Syst.
2021, 34, 18878–18890.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jnca.2021.102985
https://doi.org/10.1186/s13635-016-0030-7
https://doi.org/10.1109/ACCESS.2020.2973023
https://doi.org/10.1109/ACCESS.2021.3094024
https://doi.org/10.1109/ACCESS.2020.2972627
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ACCESS.2017.2780250
https://www.nature.com/articles/323533a0
https://doi.org/10.1016/j.comnet.2019.106944

	Introduction
	Related Works
	Task Description
	Classification Type
	Structured Inference Neural Network
	DL-Based Spatial-Temporal Feature Extraction
	MTC-Based Traffic Classification

	Proposed Method
	MTC-Based Traffic Classification
	Single Task Single Inference
	Multitask
	Multitask Single Inference
	Multitask Multi Inference

	Dataset Description

	Experiments
	Experiment Results
	Comparison of Task Performance According to Parameters
	MT Method and Backbone Network
	Performance Comparison by the Number of Tasks

	Ablation Study
	Number of Packets and Backbone Network
	Packet Length and Backbone Network
	Input Type and Backbone Network
	Overall
	Confusion Matrix for the Service Task

	Conclusions
	References

