
Citation: Ayankoso, S.; Olejnik, P.

Time-Series Machine Learning

Techniques for Modeling and

Identification of Mechatronic Systems

with Friction: A Review and Real

Application. Electronics 2023, 12, 3669.

https://doi.org/10.3390/

electronics12173669

Academic Editor: Ping-Feng Pai

Received: 31 July 2023

Revised: 22 August 2023

Accepted: 28 August 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Time-Series Machine Learning Techniques for Modeling and
Identification of Mechatronic Systems with Friction: A Review
and Real Application
Samuel Ayankoso 1,† and Paweł Olejnik 2,*,†

1 Centre for Efficiency and Performance Engineering, University of Huddersfield, Queensgate,
Huddersfield HD1 3DH, UK; samuel.ayankoso@hud.ac.uk

2 Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology,
1/15 Stefanowski Street, 90-537 Lodz, Poland

* Correspondence: pawel.olejnik@p.lodz.pl
† These authors contributed equally to this work.

Abstract: Developing accurate dynamic models for various systems is crucial for optimization,
control, fault diagnosis, and prognosis. Recent advancements in information technologies and
computing platforms enable the acquisition of input–output data from dynamical systems, resulting in
a shift from physics-based methods to data-driven techniques in science and engineering. This review
examines different data-driven modeling approaches applied to the identification of mechanical and
electronic systems. The approaches encompass various neural networks (NNs), like the feedforward
neural network (FNN), convolutional neural network (CNN), long short-term memory (LSTM),
transformer, and emerging machine learning (ML) techniques, such as the physics-informed neural
network (PINN) and sparse identification of nonlinear dynamics (SINDy). The main focus is placed
on applying these techniques to real-world problems. A real application is presented to demonstrate
the effectiveness of different machine learning techniques, namely, FNN, CNN, LSTM, transformer,
SINDy, and PINN, in data-driven modeling and the identification of a geared DC motor. The results
show that the considered ML techniques (traditional and state-of-the-art methods) perform well
in predicting the behavior of such a classic dynamical system. Furthermore, SINDy and PINN
models stand out for their interpretability compared to the other data-driven models examined. Our
findings explicitly show the satisfactory predictive performance of six different ML models while
also highlighting their pros and cons, such as interpretability and computational complexity, using
a real-world case study. The developed models have various applications and potential research
areas are discussed.

Keywords: machine learning; neural networks; dynamic modeling; physics-based model;
data-driven model; system identification; mechatronic system

1. Introduction

The development of an accurate dynamic model is crucial for the purpose of opti-
mization, control, fault diagnosis, and prognosis [1–3]. There are three main modeling
approaches for dynamic systems: the physics-based approach, data-driven approach, and
hybrid approach. In the physics-based approach, the governing equations of a system are
formulated from conservation laws, and they are solved analytically or numerically, while
the data-driven approach uses a combination of data and deep learning techniques.

Machine learning (ML) techniques [4], and its subset, that is deep learning (DL) meth-
ods [5] such as Neural networks (NNs), have received significant attention in the field
of science and engineering due to their capability in modeling nonlinear and complex
systems [6]. The modeling of a dynamic system using NNs or ML techniques can be

Electronics 2023, 12, 3669. https://doi.org/10.3390/electronics12173669 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173669
https://doi.org/10.3390/electronics12173669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3656-4567
https://orcid.org/0000-0002-3310-0951
https://doi.org/10.3390/electronics12173669
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173669?type=check_update&version=1

Electronics 2023, 12, 3669 2 of 27

implemented in two ways: purely data-driven or physics-informed data-driven implemen-
tation. The purely data-driven model, otherwise called a surrogate model, is developed
by creating a neural network architecture that maps the input of a system to its output
while the network parameters are optimized to ensure an accurate prediction. Examples
of such neural networks are the multilayer perceptron (MLP) or FNN, CNN, recurrent
neural network (RNN), and transformer. A recent ML technique that is used to discover
parsimonious models of a system from data is called sparse identification of nonlinear
dynamics (SINDy). This method has the advantage of interpretability and is subject to a
tradeoff between structural complexity and the accuracy of the resulting models [7,8].

In the case of the hybrid modeling, a physics-informed neural network is a new
form of NN that uses physical laws (or insights) described by ODEs or PDEs to guide the
construction, training, and optimization of its underlying data-driven model [9]. When
training a PINN model, the physical laws provide constraints to the network, and the
advantage of this is that the issue of overfitting is prevented, less training data are required,
and the model becomes robust [10–12].

Furthermore, there are different nonlinear phenomena in mechatronic systems and
a data-driven or hybrid model can handle such complex characteristics. Friction is the
most common one, and it usually affects the dynamics and overall efficiency of any system.
When modeling a mechatronic system through the physics-based approach, frictional losses
are integrated into the model equation to improve the model’s accuracy. The problem with
this is that there is no general model for capturing frictional losses and friction models
(whether static or dynamic) [13,14] introduce more unknown parameters to the model
equations. Thus, it is advantageous to use a purely data-driven or hybrid approach in
identifying friction [15].

This review investigates various data-driven modeling methods employed for identi-
fying mechanical and electronic systems with a real-world classic system. There are many
data-driven methods that have been proposed in the literature; however, the scope of this
work is limited to these machine learning methods: FNN, CNN, LSTM, transformer, SINDy
and PINN. Other promising data-driven methods such as symbolic regression [16,17],
dynamic mode decomposition [18,19], and new variants of neural networks like Fourier
neural networks [20] are not covered. The contributions of this work are as follows:

1. Four distinct purely data-driven models were developed for a geared DC motor,
namely, FNN, CNN, LSTM, and transformer models. These models demonstrated
high prediction accuracies. In addition, SINDy approach was employed to directly
discover various parsimonious models of the system from experimental data. Using
different optimizers, three sparse regression models were generated, utilizing a library
of candidate functions with a polynomial order of 2;

2. PINN modelling method was employed to resolve coupled first-order differential
equations governing a geared DC motor. The unidentified physical parameters of the
dynamical system were successfully determined. The results demonstrate that the
PINN approach effectively forecasts the dynamic response of the nonlinear system
and estimates the unmeasured system state, specifically the armature current.

Our findings clearly demonstrate the satisfactory predictive capabilities of six distinct
ML models. Additionally, we shed light on their strengths and weaknesses, including
factors like interpretability and computational complexity, through a practical case study.

The paper’s structure is depicted in a mind map in Figure 1. Section 2 covers essential
background concepts, such as system identification, forward and inverse modeling prob-
lems, online and offline parameter identification, and dynamic modeling with friction. In
Section 3, we discuss the utilization of neural networks and machine learning techniques
for the dynamic modeling of mechatronic systems. Additionally, Section 4 presents a case
study on the dynamic modeling of a geared DC motor, employing various data-driven and
hybrid approaches, along with their potential applications. Finally, in Section 5, the paper
summarizes the research contributions and identifies gaps for future studies.

Electronics 2023, 12, 3669 3 of 27

Background
Sec. 2

Models: FNN, CNN,
LSTM, Transformer,

PINN and SINDy

Neural networks
and machine

learning techniques
Sec. 3

Online and offline
parameter

iden�fica�on

Forward and
inverse modelling

problems

Fault
detec�on

Digital twin

Control

FNN

SINDY

System
iden�fica�on

Iden�fica�on of a
geared DC motor

(experiment)
Sec. 4

Dynamic
modelling with

fric�on

Conclusion: Research
contribu�on and

open areas
Sec. 5

CNN

LSTM

PINN

Models:
Poten�al

applica�ons

Transformer

Structure of
the review

Figure 1. A mind map of sections covered in this review.

The results presented in this paper can be reproduced through the code available on
GitHub [21].

2. Background

In order to provide a proper context to our work, the following key concepts of
modeling are presented in this section: system identification, forward and inverse problems,
online and offline parameter identification, and dynamic modeling with friction.

2.1. System Identification

System identification, as the name suggests, is the process of identifying a system
behavior by means of its measured or observed input and output data [22]. Through
different algorithms that are based on numerical optimization, the relationship between
the system input and output is mapped during identification [1].

As illustrated in Figure 2, system identification involves four main steps: data collec-
tion or acquisition, model structure definition or selection, model parameters estimation,
and model validation [2,23]. The first step involves getting input–output data from the
physical system by designing and conducting an experiment covering the system’s operat-
ing limits/bounds. It is crucial to acknowledge that the obtained dataset could have outliers
and this necessitates data prepossessing operations such as normalization, resampling, or
filtering. Secondly, a model structure such as transfer function, state-space, autoregressive
with exogenous (ARX), or neural network is selected depending on the available insight or
prior knowledge of the system under consideration. In the third step, the model parameters
are trained or estimated using different algorithms like LS or backpropagation. During
estimation, the model parameters act as a driver and play the role of driving the model,
thereby fitting its response to match that of the actual system. The fourth and last step is to
validate the estimated model. This is performed to guarantee that the developed model
will serve the intended application (e.g., control or fault detection). In a scenario where
the developed model turns out to be unsatisfactory, the identification process is reworked
(i.e., performed all over again) [2,4]. For this reason, system identification is regarded as
an iterative process and it involves the user trying out different choices in terms of the
model structure and even the estimation algorithm to arrive at the best model.

Electronics 2023, 12, 3669 4 of 27

1. Data collec�on

2. Model structure
selec�on

Actual
system

System
iden�fica�on

steps

Input Output

3. Model parameters
es�ma�on

4. Model valida�on

Designed experiment

System prior
knowledge

Figure 2. System identification steps.

There are three main modeling approaches: physics-based, data-driven, and
hybrid modeling.

1. Physics-based modeling: This method utilizes knowledge of the underlying physical
laws governing the system’s behavior. The equations and parameters are theoretically
determined and solved [1]. However, in reality, a purely physics-based model is
impractical for large-scale or complex systems [24,25]. The model developed through
this approach is referred to as a mathematical one;

2. Data-driven modeling: This method is suitable for complex nonlinear systems where
little or no knowledge of their governing physical laws exists. The model structure
and parameters are unknown, and the model architecture is not based on physical
laws. As a result, the parameters often lack physical meaning or interpretation [1,26].
The model developed through this approach is known as data-driven or intelligent;

3. Hybrid modeling: In this case, partial knowledge about the system is available. The
model structure is either fully or partially known, and its parameters are estimated us-
ing system data [1,27]. The resulting model is called hybrid or physics-informed data-
driven.

The three modeling approaches are depicted in Figure 3. The upper arrow indicates in-
creasing complexity, while the lower arrow indicates the direction of increasing knowledge
and model assumptions according to the modeling methods.

Remark 1. Based on their level of transparency and ease of understanding, the modeling approaches
are classified as follows: (i) white-box modeling, which relies on physics-based principles; (ii) black-
box modeling, which is data-driven in nature, (iii) grey-box modeling, which combines physics-based
and data-driven aspects [1].

Physics-based
modelling

Data-driven
modelling

Hybrid
modelling

Low High

LowHigh

Knowledge/ physical insights and model assumptions

Level of system complexity

Figure 3. Approaches of dynamic modeling.

Electronics 2023, 12, 3669 5 of 27

2.2. Forward and Inverse Modeling Problems

The modeling problems posed by dynamical systems can be classified into forward and
inverse problems. The forward modeling problem involves computing a system response or
solution given its mathematical model and parameters [28]. In forward problems, ordinary
differential and partial differential equations (ODEs and PDEs) are solved analytically or
numerically using the Euler method, Runge–Kutta method, finite element method, finite
difference method, and so on. In contrast, the inverse modeling problem involves the
estimation of unknown model parameters that would give a small prediction error when
compared to the output data observed from a physical system [29]. The parameters can be
identified (estimated) using various algorithms such as least squares (LS) [30], recursive
least squares (RLS) [31], the genetic algorithm (GA) [32], NNs [33], etc.

2.3. Online and Offline Parameter Identification

The concept of identifying the model parameters of a system is known as parameter
identification, and this topic can be viewed as an inverse modeling problem. Parameter
identification is performed either online or offline. In online parameter identification,
model parameters are estimated in real time with the help of algorithms such as RLS [30,34]
and the extended Kalman filter [35,36], as new sensor data are available from the physical
system. On the other hand, offline parameter identification is conducted by acquiring
input–output data from the system, storing the data, and then using an algorithm like LS
or GA to estimate the unique parameters of the system. In Table 1, the two-parameter
identification methods are compared in terms of the type of parametric results they give,
the ease of data preprocessing, and the computational power and storage demands.

Table 1. Differences between online and offline model parameters identification.

Property Online Parameter Identification Offline Parameter Identification

Type of estimated parameter Time-varying parameters Constant or unique parameters
Data preprocessing Difficult to integrate into the estimation process Easy to integrate into the estimation process

Computational power and storage High as powerful controllers are needed The computational demand is moderate

2.4. Dynamic Modeling with Friction

In mechatronic systems, such as pendulums, DC motors, and mass-damper setups,
modeling can be accomplished using either first principles or physical laws. However,
achieving accurate models often requires identifying the system’s parameters. One major
challenge is accurately representing the impact of friction, a nonlinear phenomenon that
affects the efficiency of these systems [37,38].

Friction models can be categorized into static and dynamic models. Static models
assume no relative motion during standstill (resting friction phase) and describe the rela-
tionship between friction force and relative velocity. On the other hand, dynamic models
capture the features of presliding and sliding regions, including their transition effects [39].

Static models consist of Coulomb friction, viscous friction, the Stribeck effect, Karnopp,
and Armstrong. Moreover, dynamic models include Dahl, LuGre, Leuven, and bristle
friction models [40–43].

Applying an accurate friction model can facilitate friction compensation, helping
to prevent issues such as slow responses, tracking errors, stick-slip motion, and limit
cycles [44,45]. Notably, for dynamic systems developed purely through data-driven ap-
proaches, a separate friction model is unnecessary, as frictional losses are already accounted
for in the experimental data used to build the model.

3. Dynamic Modeling of Mechanical and Electronic Systems Using Neural Networks
and Machine Learning Techniques

Artificial neural networks (ANNs) or simply NNs are deep learning techniques (which
is a subset of machine learning) inspired by the functioning of neurons in the brain. There

Electronics 2023, 12, 3669 6 of 27

are three fundamental learning approaches used in machine learning: they include super-
vised, unsupervised, and reinforcement learning [46]. Neural networks predominantly
depend on supervised learning, utilizing labeled data for predictive tasks. In contrast,
unsupervised learning reveals patterns in unlabeled data, while reinforcement learning
centers on trial-and-error decision-making processes.

An NN can learn complex functions by extracting relations from training data; thus,
it is regarded as a universal approximator. NNs can be used in developing data-driven
models for nonlinear, multivariable, and complex dynamics. A typical NN consists of
interconnected neurons with weights and a bias. In addition, an activation function is
also used in a neuron to filter the information that is transferred to the next neuron. Some
common activation functions are the rectified linear unit (ReLU), sigmoid, hyperbolic
tangent function (Tanh), and pure linear function [47,48]. The algebraic calculation that
happens within a single neuron is:

z =
n

∑
i=1

wixi + b, (1)

â = fact(z) , (2)

where â is the output of the neuron after activation, z denotes the output of the neuron after
passing the summation unit, fact(z) represents the activation function, wi is the weight
associated with the i-th input, b is the bias, and n is for the number of input (x).

The model of a single neuron is depicted in Figure 4, see [49].

bias

Predicted
output

Inputs

Weighted
sum

Figure 4. A single neuron model.

Through supervised training, a learning algorithm is used to iteratively adjust the
network parameters based on the error between the predicted output and the training data
outputs. The error is computed during a forward pass while the weights are optimized
from the output layer to all the other layers during the backward pass (this is called error
backpropagation) [50]. Most NN models use the gradient-based method to minimize the
loss J of the network, i.e.,

J = MSE(y, ŷ) =
1
m

m

∑
j

(
yj − ŷj

)2, (3)

where J is the loss between the target output and predicted network output, y the target
output, ŷ is the predicted output by the network, and m represents the number of data
points. Accordingly, the weights and bias being the trainable parameters of the neuron are
updated as iteratively as follows:

wnew
i = wold

i − ε
∂J

∂wold
i

, bnew = bold − ε
∂J

∂bold , (4)

where ε is defined as the learning rate.
The manner in which gradient descent optimizes the weight parameter w is illustrated

in Figure 5.

Electronics 2023, 12, 3669 7 of 27

Ini�al weight
Gradient

Global minimum of the loss

Training step

Figure 5. Illustration of gradient descent.

Besides gradient descent, other common training algorithms are adaptive gradi-
ent descent, momentum, adaptive momentum, Newton, quasi-Newton, and Levenberg–
Marquart.

In this section, different types of NN structures, such as MLP, CNN, RNN and PINN,
including ML methods such as SINDy will be discussed. Moreover, we will compare those
models based on their advantages, disadvantages, and applications.

3.1. Multilayer Perceptron Network

An MLP or FNN has three layers: the input layer, hidden layers, and output layer.
The MLP network illustrated in Figure 6 consists of an input, three hidden layers, and an
output layer. It is possible to improve the fit of a network by using more layers; however,
this can also increase the training time. The size of neurons in the hidden layer can cause
a poor fit (underfitting), while many neurons can result in overfitting (a poor generalization
of the network to new data). A middle way is usually sought through trial and error for
a good result [50].

Input layer Hidden layer Output layer

Figure 6. An MLP network with three hidden layers (each neuron in the hidden layer is represented
by hi,j, where i is the neuron number and j is the hidden layer number).

A nonlinear autoregressive with exogenous inputs (NARX) model is commonly used
in the data-driven modeling of dynamic systems. The structure of a NARX model is

yt+1 = f (xt) , (5)

Electronics 2023, 12, 3669 8 of 27

where yt+1 is the predicted output at a future time t + 1, f is a nonlinear function, and xt is
the regressor vector of the form

xt =
[
yt, yt−1, . . . , yt−ny+1, ut, ut−1, . . . , ut−nu+1

]
, (6)

where nu and ny are time delays, and they are determined based on the system order.
An FNN can be employed for estimating the nonlinear function of the NARX model

structure. In the specific case study [4] presented, a NARX-based neural network was
utilized to develop a data-driven model for a DC motor. This neural network mapped the
nonlinear relationship between the motor’s PWM signal and its speed. Similarly, in another
study [51], an NN was used to model a brushless DC motor. The NN was trained with
experimental data comprising torque, angular velocity, and motor efficiency. The dataset
was split into training (85%), testing (10%), and validation (5%) datasets. The trained
model took torque and angular velocity as inputs and provided motor efficiency as the
output. Post-training, the NN model demonstrated good performance, with a resulting
mean square error of 1.5.

3.2. Convolutional Neural Network

A convolutional neural network is popularly used in the field of computer vision
for classification tasks, but it is also useful for regression tasks [52]. The convolutional
layer is the central part of a CNN architecture and Figure 7 shows a one-dimensional
CNN architecture. Suppose we are given an n× 1 time-series input data. The data are first
transformed to a three-dimensional array by data sequencing using g number of data points
as the sliding window. During the convolution process, a set of weights known as kernels
or filters slide through the transformed input data. The dot product of the kernel weights
and the input local receptive field is computed, they are summed, a bias is added, and each
element of the resulting array is passed through a nonlinear activation function [52,53].

Fla�ened

Transformed
input (3D)

n x 1 n x g x 1

x =

1 x k

1D filter
or kernel

n x g x k

+ Ac�va�on
func�on

(Relu or Tanh)

n x (g∙k)

Convolu�onal layer Fully connected layer

Input (2D)

Figure 7. A one-dimensional CNN architecture for a regression task.

Mathematically, convolution operation is expressed as:

zl
ij =

i+K−1

∑
i

W l
j ∗ zl−1

i + bl
ij, (7)

where Zl
ij and Zl

i are the output and input of the convolution, the convolution operator

is denoted by ∗, i is the iteration index, which is determined by the input (Zl
i) size, W l

j

represents the kernel or filter of the j-th neuron in layer l, K is the kernel size, and bl
ij is

a scaler bias of layer l.

Electronics 2023, 12, 3669 9 of 27

The convolution output zl
ij is passed through an activation function (such as ReLU)

and the final output of the layer is:

Ol
ij = fact(zl

i,j) . (8)

The outputs of the convolutional layer Ol
ij, which are called feature maps, are flattened

to a feature vector at the fully connected layer. The other layers that are used in a CNN
architecture for classification purposes include the pooling layer and dropout layer, which
are used to reduce the computation size of the model and help to prevent overfitting.
A dense layer can also be used after the fully connected layer, particularly when dealing
with a regression problem [10,53].

A CNN was used in [54] to identify the model of a nonlinear system. The Weiner–
Hammerstein system was used to form the dataset and the performance of a CNN and
MLP in system identification was compared. The simulation result showed that the CNN
performs better than MLP when a noisy data are used.

3.3. Recurrent Neural Network

An RNN is a type of NN that is suited for modeling time-series or sequential data. The
reason is that RNN, unlike MLP, uses the concept of memory, allowing the network to store
the state of the previous step or useful information from past inputs, and that information
is used when generating the output of the next sequence [52]. An RNN architecture is
shown in Figure 8.

Cell

Figure 8. Architecture of an RNN.

It is worth noting that the same weights and biases are used in the network as it
unfolds at each time step t. At time t, the network input is xt, the state is st, the output is yt,
and particularly:

st = f (wxxt + wsst−1 + bs), yt = f (wyst + by) , (9)

where wx, ws, and wy are the weights associated to the input, state, and output, respectively;
bs and by are the state and output biases.

An RNN uses backpropagation through the time (BPTT) algorithm to update its
weight and minimize the total error of the network [55].

EN =
N

∑
t=1

yt, actual − yt . (10)

The partial derivatives/gradient of the network with respect to the weights can be
mathematically calculated as follows:

Electronics 2023, 12, 3669 10 of 27

∂EN
∂ws

=
N

∑
i=1

∂EN
∂YN

∂YN
∂si

∂si
∂ws

,
∂EN
∂wx

=
N

∑
i=1

∂EN
∂YN

∂YN
∂si

∂si
∂wx

,
∂Ei
∂wy

=
∂Ei
∂Yi

∂Yi
∂wy

. (11)

However, due to the huge multiplication involved when the partial derivative of the er-
ror is calculated across the hidden states, the gradient may end up exploding or vanishing.

There are different RNN architectures that are used to solve various ML problems.
They are bidirectional recurrent neural networks, gated recurrent units, or even LSTM [56].

3.4. Long Short-Term Memory

This is a special type of RNN that can handle long-term dependencies in data and
can also eliminate the vanishing gradient problem of an RNN. An LSTM cell depicted in
Figure 9 stands for a computational unit that controls the flow of information. The key parts
of an LSTM unit are the cell state, forget gate, input gate, and output gate. The operations
performed in an LSTM unit to process information are as follows:

1. Forgetting the irrelevant part of the previous state;

ft = σ(w f [ht−1, xt] + b f) . (12)

2. Storing the most relevant new information;

it = σ(wi[ht−1, xt] + bi) . (13)

3. Updating the internal cell state;

Ct = ft · Ct−1 + it · c̄t, (14)

where c̄t = tanh(wc[ht−1, xt] + bc) and · represents element-wise multiplication.
4. Generating an output;

ht = tanh(Ct) · ot, (15)

where ot = σ(wo[ht−1, xt] + bo).

When training the LSTM network, the weights and biases of the input, output, and
forget gates are updated at each time step through the BPTT algorithm [52,55].

+x

x

tanh

tanh
x

Cell
Cell

LSTM unit/cell

Figure 9. LSTM cell.

The LSTM network was used to model the rolling friction of a mechanical system
in [57] to capture the system’s friction characteristics at the presliding region. The authors
proposed an initial value design for the RNN such that the final value of the last training
set is used as the initial value of the next training. The effectiveness of the developed model
was verified with the LuGre and Kiozumi models using an experimental setup consisting
of a motor, gear, load, encoder, and a clamp to adjust the friction level.

Electronics 2023, 12, 3669 11 of 27

3.5. Transformer Network

Transformers, well-known for their sequence generation capabilities, have garnered
significant attention in the domain of natural language processing due to their impressive
performance in generative tasks. Their success can be attributed to the attention mechanism,
which enables the learning of long-term dependencies in data without the need for recurrent
connections, such as RNN and LSTM [58]. Furthermore, transformers offer the advantage of
supporting parallel processing of input sequences, unlike LSTM, which requires sequential
processing. This feature makes transformers highly efficient for training, especially when
dealing with extensive datasets.

The encoder part of the transformer network illustrated in Figure 10 can be used in
time-series prediction, fault classification, anomaly detection, etc. [59,60].

Feed forward

Mul�-head
a�en�on

Add and norm

Add and norm

Input

Encoder

Output

×
N transformer
encoder blocks

Figure 10. Transfomer block.

The steps involved in time series-based modeling using transformer encoder networks
are as follows:

1. Data preparation into sequence. Time series data acquired experimentally from
a mechatronic system are intrinsically ordered, thus negating the need for
position encoding;

2. The sequence is inputted to a transformer encoder, which comprises N multihead
attention and feedforward layers [59–61]. The multihead attention enables the model
to understand both long- and short-term dependencies or relationships among var-
ious time steps in the sequence. Moreover, the feedforward layer is responsible for
capturing high-level and complex interactions and patterns in the data.

Multihead(Q, K, V) = concat(Head1, Head2, . . .Headh)W0, (16)

Headi = Attention(QWQ
i , KWK

i , VWV
i), (17)

where WQ
i , WK

i , and WV
i are the weight matrices of the i-th attention head, W0

represents the weight matrix of the multihead attention, h represents the total number
of heads, and concat is a function for concatenating the outputs of the attention heads.
The equation below describes the attention mechanism used in the network:

Attention(Q, K, V) = So f tmax
(

Q× KT
√

dK

)
×V, (18)

In this equation, Q = XWQ, K = XWK, and V = XWV represent the query, key, and
value matrices, respectively. These matrices are obtained by multiplying the input

Electronics 2023, 12, 3669 12 of 27

feature matrix X with the parameter matrices WQ, WK, and WV . Here, ’d’ denotes the
dimension of Q, K, and V.
The feedforward layer processes the output of the multihead attention layer. It consists
of a fully connected layer (e.g., MLP or 1D CNN can be used), followed by a ReLU or
Gaussian error linear unit (GeLU) activation function, and a dropout layer;

3. The output layer involves a fully connected layer along with a linear activation function;
4. Training and optimization: The transformer encoder undergoes training with input

sequences, and the corresponding system output serves as the target. The model
is then optimized through a fitting loss function like MSE (refer to Equation (3)) to
minimize the discrepancy between predicted and actual values;

5. Model evaluation: after being trained, the transformer encoder can be utilized for infer-
ence, enabling predictions to be made using novel sequences of dynamic system data.

Though transformer network is a state-of-the-art algorithm but its application in the
dynamic modeling of systems is limited as reported in [62].

3.6. Physics-Informed Neural Networks

The physics-based modeling method is easily affected by a high bias arising from
simplifying assumptions. Similarly, the solely data-driven approach exhibits a high variance
when the experimental data fails to encompass the system’s entire operating range. To
address these respective issues of bias and variance in physics-based and purely data-
driven modeling, a novel data-driven modeling technique based on physics-informed
neural networks (PINN) can be employed.

Recently, there has been a growing interest in the application of PINNs in science and
engineering. PINNs effectively combine data and physical laws to address supervised
learning tasks. This novel approach finds utility in solving forward problem-solving tasks
involving ODEs and PDEs. Additionally, PINNs demonstrate proficiency in handling
inverse problems, such as parameter identification in differential equations. The imple-
mentation of the algorithm delivers the continuous and discrete PINN approach. In the
continuous one, the system equation is integrated into the neural network architecture’s
loss function.

Consider solving the following ordinary differential equation:

du
dt

= f (u(t), t, λ), with u(0) = u0 and t ∈ [0, T], (19)

where u represents the dependent variable, t is the independent variable (time), and λ is
a system parameter.

In the continuous PINN approach, we approximate the solution to Equation (19) using
a neural network Ñ(t) such that Ñ(t) ≈ u(t), with Ñ(0) ≈ u0.

By computing the derivatives of the network output with respect to its inputs using
automatic differentiation [63], we can calculate the equation’s residual in the form:

r(t) =
dÑ(t)

dt
− f (Ñ(t), t, λ) . (20)

This motivates the loss function to optimize the neural network:

LT = Ls + Leq + Li, (21)

LT = ∑
i

(
Ñ(ti)− u(t)

)2
+ ∑

i

(
dÑ(ti)

dt
− f (Ñ(ti), ti, λ)

)2

+
(

Ñ(0)− u0
)2. (22)

The model’s training objective is to minimize LT by adjusting the weights (w) and
biases (b) of the network Ñ. The physics loss ensures that the system’s governing equations
are enforced. Various case studies and engineering problems where this approach has

Electronics 2023, 12, 3669 13 of 27

been applied can be found in [10,12,63–68]. Additionally, Figure 11 illustrates a continuous
PINN architecture demonstrating the physics-guided loss formulation.

The discrete approach or multistep PINN involves utilizing multistep discretization
techniques such as forward Euler and other Runge–Kutta schemes to numerically dis-
cretize the system equation over time. The unknown functions or state update vector are
approximated using neural networks.

To solve the first-order Equation (19) numerically, two methods can be employed. The
first one is the forward Euler method, expressed as:

un+1 = un + ∆t · f (tn, un), (23)

where f represents a function dependent on t and u itself. Alternatively, the same equation
can be solved using the Runge–Kutta 4th order method:

un+1 = un +
∆t
6
(k1 + 2k2 + 2k3 + k4), (24)

where
tn+1 = tn + ∆t,

k1 = f (tn, un),

k2 = f
(

tn +
∆t
2

, un +
k1

2

)
,

k3 = f
(

tn +
∆t
2

, un +
k2

2

)
,

k4 = f (tn + ∆t, un + k3),

and ∆t is the step size.

Total loss

Residual

Physics loss

Solu�on loss
Neural network approximate solu�on

I.C. loss

System data
(input and

output)

Backpropagation algorithm
(Adam optimizer)

Figure 11. A PINN approach based on physics-guided loss formulation.

The functions present in both discretization schemes are replaced with neural networks
and the networks are trained using the regular loss of typical neural networks (i.e., the
MSE between the actual u and predicted û at each time step). This approach was discussed
in following papers [69–71] and used to model the nonconservative forces in the dynamic
equation of an inverted pendulum in [11]. PINNs are usually implemented with feed-
forward neural networks because they are faster to train. However, this does not rule out
the possibility of using other NNs. For instance, a physics-informed ML approach was
investigated in a recent study for modeling the surface roughness of a milling process [72].

Electronics 2023, 12, 3669 14 of 27

3.7. Sparse Identification of Nonlinear Dynamics

SINDy is a promising ML technique that can be used for the discovery of a system’s
governing equations directly from data. This technique was introduced in [7], and it can
be used to discover ordinary and partial differential equations. Suppose we consider
a nonlinear dynamical system with the form:

ẋ(t) = f (x(t), u), (25)

where x(t) represents the state of the system, u is the control input, and f denotes the
vector field of the system.

The SINDy algorithm is implemented in the following steps to find the parsimonious
model that will describe the system by employing sparse regression.

1. Collect the time-series data of the dynamical system, X, and U and compute the
derivative of system states, Ẋ. If x comprises m states, then x = [x1, x2, . . . , xm] and:

X =

x(t1)
x(t2)

...
x(tn)

 =

x1(t1) x2(t1) · · · xm(t1)
x1(t2) x2(t2) · · · xm(t2)

...
...

. . .
...

x1(tn) x2(tn) . . . xm(tn)

, (26)

U = [u(t1), u(t2),, u(tn)]
T , Ẋ = [ẋ(t1), ẋ(t2), . . . , ẋ(tn)]

T , (27)

where t1, t2, . . . , tn are the sampling points of the time-series data;
2. Create a library candidate function that consists of constant, polynomial of degree k

(which is user defined) and the trigonometric terms:

θ(X, U) = [1, XP1 , UP1 , XP2 , UP2 , XPk , UPk , XU, . . . , sin(X) sin(U), . . .] . (28)

3. Solve a sparse regression problem:

Ẋ = θ(X, U)E , (29)

where the matrix E = [ξi, ξi+1, . . . , ξm] consists of sparse vectors that are matched to
their corresponding active terms in the candidate function library θ.
To find ξi, a sparse optimization is conducted to minimize the following function:

ξm = arg min
ξ̂m

1
2

∥∥Ẋm − ξ̂mθ(X, U)
∥∥2

2 + λ
∥∥ξ̂m

∥∥
1 . (30)

There are different methods of solving the optimization problem. They include least
absolute shrinkage and selection operator (LASSO) [73], stepwise sparse regression
(SSR) [74], sequential threshold least-squares (STLSQ) [7,75], and sparse relaxed
regularized regression (SR3) [76,77].

In [78], the SINDy algorithm was used to model the discrepancies between the ob-
served data and the simplified mathematical models of some physical systems. Specifically,
the algorithm was used to discover the discrepancies induced by parameter inaccuracy or
model insufficiency. The examples considered to demonstrate the algorithm’s effectiveness
include the Van der Pol oscillator and a double inverted pendulum on an actuated cart.

3.8. Comparison of Different ML Methods

Table 2 shows the pros, cons, and application domain of each of the ML models
discussed in the previous subsections.

Electronics 2023, 12, 3669 15 of 27

Table 2. Advantages, disadvantages, and domain application of ML models.

Model Advantages Disadvantages Domain Application

FNN Simple architecture and quick
prediction after training.

Limited for complex patterns
and not

interpretable/explainable.

Regression, time series
prediction, and classification.

1D CNN
Excellent for image/time
series data and captures

spatial relationships.

May require large datasets,
computationally complex, and

not interpretable.

Image classification, object
detection, regression, and

time series prediction.

LSTM
Captures sequential

dependencies and suitable for
time series.

Prone to vanishing/exploding
gradients, complex

architecture, and not
interpretable.

Time series
prediction/forecasting and

natural language processing.

Transformer
Captures long-range

dependencies and
parallelizable computations.

Sensitive to sequence length,
high computational demands,

and not interpretable.

Machine translation and text
generation, classification, and

time series prediction.

SINDy

Clear and understandable
representation of a system

dynamics, suitable for sparse
data, and fast to train.

Requires domain knowledge
in creating a library of

possible functions/terms that
are sparsely considered in the

model formulation.

Dynamic system modeling
and identifying

governing equations.

PINN
Incorporates system

governing equations and
model is interpretable.

Requires careful selection of
the parameters upper and

lower bounds, and
computationally demanding.

Solving ODEs and PDEs, and
dynamic system

identification.

4. Identification of a Direct Current Geared Motor’s Model—Real Application

In this mechatronic study, we undertook an analysis focused on the dynamic
model of a geared DC motor. Our methodology encompassed three distinct approaches:
a physics-based approach, a purely data-driven approach utilizing various neural network
models (FNN, CNN, LSTM, and SINDy), and a hybrid approach known as PINN.

The governing equations of the physical object under examination are derived from the
mechanical and electrical components’ operational concepts, utilizing Newton’s second law
and Kirchhoff’s laws, respectively [79,80]. These fundamental principles lay the foundation
for the mathematical system model detailed in Section 4.1.

In parallel, the purely data-driven models were directly developed from experimental
data. To achieve this, two datasets were acquired, comprising input and output data from
a geared 12V DC Motor (SG555123000-10K). These datasets encompass the full operating
range of the motor and were designated as the training and test datasets.

The data acquisition’s control structure is depicted by the block diagram in Figure 12.
This diagram provides an insightful view of the experimental setup’s configuration.

motor driver (md07a) with inbuild sensorMEGA 2560
SG Series DC motor

(signal from the encoder)

Program

rotational counts
Sensor

VoltageDuty
cycle

Figure 12. Block diagram of the control system with an incremental PWM step input, Arduino
MEGA 2560 microcontroller, Pololu md07a high-power DC brushed motor driver, the object of
control—DC motor SG555123000 10K with a gear and encoder; θ̇re f (t)—the reference rotational
velocity, θ̇os(t)—the motor’s actual rotational velocity, U(t)—the voltage input.

Electronics 2023, 12, 3669 16 of 27

An open-loop control experiment was conducted utilizing a time-varying PWM step
signal as the input to the physical system, with the motor’s angular speed or rotational
velocity as the measured output, which was obtained through an encoder.

To execute the experiment, the necessary hardware and specifications can be sourced
from [81]. Subsequently, the collected data were employed to train four neural network
models and a machine learning model, elaborated in Sections 4.2 and 4.3. Furthermore, the
same dataset and the system’s physical laws were leveraged to formulate a PINN model in
Section 4.4. The training and testing csv files are accessible at [21].

4.1. Physics-Based Model of the Motor

A geared DC motor possessing uncertain frictional resistance forces can be classified
as a nonlinear system, showcasing common nonlinear phenomena such as dead zones and
backlash [82]. However, to facilitate a simplistic and approximate physical representation,
the system is conventionally characterized as a second-order linear system. The system’s
diagrammatic representation can be observed in Figure 13.

Stator
magne�c
field

Electrical components Mechanical components

Figure 13. Schematic diagram of a direct current motor.

The equation of the electrical circuit shown on the left-hand side of the schematic is:

L
di
dt

+ Ri = V − E, (31)

where E = Kb θ̇rs; V and i are the armature voltage [V] and current [A], respectively; L and
R are the armature inductance [H] and resistance [Ω], respectively, and Kb is the back EMF
constant [V·s/rad]; and θrs is the angular position of the rotor shaft [rad].

The total motor torque Tm [N·m] produced by the motor is proportional to i, i.e.,

Tm = Kmi = Trs +
1

Kgr
Tos, (32)

where Trs = Jrs θ̈rs + Brs θ̇rs and Tos = Jos θ̈os + Bos θ̇os are the torques applied to the shaft of
the rotor and gear [N·m]. Comparing Equations (31) and (32), we find:

Jrs θ̈rs + Brs θ̇rs +
1

Kgr

[
Jos θ̈os + Bos θ̇os

]
= Kmi , (33)

where Jrs and Jos are the shaft inertia of the rotor and gear [kg·m2]; Brs and Bos are the
damping coefficient of the rotor and gear [N·s/m], respectively; Km is the motor torque
constant [N·m/A]; Kgr is the gear ratio [-]; and θos is the shaft position [rad].

Let θ̇rs = ψrs, θ̇os = ψos, i = I, and V = U, then Equations (31) and (33) can be
rewritten as two first-order coupled differential equations of the form:

dψos

dt
=

1
Jos

(
KgrKm I − Kgr[Jrsψ̇rs + Brsψrs]− Bosψos

)
,

dI
dt

=
1
L
(U − kψrs − RI) . (34)

Electronics 2023, 12, 3669 17 of 27

When the physical parameters mentioned in Equations (34) can be determined,
it becomes feasible to estimate the system’s dynamic response numerically. However,
a challenge arises when dealing with the unknown parameters of the DC motor, requiring
careful estimation. Therefore, the focus is now on investigating the capability of utilizing
the PINN modeling paradigm to unveil the motor parameters. This means the creation of a
physics-guided data-driven model is explored in Section 4.4.

4.2. The FNN, CNN, LSTM, and Transformer Networks Estimating Models of the Motor

Now, we investigate four neural networks: FNN, CNN, LSTM, and the transformer,
which are used to estimate the purely data-driven models of the system. The models were
trained differently using 20 epochs for each model and their structures are shown in Table 3.

Table 3. Purely data-driven model structure with the number of neurons/filters in each model layer,
including the model computation time and losses.

Model Name Model Structure Computation
Time (s) Training Loss Validation

Loss

FNN Dense (100) + Dense (50) + Dense (10) + Dense (1) 148.68 20.204 30.033

CNN Conv1D (128) + Conv1D (64) + Flatten + Dense (5) + Dense (1) 173.28 20.367 28.693

LSTM LSTM (50) + Dense (50) + Dense (1) 217.67 20.146 27.580

Transformer Transformer-encoder (2) + Dense (10) + Dense (1) 387.16 23.021 23.806

It is also evident that, despite the noise in the acquired angular speed data from the
physical system, the time history in Figure 14 depicts a close match between the model
predictions and the actual system output, that is, the angular speed of the geared DC motor.

Figure 14. Angular speed prediction of different geared DC motor purely data-driven models after
step-like increment of reference value.

In this study, we used the Adam optimizer with a learning rate of 0.001 for training
each model. The computation times are shown in Table 2. The FNN model trained faster
than the CNN, LSTM, and transformer models. The transformer network performed well
in terms of validation loss but required more time to train due to its complex attention
mechanisms and limited dataset size. The problem’s complexity contributed to the time-
consuming training process. For reproducing the results, the numerical code is available in
the specified repository [21].

All four models had similar prediction errors or validation loss, indicating only slight
differences in their performance. Improving the models’ accuracy would involve exploring
various network hyperparameters, such as the number of layers, neurons, optimizer type,
learning rate, and training epochs. To enhance the transformer model’s performance,

Electronics 2023, 12, 3669 18 of 27

incorporating position encoding to capture the input data’s sequential nature explicitly
would likely lead to significant improvements in predictions.

Remark 2. The models were trained offline using TensorFlow deep learning framework on a
computer equipped with an Intel Core i7 1.80 GHz CPU, 16-GB RAM, and a NVIDIA GeForce
MX150 4 GB GPU.

4.3. SINDy Model of the Motor

SINDy, a machine learning method, was utilized to reveal the system’s dynamic equa-
tions following the approach detailed in Section 3.7. This process involved employing
the pySINDy framework introduced in [83], which allows the customization of the library
candidate function and the optimizer selection, along with the option to choose a differenti-
ation method. For numerical differentiation, the finite difference method was used. The
library candidate function for representing the sparse system incorporated the geared DC
motor’s speed and voltage data, utilizing a third-order polynomial as the set order.

The discovered dynamical models of the system with SSR optimizer are as follows:

ψ̇os = −89.8381− 0.484ψos + 4.598U + 0.007ψos
2 − 0.036ψosU + 0.010U2, (35)

with the LASSO optimizer:

ψ̇os = −1.734ψos + 3.174U + 0.012ψos
2 − 0.014ψosU − 0.007U2, (36)

and with the FROLS optimizer:

ψ̇os = −85.4301− 0.687ψos + 4.800U + 0.006ψos
2 − 0.029ψosU. (37)

As shown in Figure 15, the simulation responses of the three models indicate that
SINDy is effective in identifying a nonlinear system from experimental data.

Figure 15. Angular speed prediction of different geared DC motor SINDy models after step-like
increment of reference value.

The computation times for the SINDy models are shown in Table 4.

Table 4. Computation times with different SINDy models.

Model SSR LASSO FRLOS

Time (s) 0.2883 0.1207 0.2623

Electronics 2023, 12, 3669 19 of 27

The discovered model suggests a library candidate function with a polynomial of
order 2 being sufficient to represent the dynamics of the system. The numerical code that
was used to generate the reported results is available at the repository [21].

4.4. PINN Model of the Motor

Deep FNNs have been used in several studies to implement the PINN modeling ap-
proach because they are computationally efficient [63,69,84,85]. Hence, this work examines
the use of a three-layer-deep FNN with 32 neurons in each layer in implementing the PINN
architecture. The PINN algorithm is described in Appendix A and it was used in solving
both direct and inverse problems.

The initial steps of the algorithm involve importing necessary packages (numpy, pandas,
matlplotlib, keras, and tensorflow), initializing the system parameters, and loading training
and testing datasets. Next, three feedforward neural network models with three hidden
layers and 32 hidden neurons each are created. These networks use tanh as the activation
function, have two inputs, and produce one output. The weights and biases of these neural
networks are randomly initialized and then trained.

The three neural networks, denoted as Ñ1, Ñ2, and Ñ3, represent the approximated
solutions ψrs, ψos, and I corresponding to Equation (34). During the training, the unknown
physics parameters Jrs, Jos, Brs, Bos, Km, L, R, and Kb, along with the weights and biases of
the networks, are initialized to enable the first prediction for each network error computa-
tion. This prediction is done in the forward pass, where three losses are computed with the
approximated solutions Ψ̂rs, Ψ̂os, and Î: loss 1 is based on the mean squared error (MSE)
from the first Equation (34); loss 2 is based on the MSE from the second Equation (34); and
loss 3 is based on the MSE of the output shaft speed.

The physical parameters, and the weights and biases of each network, are updated
during the backward pass using a standard backpropagation algorithm. The derivative
of the total error LT1 with respect to the weights and biases of Ñ1 is computed using the
sum of loss 1 and loss 3. Similarly, the derivative of the total error LT2 with respect to the
weights and biases of Ñ2 is computed using loss 2. The Adam optimizer is used with a
learning rate of 0.001 and the algorithm is trained for 20,000 epochs.

After training, the identified physics parameters are displayed, and the weights and
biases are saved for future use. Additionally, the network predictions are plotted using the
test dataset.

As shown in Figure 16a,b, the PINN model successfully predicted the motor’s shaft
speed and armature current even with limited training data containing noisy time-series of
rotational velocity.

(a)
Figure 16. Cont.

Electronics 2023, 12, 3669 20 of 27

(b)
Figure 16. Prediction of the angular speed (a) and the armature current (b) of the geared DC motor
PINN model after step-like increment of reference value.

The system’s physical parameters, including the viscous friction coefficient, were
estimated during training, and the resulting values are displayed in Table 5. It is essential
to acknowledge that the physical parameters obtained through the PINN algorithm are not
unique. However, we constrained the search space for each parameter between 0.001 and
10 to determine their values.

Table 5. Estimated physics parameters after training the PINN model.

Estimated Geared DC Motor Parameters

Jrs Jos Brs Bos Km L R Kb

0.001 0.0379 1.2539 0.3532 0.6585 0.001 1.3798 0.3938

The computation time for the PINN algorithm was 576.26 s, and the training loss was
6.57. For verification, the numerical code is available at the repository [21].

4.5. Discussion of Results

The performance of the developed models can be compared based on the prediction
error or residual of each model as shown in Figure 17, while Table 6 shows the performance
of the models with metrics like mean absolute error (MAE), MSE, and root mean squared
error (RMSE).

Figure 17. Residual of each ML model.

Electronics 2023, 12, 3669 21 of 27

Table 6. Performance of different models based on three metrics.

Model MAE MSE RMSE

FNN 2.5338 30.0333 5.4803
CNN 2.5482 28.6930 5.3536
LSTM 2.4327 27.5797 5.2516

Transformer 1.9206 21.2892 4.6140
SINDy-SSR 1.9558 7.7613 2.7859

SINDy-LASSO 1.8789 7.4694 2.7330
SINDy-FRLOS 1.8789 7.4694 2.7330

PINN 2.4329 17.624 4.1981

The plot depicts high prediction errors of the PINN model at the first three steady
speeds of the DC motor. However, all models exhibit the least prediction error when the
motor operates at speeds greater than 200 rpm. This high error at low speed is attributed to
the motor’s significant nonlinearities, such as friction and noise. Additionally, based on the
performance metrics of the six (6) ML models in Table 6, the SINDy models (trained with
different optimizers) gave the least errors, followed by the PINN and transformer models.

Despite this, all models, as shown in Figures 14–16, provide predictions close to
the actual time-series motor output. They demonstrate good generalization with the new
dataset. Furthermore, the developed SINDy models are computationally efficient compared
to other methods. Although the PINN model requires a longer training time, it performs
fast predictions once trained.

Moreover, the four data-driven models (FNN, CNN, LSTM, and transformer) lack
interpretability, operating as black-boxes. In contrast, the SINDy and PINN models are
explainable. In the case of the SINDy model, the constants and chosen candidate functions
post optimization are sparse and known, while for the PINN model, the physics-based
parameters that guide its adherence to physical consistency during training are identifiable.
Specifically, the PINN model leverages the governing laws of the DC motor, enabling the
identification of physical parameters, such as the friction coefficient. Additionally, the
PINN architecture facilitates the estimation of unmeasured system states, like the armature
current, a capability absent in other models. Despite the highlighted benefits of using PINN
for dynamic system modeling, its applicability may be constrained when the bounds of
physical parameters and governing equations remain unknown.

4.6. Potential Applications of the Developed Dynamic Models
4.6.1. Control

A dynamic model plays a vital role in the model-based design of classic controllers.
It also helps simulate the designed controllers to validate their effectiveness in achieving
the desired objectives set by the designer. These objectives typically involve stabilization,
reference tracking, and disturbance rejection during the development of controllers.

For example, when dealing with an inverted pendulum, control objectives include
stabilizing the pendulum in an upright position and rejecting external disturbances like
wind. On the other hand, for a DC motor, the objective is to achieve reference speed tracking
even at the presence of nonsmooth effects like stick-slip friction. Commonly employed
control techniques for dynamic systems encompass the PID [86], fractional order PID [87],
LQR [88], fuzzy [89], sliding mode [90], and model predictive control [81].

Additionally, in mechanical systems where friction significantly impacts performance,
friction models are developed and utilized for friction compensation. However, friction
models are needed for systems developed through the hybrid approach and systems built
to study the effects of friction. This suggests that pure data-driven models incorporate
frictional effects in their internal structure.

Electronics 2023, 12, 3669 22 of 27

4.6.2. Fault Detection

Dynamic models play a crucial role in identifying potential faults within a system.
This involves creating models for the system under normal operating conditions and
various fault scenarios [1]. By comparing the outputs of these models with the actual
system’s responses, specific types of faults, such as actuator, sensor, or plant faults, can be
detected [91]. An inference system is employed for error classification. The accuracy of the
fault models and distinct error characterization associated with each fault greatly influence
the effectiveness of the fault detection algorithm.

4.6.3. Digital Twin

A digital twin is an updated online model of a system, incorporating either a physics-
based or data-driven model. It utilizes real-time data from the actual system for continuous
updates [92]. Due to the extensive use of cloud computing and the Internet-of-Things, vari-
ous industries employ digital twin technology for tasks like simulation, remote monitoring,
control, predictive maintenance, and estimating the remaining useful life of physical assets
or machines, thereby enhancing their reliability and safety [93].

5. Conclusions

In this review paper, various modeling approaches were presented and relevant con-
cepts were briefly discussed. These concepts encompassed forward and inverse modeling
problems, online and offline parameter identification, and dynamic modeling with friction.
The shift from physics-based to data-driven and hybrid approaches was investigated, and
it was attributed to the challenges faced by physics-based models when dealing with highly
complex systems. Formulating models based on physical laws or first principles becomes
difficult in such cases. On the other hand, data-driven models lack interpretability, imped-
ing their adoption by industrial experts who prefer models grounded in physical principles
rather than black-box models. The potential of hybrid or physics-informed models to
address complex systems while incorporating some level of physics was emphasized, thus
providing applicability.

A real experimental station was presented to develop a model for a geared direct
current motor using various modeling techniques. Four data-driven models (FNN, CNN,
LSTM, and transformer) were constructed, along with the use of SINDy (a machine learning
technique) to infer the system’s governing equations. Additionally, a physics-based model
was employed to create a PINN model, which successfully identified the system’s physics
parameters, such as the viscous friction coefficient, and predicted the armature current (not
directly measurable during experimentation). The neural network models and machine
learning techniques produced satisfactory results, but the SINDy and PINN models were
considered superior in terms of their interpretability.

Three key applications of dynamic models were discussed: control, fault detection,
and digital twin. However, there are still various open research areas in the modeling of
mechatronic systems that require further exploration.

The recommendations for future work include enhancing the integration of physical
laws into neural networks, especially for multibody mechatronic systems with dry friction.
Utilizing physics-guided networks like physics-guided transformers would result in the
creation of models that are transparent and can be easily explained. It is also suggested
to explore improved versions of SINDy, such as SINDy with sensitivity analysis, to create
interpretable and generalizable models for mechatronic systems. This should involve
accurate, low-dimensional, and sparse machine learning models, considering noisy data.
Moreover, the scarcity of experimental studies on the application of PINNs and SINDy for
parameter identification and the modeling of mechatronic systems was noted. Therefore,
extending the use of these techniques to different systems with more complexities (such as
industrial manipulators or induction motors) and comparing their performance is proposed.

Electronics 2023, 12, 3669 23 of 27

Author Contributions: Conceptualization, S.A. and P.O.; methodology, S.A. and P.O.; software,
S.A.; validation, S.A.; formal analysis, S.A. and P.O.; investigation, S.A. and P.O.; resources, S.A.;
data curation, S.A.; writing—original draft preparation, S.A. and P.O.; writing—review and editing,
S.A. and P.O.; visualization, S.A. and P.O.; supervision, S.A. and P.O.; project administration, S.A.;
funding acquisition, S.A. and P.O. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available at the GitHub repository in [21].

Acknowledgments: The authors would like to acknowledge the support of Lodz University of
Technology and University of Huddersfield in making this research collaboration possible.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Algorithm A1 The PINN algorithm.

1: Import: numpy, pandas, matplotlib, keras and tensorflow
2: Initialize the known system parameter, Kgr
3: Load the training and test dataset: acquired experimental data
4: Create three neural networks (Ñ1, Ñ2 and Ñ3)

Define: input and output dimensions, number of hidden layers and neurons
Add Jrs, Jos, Brs, Bos and Km as constrained weights or trainable parameters to Ñ1

Add L, R and Kb as constrained weights or trainable parameters to Ñ3
5: Initialize the weights and biases of Ñ1, Ñ2 and Ñ3
6: for g← 1 to number of epochs = 20000 do
7: Get the predicted training dataset Ψ̂rs = Ñ1(t, v) , Ψ̂os = Ñ1(t, v), Î = Ñ2(t, v)
8: Compute the derivative of the three networks: dΨ̂rs

dt , dΨ̂os
dt and dÎ

dt
9: Compute the system residuals (physics losses) with the losses due to prediction

L1 =
N
∑
i

(
Jrs

dΨ̂rs(i)
dt + BrsΨ̂rs(i) + 1

Kgr

[
Jos

dΨ̂os(i)
dt + BosΨ̂os(i)

]
− Km Î(i)

)2

L2 =
N
∑
i

(
L dÎ(i)

dt + RÎ(i)− vi + kΨ̂rs(i)
)2

L3 =
N
∑
i

(
Ψ̂os(i)− ψ(i)

)2

LT1 = L1 + L3 , LT2 = L2
10: Compute the losses’ gradient LT1 and LT2 with respect to all the network parameters
11: Update network parameters (the weights and biases) of Ñ1, Ñ2 and Ñ3
12: Sum the losses of the two networks, LT = LT1 + LT2
13: Print epoch g and the total loss of the system including the values of parameters
14: end for
15: Plot the prediction of Ñ1, Ñ2 and Ñ3 with the test time-series
16: Print all the identified parameters Jrs, Jos, Brs, Bos, Km, L, R and Kb after training
17: Save the weights and biases of the Ñ1, Ñ2 and Ñ3

References
1. Nelles, O. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models; Springer: Berlin/Heidelberg,

Germany; London, UK, 2011.
2. Tangirala, A.K. Principles of System Identification: Theory and Practice; CRC Press: London, UK, 2014. [CrossRef]
3. Zhang, W.; Yang, D.; Wang, H. Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey. IEEE Syst. J.

2019, 13, 2213–2227. [CrossRef]

http://doi.org/10.1201/9781315222509
http://dx.doi.org/10.1109/JSYST.2019.2905565

Electronics 2023, 12, 3669 24 of 27

4. Habib, M.K.; Ayankoso, S.A.; Nagata, F. Data-Driven Modeling: Concept, Techniques, Challenges and a Case Study. In Proceedings
of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 8–11 August 2021;
pp. 1000–1007. [CrossRef]

5. Zheng, G.; Chen, W.; Qian, Q.; Kumar, A.; Sun, W.; Zhou, Y. TCM in milling processes based on attention mechanism-combined
long short-term memory using a sound sensor under different working conditions. Int. J. Hydromechatronics 2022, 5, 243.
[CrossRef]

6. Montáns, F.J.; Chinesta, F.; Gómez-Bombarelli, R.; Kutz, J.N. Data-driven modeling and learning in science and engineering. C. R.
Mécanique 2019, 347, 845–855. [CrossRef]

7. Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical
systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [CrossRef] [PubMed]

8. Kaheman, K.; Kutz, J.N.; Brunton, S.L. SINDy-PI: A robust algorithm for parallel implicit sparse identification of nonlinear
dynamics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20200279. [CrossRef]

9. Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-
Guided Data Science: A New Paradigm for Scientific Discovery from Data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331.
[CrossRef]

10. Zhang, R.; Liu, Y.; Sun, H. Physics-guided Convolutional Neural Network (PhyCNN) for Data-driven Seismic Response Modeling.
arXiv 2019, arXiv:1909.08118.

11. Roehrl, M.A.; Runkler, T.A.; Brandtstetter, V.; Tokic, M.; Obermayer, S. Modeling System Dynamics with Physics-Informed Neural
Networks Based on Lagrangian Mechanics. IFAC-PapersOnLine 2020, 53, 9195–9200. [CrossRef]

12. Nabian, M.A.; Meidani, H. Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and
Analysis. J. Comput. Inf. Sci. Eng. 2019, 20, 011006. [CrossRef]

13. Marques, F.; Flores, P.; Pimenta Claro, J.C.; Lankarani, H.M. A survey and comparison of several friction force models for dynamic
analysis of multibody mechanical systems. Nonlinear Dyn. 2016, 86, 1407–1443. [CrossRef]

14. Pennestrì, E.; Rossi, V.; Salvini, P.; Valentini, P.P. Review and comparison of dry friction force models. Nonlinear Dyn. 2016,
83, 1785–1801. [CrossRef]

15. Parlitz, U.; Hornstein, A.; Engster, D.; Al-Bender, F.; Lampaert, V.; Tjahjowidodo, T.; Fassois, S.D.; Rizos, D.; Wong, C.X.; Worden,
K.; et al. Identification of pre-sliding friction dynamics. Chaos Interdiscip. J. Nonlinear Sci. 2004, 14, 420–430. [CrossRef] [PubMed]

16. Quade, M.; Abel, M.; Shafi, K.; Niven, R.K.; Noack, B.R. Prediction of dynamical systems by symbolic regression. Phys. Rev. E
2016, 94, 012214. [CrossRef] [PubMed]

17. Subramanian, R.; Moar, R.R.; Singh, S. White-box Machine learning approaches to identify governing equations for overall
dynamics of manufacturing systems: A case study on distillation column. Mach. Learn. Appl. 2021, 3, 100014. [CrossRef]

18. Snyder, G.; Song, Z. Koopman Operator Theory for Nonlinear Dynamic Modeling using Dynamic Mode Decomposition. arXiv
2021, arXiv:2110.08442.

19. Sunny, K.; Sheikh, A.; Wagh, S. Dynamic Mode Decomposition for Prediction and Enhancement of Rotor Angle Stability. In
Proceedings of the 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), Prague,
Czech Republic, 29 June–2 July 2020; pp. 160–165. [CrossRef]

20. Ngom, M.; Marin, O. Fourier neural networks as function approximators and differential equation solvers. Stat. Anal. Data Min.
ASA Data Sci. J. 2021, 14, 647–661. [CrossRef]

21. Data: Neural Networks and ML Codes Used in This Paper. Available online: https://github.com/Samuel-Ayankoso/Neural-
Networks-and-ML--Geared-DC-Motor-Case-Study (accessed on 25 July 2023).

22. Awrejcewicz, J.; Lewandowski, D.; Olejnik, P. Dynamics of Mechatronics Systems; World Scientific: Singapore, 2016. [CrossRef]
23. Ljung, L.; Andersson, C.; Tiels, K.; Schon, T.B. Deep Learning and System IdentiïňĄcation. IFAC-PapersOnLine 2020, 53, 1175–1181.

.: 10.1016/j.ifacol.2020.12.1329. [CrossRef]
24. Vu, Q.D. Parameter Estimation in Complex Nonlinear Dynamical Systems. Ph.D. Thesis, Faculty of Computer Science and

Automation, Technischen Universität Ilmenau, Ilmenau, Germany, 2015.
25. Zhang, Z.; Suh, C.S. Underactuated Mechanical Systems—A Review of Control Design. J. Vib. Test. Syst. Dyn. 2022, 6, 21–51.

[CrossRef]
26. Grzeidak, E. Identification of Nonlinear Systems Based on Extreme Learning Machine and Neural Networks. Ph.D. Thesis,

Faculdade de Tecnologia, Universidade De Brasilia, Brasilia, Brazil, 2016.
27. Werner, H. Linear and Nonlinear System Identification. Institute of Control Systems, Hamburg University of Tech-

nology. 2021. Available online: https://collaborating.tuhh.de/ICS/ics-public/lecture-files/-/blob/master/LNSI/
LinearAndNonlinearSystemIdentification.pdf (accessed on 25 July 2023)

28. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial
Differential Equations. arXiv 2017, arXiv:1711.10561.

29. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial
Differential Equations. arXiv 2017, arXiv:1711.10566.

30. Arshad, S.; Qamar, S.; Jabbar, T.; Malik, A. Parameter estimation of a DC motor using ordinary least squares and recursive
least squares algorithms. In Proceedings of the 8th International Conference on Frontiers of Information Technology—FIT’10,
Islamabad, Pakistan, 12–13 December 2010; pp. 1–5. [CrossRef]

http://dx.doi.org/10.1109/ICMA52036.2021.9512658
http://dx.doi.org/10.1504/IJHM.2022.125090
http://dx.doi.org/10.1016/j.crme.2019.11.009
http://dx.doi.org/10.1073/pnas.1517384113
http://www.ncbi.nlm.nih.gov/pubmed/27035946
http://dx.doi.org/10.1098/rspa.2020.0279
http://dx.doi.org/10.1109/TKDE.2017.2720168
http://dx.doi.org/10.1016/j.ifacol.2020.12.2182
http://dx.doi.org/10.1115/1.4044507
http://dx.doi.org/10.1007/s11071-016-2999-3
http://dx.doi.org/10.1007/s11071-015-2485-3
http://dx.doi.org/10.1063/1.1737818
http://www.ncbi.nlm.nih.gov/pubmed/15189070
http://dx.doi.org/10.1103/PhysRevE.94.012214
http://www.ncbi.nlm.nih.gov/pubmed/27575130
http://dx.doi.org/10.1016/j.mlwa.2020.100014
http://dx.doi.org/10.1109/CoDIT49905.2020.9263893
http://dx.doi.org/10.1002/sam.11531
https://github.com/Samuel-Ayankoso/Neural-Networks-and-ML--Geared-DC-Motor-Case-Study
https://github.com/Samuel-Ayankoso/Neural-Networks-and-ML--Geared-DC-Motor-Case-Study
http://dx.doi.org/10.1142/10193
http://dx.doi.org/10.1016/j.ifacol.2020.12.1329
http://dx.doi.org/10.5890/JVTSD.2022.03.003
https://collaborating.tuhh.de/ICS/ics-public/lecture-files/-/blob/master/LNSI/LinearAndNonlinearSystemIdentification.pdf
https://collaborating.tuhh.de/ICS/ics-public/lecture-files/-/blob/master/LNSI/LinearAndNonlinearSystemIdentification.pdf
http://dx.doi.org/10.1145/1943628.1943659

Electronics 2023, 12, 3669 25 of 27

31. Mohamed, Y.S.; Hasaneen, B.M.; Elbaset, A.A.; Hussein, A.E. Recursive Least Square Algorithm for Estimating Parameters of
an Induction Motor. JES J. Eng. Sci. 2011, 39, 87–98. [CrossRef]

32. Dan, Y.; Xu, P.; Zhang, W.; Tan, Z. Improved genetic algorithm for parameters identification of cart-double pendulum. J. Vibroeng.
2019, 21, 1587–1599. [CrossRef]

33. Legaard, C.M.; Schranz, T.; Schweiger, G.; Drgoňa, J.; Falay, B.; Gomes, C.; Iosifidis, A.; Abkar, M.; Larsen, P.G. Constructing
Neural Network-Based Models for Simulating Dynamical Systems. arXiv 2022, arXiv:2111.01495.

34. Mahadi, M.; Ballal, T.; Moinuddin, M.; Al-Saggaf, U.M. A Recursive Least-Squares with a Time-Varying Regularization Parameter.
Appl. Sci. 2022, 12, 2077. [CrossRef]

35. Zahraoui, Y.; Akherraz, M. Kalman Filtering Applied to Induction Motor State Estimation. In Dynamic Data Assimilation—Beating
the Uncertainties; Harkut, D.G., Ed.; IntechOpen: London, UK, 2020. [CrossRef]

36. Gupta, S.; Singh, A.P.; Deb, D.; Ozana, S. Kalman Filter and Variants for Estimation in 2DOF Serial Flexible Link and Joint Using
Fractional Order PID Controller. Appl. Sci. 2021, 11, 6693. [CrossRef]

37. Olejnik, P.; Awrejcewicz, J. Low-Speed Voltage-Input Tracking Control of a DC-Motor Numerically Modelled by a Dynamical
System with Stick-Slip Friction. Differ. Equ. Dyn. Syst. 2013, 21, 3–13. [CrossRef]

38. Olejnik, P.; Awrejcewicz, J.; Fečkan, M. An approximation method for the numerical solution of planar discontinuous dynamical
systems with stick-slip friction. Appl. Math. Sci. 2014, 8, 7213–7238. [CrossRef]

39. Iurian, C.; Ikhouane, F.; Rodellar, J.; Griñó, R. Identification of a System with Dry Friction; Universitat Politècnica de Catalunya:
Barcelona, Spain, 2005.

40. Piątkowski, T. Dahl and LuGre dynamic friction models—The analysis of selected properties. Mech. Mach. Theory 2014, 73, 91–100.
[CrossRef]

41. Rill, G.; Schaeffer, T.; Schuderer, M. LuGre or not LuGre. Multibody Syst. Dyn. 2023. [CrossRef]
42. Shao, D.; Xu, S.; Du, A. Dynamic friction modelling and parameter identification for electromagnetic valve actuator. J. Cent.

South Univ. 2018, 25, 3004–3020. [CrossRef]
43. Wijata, A.; Makowski, M.; Stańczyk, B.; Awrejcewicz, J. Modelling orthotropic friction with a non-linear bristle model. AIP Conf.

Proc. 2019, 2077, 020060. [CrossRef]
44. Guerra, R.; Acho, L.; Aguilar, L. Adaptive friction compensation for mechanisms: A new perspective. Int. J. Robot. Autom. 2007,

22, 155–159. [CrossRef]
45. Olejnik, P.; Awrejcewicz, J.; Fečkan, M. Modeling, Analysis and Control of Dynamical Systems with Friction and Impacts; World

Scientific: Singapore, 2017. [CrossRef]
46. Hashemi, A.; Orzechowski, G.; Mikkola, A.; McPhee, J. Multibody dynamics and control using machine learning. Multibody Syst.

Dyn. 2023, 58, 397–431. [CrossRef]
47. Lederer, J. Activation Functions in Artificial Neural Networks: A Systematic Overview. arXiv 2021, arXiv:2101.09957. [CrossRef]
48. Ding, B.; Qian, H.; Zhou, J. Activation functions and their characteristics in deep neural networks. In Proceedings of the Chinese

Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 1836–1841. [CrossRef]
49. Koivo, H.N. Neural Networks: Basics Using MATLAB Neural Network Toolbox; Tallinn University of Technology: Tallinn, Estonia,

2008. Available online: http://staff.ttu.ee/~jmajak/Neural_networks_basics_.pdf (accessed on 25 July 2023)
50. Babuška, R.; Verbruggen, H. Neuro-fuzzy methods for nonlinear system identification. Annu. Rev. Control. 2003, 27, 73–85.

[CrossRef]
51. Nizam, M.; Mujianto, A.; Triwaloyo, H.; Inayati. Modelling on BLDC motor performance using artificial neural network

(ANN). In Proceedings of the 2013 Joint International Conference on Rural Information & Communication Technology and
Electric-Vehicle Technology (rICT & ICeV-T), Bandung, Indonesia, 26–28 November 2013; pp. 1–4. [CrossRef]

52. Mehlig, B. Machine learning with neural networks. arXiv 2021, arXiv:1901.05639.
53. Indolia, S.; Goswami, A.K.; Mishra, S.P.; Asopa, P. Conceptual Understanding of Convolutional Neural Network—A Deep

Learning Approach. Procedia Comput. Sci. 2018, 132, 679–688. [CrossRef]
54. Lopez, M.; Yu, W. Nonlinear system modeling using convolutional neural networks. In Proceedings of the 2017 14th International

Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 20–22 October
2017; pp. 1–5. [CrossRef]

55. Staudemeyer, R.C.; Morris, E.R. Understanding LSTM—A Tutorial into Long Short-Term Memory Recurrent Neural Networks.
arXiv 2019, arXiv:1909.09586.

56. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

57. Hirose, N.; Tajima, R. Modeling of rolling friction by recurrent neural network using LSTM. In Proceedings of the 2017 IEEE
International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6471–6478. [CrossRef]

58. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All you Need
arXiv 2017, arXiv:1706.03762.

59. Fan, H.-W.; Ma, N.-G.; Zhang, X.H.; Xue, C.-Y.; Ma, J.-T.; Yan, Y. New intelligent fault diagnosis approach of rolling bearing based
on improved vibration gray texture image and vision transformer. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 1–14.
[CrossRef]

http://dx.doi.org/10.21608/jesaun.2011.119699
http://dx.doi.org/10.21595/jve.2019.20663
http://dx.doi.org/10.3390/app12042077
http://dx.doi.org/10.5772/intechopen.92871
http://dx.doi.org/10.3390/app11156693
http://dx.doi.org/10.1007/s12591-012-0114-x
http://dx.doi.org/10.12988/ams.2014.44282
http://dx.doi.org/10.1016/j.mechmachtheory.2013.10.009
http://dx.doi.org/10.1007/s11044-023-09909-5
http://dx.doi.org/10.1007/s11771-018-3970-x
http://dx.doi.org/10.1063/1.5091921
http://dx.doi.org/10.2316/Journal.206.2007.2.206-2942
http://dx.doi.org/10.1142/10577
http://dx.doi.org/10.1007/s11044-023-09884-x
http://dx.doi.org/10.48550/arXiv.2101.09957
http://dx.doi.org/10.1109/CCDC.2018.8407425
http://staff.ttu.ee/~jmajak/Neural_networks_basics_.pdf
http://dx.doi.org/10.1016/S1367-5788(03)00009-9
http://dx.doi.org/10.1109/rICT-ICeVT.2013.6741520
http://dx.doi.org/10.1016/j.procs.2018.05.069
http://dx.doi.org/10.1109/ICEEE.2017.8108894
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1109/ICRA.2017.7989764
http://dx.doi.org/10.1177/09544062221085871

Electronics 2023, 12, 3669 26 of 27

60. Tang, X.; Xu, Z.; Wang, Z. A Novel Fault Diagnosis Method of Rolling Bearing Based on Integrated Vision Transformer Model.
Sensors 2022, 22, 3878. [CrossRef] [PubMed]

61. Keras Documentation: Timeseries Classification with a Transformer Model. Available online: https://keras.io/examples/
timeseries/timeseries_transformer_classification (accessed on 26 July 2023)

62. Geneva, N.; Zabaras, N. Transformers for modeling physical systems. Neural Netw. 2022, 146, 272–289. [CrossRef] [PubMed]
63. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev.

2021, 63, 208–228. [CrossRef]
64. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
65. Markidis, S. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers? arXiv 2021,

arXiv:2103.09655.
66. Dourado, A.; Viana, F.A.C. Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models:

A Case Study in Corrosion Fatigue. J. Comput. Inf. Sci. Eng. 2020, 20, 061007. [CrossRef]
67. Dwivedi, V.; Srinivasan, B. A Normal Equation-Based Extreme Learning Machine for Solving Linear Partial Differential Equations.

J. Comput. Inf. Sci. Eng. 2021, 22, 014502. [CrossRef]
68. Oommen, V.; Srinivasan, B. Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics

Informed Neural Network Approach. J. Comput. Inf. Sci. Eng. 2022, 22, 041012. [CrossRef]
69. Nascimento, R.G.; Fricke, K.; Viana, F.A.C. A tutorial on solving ordinary differential equations using Python and hybrid

physics-informed neural network. Eng. Appl. Artif. Intell. 2020, 96, 103996. [CrossRef]
70. Stiasny, J.; Chevalier, S.; Chatzivasileiadis, S. Learning without Data: Physics-Informed Neural Networks for Fast Time-Domain

Simulation. arXiv 2021, arXiv:2106.15987.
71. Tipireddy, R.; Perdikaris, P.; Stinis, P.; Tartakovsky, A.M. Multistep and continuous physics-informed neural network methods for

learning governing equations and constitutive relations. J. Mach. Learn. Model. Comput. 2022, 3, 23–46. [CrossRef]
72. Zeng, S.; Pi, D. Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning. Sensors 2023, 23, 4969.

[CrossRef] [PubMed]
73. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [CrossRef]
74. Quade, M.; Abel, M.; Kutz, J.N.; Brunton, S.L. Sparse Identification of Nonlinear Dynamics for Rapid Model Recovery.

Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 063116. [CrossRef]
75. Cortiella, A.; Park, K.C.; Doostan, A. A Priori Denoising Strategies for Sparse Identification of Nonlinear Dynamical Systems:

A Comparative Study. J. Comput. Inf. Sci. Eng. 2022, 23, 011004. [CrossRef]
76. Champion, K.; Zheng, P.; Aravkin, A.Y.; Brunton, S.L.; Kutz, J.N. A unified sparse optimization framework to learn parsimonious

physics-informed models from data. arXiv 2020, arXiv:1906.10612.
77. Zheng, P.; Askham, T.; Brunton, S.L.; Kutz, J.N.; Aravkin, A.Y. A Unified Framework for Sparse Relaxed Regularized Regression:

SR3. IEEE Access 2019, 7, 1404–1423. [CrossRef]
78. Kaheman, K.; Kaiser, E.; Strom, B.; Kutz, J.N.; Brunton, S.L. Learning Discrepancy Models From Experimental Data. arXiv 2019,

arXiv:1909.08574.
79. Adewusi, S. Modeling and Parameter Identification of a DC Motor Using Constraint Optimization Technique. IOSR J. Mech.

Civ. Eng. 2016, 13, 46–56. [CrossRef]
80. Amiri, M.S.; Ibrahim, M.F.; Ramli, R. Optimal parameter estimation for a DC motor using genetic algorithm. Int. J. Power Electron.

Drive Syst. IJPEDS 2020, 11, 1047. [CrossRef]
81. Khaled, N.; Pattel, B. Chapter 9—Real Time Embedded Target Application of MPC. In Practical Design and Application of Model

Predictive Control; Khaled, N., Pattel, B., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 181–219. [CrossRef]
82. Kushnir, D. Identification of Dynamical System’s Parameters using Neural Networks. Bachelor’s Thesis, Department of

Computer Sciences Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, Ukraine, 2019.
83. PySINDy (Sparse Regression Package). Available online: https://github.com/dynamicslab/pysindy (accessed on 19 April 2022)
84. Misyris, G.S.; Venzke, A.; Chatzivasileiadis, S. Physics-Informed Neural Networks for Power Systems. arXiv 2020, arXiv:1911.03737.
85. Waheed, U.b.; Haghighat, E.; Alkhalifah, T.; Song, C.; Hao, Q. PINNeik: Eikonal solution using physics-informed neural networks.

Comput. Geosci. 2021, 155, 104833. [CrossRef]
86. Sahputro, S.D.; Fadilah, F.; Wicaksono, N.A.; Yusivar, F. Design and implementation of adaptive PID controller for speed control

of DC motor. In Proceedings of the 2017 15th International Conference on Quality in Research (QiR): International Symposium
on Electrical and Computer Engineering, Bali, Indonesia, 24–27 July 2017; pp. 179–183. [CrossRef]

87. Olejnik, P.; Adamski, P.; Batory, D.; Awrejcewicz, J. Adaptive Tracking PID and FOPID Speed Control of an Elastically Attached
Load Driven by a DC Motor at Almost Step Disturbance of Loading Torque and Parametric Excitation. Appl. Sci. 2021, 11, 679.
[CrossRef]

88. Habib, M.K.; Ayankoso, S.A. Modeling and Control of a Double Inverted Pendulum using LQR with Parameter Optimization
through GA and PSO. In Proceedings of the 2020 21st International Conference on Research and Education in Mechatronics
(REM), Cracow, Poland, 9–11 December 2020; pp. 1–6. [CrossRef]

http://dx.doi.org/10.3390/s22103878
http://www.ncbi.nlm.nih.gov/pubmed/35632289
https://keras.io/examples/timeseries/timeseries_transformer_classification
https://keras.io/examples/timeseries/timeseries_transformer_classification
http://dx.doi.org/10.1016/j.neunet.2021.11.022
http://www.ncbi.nlm.nih.gov/pubmed/34915412
http://dx.doi.org/10.1137/19M1274067
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1115/1.4047173
http://dx.doi.org/10.1115/1.4051530
http://dx.doi.org/10.1115/1.4053800
http://dx.doi.org/10.1016/j.engappai.2020.103996
http://dx.doi.org/10.1615/JMachLearnModelComput.2022041787
http://dx.doi.org/10.3390/s23104969
http://www.ncbi.nlm.nih.gov/pubmed/37430883
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1063/1.5027470
http://dx.doi.org/10.1115/1.4054573
http://dx.doi.org/10.1109/ACCESS.2018.2886528
http://dx.doi.org/10.9790/1684-1306024656
http://dx.doi.org/10.11591/ijpeds.v11.i2.pp1047-1054
http://dx.doi.org/10.1016/B978-0-12-813918-9.00009-5
https://github.com/dynamicslab/pysindy
http://dx.doi.org/10.1016/j.cageo.2021.104833
http://dx.doi.org/10.1109/QIR.2017.8168478
http://dx.doi.org/10.3390/app11020679
http://dx.doi.org/10.1109/REM49740.2020.9313893

Electronics 2023, 12, 3669 27 of 27

89. Ayankoso, S.A.; Habib, M.K. Development of Data-Driven Model and Control Techniques for a Two-Link Flexible Manipulator
(TLFM). In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June
2021; pp. 1–7. [CrossRef]

90. Habib, M.K.; Ayankoso, S.A. Stabilization of Double Inverted Pendulum (DIP) on a Cart using Optimal Adaptive Sliding
Mode Control (OASMC). In Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA),
Takamatsu, Japan, 8–11 August 2021; pp. 993–999. [CrossRef]

91. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques–Part I: Fault Diagnosis With Model-
Based and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [CrossRef]

92. Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 2020, 7, 13.
[CrossRef]

93. Qiao, Q.; Wang, J.; Ye, L.; Gao, R.X. Digital Twin for Machining Tool Condition Prediction. Procedia CIRP 2019, 81, 1388–1393.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISIE45552.2021.9576193
http://dx.doi.org/10.1109/ICMA52036.2021.9512803
http://dx.doi.org/10.1109/TIE.2015.2417501
http://dx.doi.org/10.1186/s40323-020-00147-4
http://dx.doi.org/10.1016/j.procir.2019.04.049

	Introduction
	Background
	System Identification
	Forward and Inverse Modeling Problems
	Online and Offline Parameter Identification
	Dynamic Modeling with Friction

	Dynamic Modeling of Mechanical and Electronic Systems Using Neural Networks and Machine Learning Techniques
	Multilayer Perceptron Network
	Convolutional Neural Network
	Recurrent Neural Network
	Long Short-Term Memory
	Transformer Network
	Physics-Informed Neural Networks
	Sparse Identification of Nonlinear Dynamics
	Comparison of Different ML Methods

	Identification of a Direct Current Geared Motor's Model—Real Application
	Physics-Based Model of the Motor
	The FNN, CNN, LSTM, and Transformer Networks Estimating Models of the Motor
	SINDy Model of the Motor
	PINN Model of the Motor
	Discussion of Results
	Potential Applications of the Developed Dynamic Models
	Control
	Fault Detection
	Digital Twin

	Conclusions
	Appendix A
	References

