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Abstract: This study aims to study the safety of oil and gas pipelines under stress corrosion conditions
and grasp the corrosion damage situation timely and accurately. Consequently, a non-destructive
testing method combining magnetic flux leakage testing technology and a kernel function extreme
learning machine improved by genetic algorithm (GA-KELM) is proposed. Firstly, the variation of the
corrosion defect dimension and profile with time is obtained by numerical simulation. At the same
time, the distribution of the magnetic flux leakage signal under different defect conditions is analyzed
and studied. Finally, feature selection is carried out on the magnetic flux leakage signal distribution
curve, and GA-KELM is used to predict the depth and length of corrosion defects so as to realize the
non-destructive testing of the pipeline defects. The results show that different geometric features
result in different magnetic flux leakage signal distributions. There is a corresponding relationship
between the defect dimension and extreme value, area, and peak width of the magnetic flux leakage
signal distribution curve. The GA-KELM prediction model can effectively predict the depth and
length of corrosion defects, and the prediction accuracy is better than the traditional extreme learning
machine prediction model.

Keywords: non-destructive testing; defective pipelines; stress corrosion; magnetic flux leakage testing;
extreme learning machine

1. Introduction

It is well known that pipeline transportation is a secure, dependable, and economical
means of energy conveyance, which is increasingly used in the transportation of oil and
gas resources around the world. The corrosion of metal pipelines is due to the difference in
electrode potential, and electrochemical reactions occur when the metal is in contact with the
electrolyte. Pipelines are affected by a variety of stresses during service, such as soil stress,
internal residual stress of the pipelines, thermal stress caused by welding, etc. [1]. Both
elastic and plastic tensile stress can improve the surface activity of pipeline steel, further
promote the electrochemical reaction of the steel surface, and accelerate the corrosion
of pipelines [2]. Corrosion is a dynamic process that develops over time, and as the
operating time of pipelines increases, corrosion will become a major hidden danger to the
safe operation of pipelines. There are several methods to predict the damage to pipelines
such as experiments, analytical methods and the finite element method (FEM). Recently,
with the advancement of computer technology, FEM has established itself as the method
of choice for the majority of analysis applications [3]. Khalajestani K.M [4] used FEM to
analyze the residual strength of pressure pipelines with corrosion defects, and the research
results proved that the depth and length of defects and the spacing between adjacent
defects had a greater impact on the residual strength of pipelines. Larin [5] used FEM to
analyze and determine the local area of the maximum stress, and found that the stress
state was affected by the internal pressure and time of the corroded defective pipelines.
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Mourad Nahal [6] established a numerical model of a corroded elbow by FEM, studied the
mechanical behavior under the action of corrosion defects, and established an empirical
model. The results show that the failure probability is proportional to the corrosion rate,
the reliability of a corroding pipe elbow can be significantly affected by corrosion and
residual stress. Zhang Jia [7] used FEM to carry out nonlinear analysis of buried natural gas
pipelines. The effects of internal pressure, corrosion pit defect size, internal and external
wall corrosion, the corrosion pit group, and different types of volumetric corrosion pit
defects on the failure of an L360QS steel pipe were analyzed with consideration to the
effects of axial and circumferential zones of corrosion pits.

To guarantee the secure functioning of pipelines, periodic inspections are imperative to
assess their corrosion status. Magnetic flux leakage testing is a significant non-destructive
testing method that is widely used. When combined with other methods, it provides a
fast and inexpensive evaluation of ferromagnetic workpieces. Given that a substantial
proportion of oil and gas conveyance pipelines are fabricated from ferromagnetic materials,
magnetic flux leakage testing technology can detect the location and dimension of pipeline
defects effectively [8]. Magnetic flux leakage testing technology evolved from magnetic
particle detection technology as early as 1906 in C. Mc Cann’s work in South Africa, and
other scholars have carried out flaw detection by magnetization for the problem of broken
wire ropes. In 1933, Zuschlug first proposed the method of detecting leakage magnetic
fields using magnetic sensitive elements. In 1947, Hastings designed the first magnetic
flux leakage testing system, and then magnetic flux leakage testing and its defect mag-
netic flux leakage imaging technology began to be applied [9]. In recent years, magnetic
flux leakage testing technology has gradually become a popular research direction for
scholars [10–16]. Z. Usarek [17] designed a FLUMAG500 magnetic flux leakage testing
device for the detection of corrosion defects on gas pipe walls. An advanced signal process-
ing and analysis system was developed for the device, and the working principle of the
device was introduced. Miguel A. Machado [18] developed a new eddy current probe for
detecting micron-level defects in any direction on the inner surface of the pipelines and
verified the performance of the designed probe. Yavuz Ege [19] developed a new magnetic
flux leakage testing system for natural gas and long-distance oil transportation pipelines
with a KMZ51 AMR sensor. Tohara Makoto [20] proposed a method to obtain the outer
surface defects of ferromagnetic steel pipelines by detecting the changes in the eddy current
distribution in the pipelines. Zhao Yunli [21] used ANSYS Maxwell software to calculate
the permeability of different specifications at the inner and outer walls of X80 steel pipelines
and verified the calculation results. Hu Jing [22] studied the distribution law and modeling
method of a vortex magnetic flux leakage field on the inner and outer walls of pipelines,
constructed a mathematical model of a dynamic magnetic flux leakage similar stability field
for defects on the inner and outer walls of pipelines, explored the identifiability of magnetic
flux leakage signal features under dynamic conditions, selected the data characteristics of
defect signals on the inner and outer walls, and established an effective method for distin-
guishing between internal and external defect signals. Zheng Fuyin [23] mathematically
modeled the force–magnetic coupling relationship of ferromagnetic materials, derived
the functional relationship between stress and material permeability, designed a pipeline
stress detection system, and gave the mathematical relationship between the magnetic flux
leakage signal on the pipe surface and the magnetic permeability of the material, excitation
voltage and coil turns. Feng Bo [24] presented a comprehensive review of magnetic flux
leakage (MFL) testing, explained the principle of MFL testing with the refraction magnetic
field theory, and analyzed the factors affecting the MFL test signal. The results show that
excitation and sensing are the most important steps in MFL testing, in which excitation
decides if there is a leakage field generated and sensing decides if the generated field can be
effectively detected.

Artificial neural networks have undergone rapid development in recent years, and
achieved great success in tasks such as classification and regression. The emphasis of
non-destructive testing is the quantification and prediction of defects, which is essentially
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a classification or regression problem. Thus, artificial neural networks have been widely
used in defect quantification and prediction. Chen Yuanhang presented a method based on
feature extraction and machine learning algorithms for online quality monitoring and defect
classification, and experiments indicated the performance of artificial neural networks is
slightly better than that of support vector machines, while both of them have their own
advantages [25]. Feng Jianghua proposed a novel object detection algorithm to detect rail
defects. The net architecture of the proposed algorithm includes a backbone network using
MobileNet and several novel detection layers [26]. Mat Jizat Jessnor Arif described an
evaluation of machine learning classifiers to be applied in wafer defect detection—k-nearest
neighbours, logistic regression, stochastic gradient descent, and support vector machine
were evaluated with three defect categories and one non-defect category [27]. Sun Hongyu
integrated the magnetic flux leakage theory into the loss function and proposed a physics-
informed double-fed cross-residual network that estimated the defect length, width, and
depth accurately [28]. Wang Qi proposed an extreme learning machine optimized by a
genetic algorithm to predict the erosion rate, residual life, and residual strength of the pipe
with erosion defects; the model can not only predict effectively, but its prediction accuracy
is better than the traditional model [29].

As mentioned above, the presence of corrosion defects constitutes one of the main
threats to pipeline safety. The soil-induced strain, combined with internal pressure, results
in a complex stress/strain condition on pipelines. The local stress concentration developed
at the defect further accelerates the localized corrosion. Magnetic flux leakage testing
technology can effectively detect the corrosion damage of pipelines. Meanwhile, artificial
neural networks are widely used in the quantification and prediction of defects. However,
most of the existing research uses the experimental method to carry out the research of
magnetic flux leakage testing, and there is no close connection with computer technology.
In order to assess the corrosion damage of oil and gas pipelines from the perspective of
safety and economy, it is imperative to establish a scientific evaluation methodology. In this
paper, considering the combined impacts of corrosion and stress on oil and gas pipelines
in practical engineering scenarios, the finite element model of pipeline stress corrosion
is established. Employing time as a variable, the dynamic evolution of corrosion defect
profiles and sizes with pipelines is investigated. Building upon the principles of magnetic
field theory, the finite element model of magnetic flux leakage testing for pipeline defects
is established. It enables an exploration of the magnetic flux leakage signal distribution
under varying corrosion defect profiles; the effects of defect depth, defect length and lifting
height on magnetic flux leakage signal distribution are also analyzed. On this basis, the
features of the signal distribution curve are defined and selected as sample data, and the
GA-KELM model is built to predict the depth and length of defects. The above contributes
to advancing the theoretical foundations of corrosion protection strategies for oil and gas
pipelines in engineering applications.

2. Numerical Simulation Analysis of Pipelines Stress Corrosion
2.1. Simulation of Elastoplasticity

Elastoplasticity refers to the deformation of an object when it is subjected to external
force; only part of the deformation disappears when the external force is removed, and
the rest will not disappear by itself. Elastoplasticity includes elastic mechanics and plastic
mechanics; in the scope of elastic mechanics, stress and strain are linearly related, while in
the scope of plastic mechanics, the relationship between stress and strain is nonlinear. This
nonlinear characteristic is related to the materials studied, and has different transformation
laws for different materials and conditions. The model established in this paper adopts the
small strain plastic model to simulate the elastic–plastic mechanics of the pipelines and the
isotropic hardening model, whose hardening function σyhard (a function that describes the
stress–strain curves in the scope of plasticity) is defined as follows:

σyhard = σexp

(
εp +

σe

E

)
− σys (1)
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In Equation (1), σexp is the stress–strain curve measured by X100 pipeline steel experi-
ments [30], as shown in Figure 1; εp is plastic deformation; σe is the von Mise stress; E is the
Young’s modulus, 2.07 × 109 Pa; σys is the yield strength of the pipeline steel, 8.06 × 108 Pa.
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Figure 1. Stress–strain curve of X100 pipeline steel.

2.2. Simulation of Electrochemical Corrosion

Corrosion of oil and gas pipelines refers to the destruction of the outer wall of oil and
gas pipelines due to chemical changes, electrochemical changes or physical dissolution of
metal pipelines under long-term contact with surrounding substances. Soil is the main
cause of the corrosion of buried pipelines. Because the soil contains a lot of water and air,
water makes the soil become a conductor, and the airflow causes the uneven distribution of
oxygen concentration, and finally forms the galvanic cell. The pipelines are dissolved as
the anode, which is damaged [31].

The model dictates that two electrochemical reactions, iron dissolution (anode) and
hydrogen evolution (cathode), occur on the corrosion defect surface of the pipelines, and
the other surface of the pipelines is considered to be electrochemically inert. The chemical
reaction formula of the anode reaction and the cathode reaction is as follows:

Fe→ Fe2+ + 2e (2)

H+ + e→ H (3)

The anode’s Tafel expression is used to simulate the iron dissolution reaction, and the
local anode current density ia is defined as follows [32]:

ia = i0,a10
ηa
Aa (4)

ηa = ϕs − ϕl − Eeq,a (5)

Eeq,a = Eeq0,a −
∆PmVm

zF
− TR

zF
ln
(

vα

N0
εp + 1

)
(6)

In Equations (4)–(6), i0,a is the exchange current density, 2.353 × 10−3 A/m2; Aa is the
anode’s Tafel slope, 0.118 V; ηa is the overpotential of the anode reaction; Eeq,a is the equilib-
rium potential of the anode reaction; Eeq0,a is the standard equilibrium potential of anode
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reaction, −0.859 V; ∆Pm is the overpressure that causes elastic deformation, 2.687 × 108 Pa;
Vm is the molar volume of steel, 7.13 × 10−6 m3/mol; z is the electric charge of steel, 2; F is
Faraday’s constant; T is the absolute concentration, 298.15 K; R is the ideal gas constant;
v is the directional correlation factor, 0.45; α is the coefficient, 1.67 × 1015 m−2; N0 is the
initial dislocation density, 1 × 1012 m−2.

The cathode’s Tafel expression is used to simulate the hydrogen evolution reaction,
and the local cathode current density ic is defined as follows [32]:

ic = i0,c10
ηc
Ac (7)

i0,c = i0,c,re f 10
σeVm

6F(−Ac) (8)

ηc = ϕs − ϕl − Eeq0,c (9)

In Equations (7)–(9), i0,c is the exchange current density; Ac is the cathode’s Tafel slope,
0.207 V; i0,c,re f is the reference exchange current density of the cathode reaction without
external stress/strain, 1.457 × 10−2 A/m2; ηc is the overpotential of the cathode reaction;
Eeq,c is the standard equilibrium potential of the cathode reaction, −0.644 V.

Deformation geometry is used to model the dissolution of iron in corrosion defects.
The dissolution of iron causes the electrode boundary to move at a speed of v, calculated
by the following equation [33]:

v =
ia

2F
M
ρ

(10)

In Equation (10), M is the molar mass of iron, 55.845 g/mol; ρ is the density of iron,
7870 kg/m3.

2.3. Finite Element Model of Pipelines Stress Corrosion

COMSOL Multiphysics 6.0 is used to establish a finite element model of pipeline
stress corrosion. The geometric model consisted of X100 pipelines and the surrounding
soil domain, as shown in Figure 2. The pipe wall thickness is 19.1 mm, and the length of
the pipe segment used for finite element simulation is 2 m. The initial corrosion defect is
elliptical, with a length of 200 mm and a depth of 60% of the pipe wall thickness, 11.46 mm.
In numerical simulation, the calculation speed and accuracy are affected by the quality and
quantity of the mesh; high-quality mesh can not only reduce the operation memory, but
also improve the calculation accuracy. This paper uses a free triangle mesh to divide the
corrosion defect area’s local mesh encryption and set the maximum unit size of 1 mm. The
complete mesh consists of 13,807 cells, with a maximum cell size of 40 mm, a minimum cell
size of 0.6 mm, and a maximum cell growth rate of 1.2. The contact interface between the
pipeline and the soil domain is set as a free boundary, an electrochemical corrosion reaction
occurs, and the conductivity of the electrolyte in the soil domain is 0.096 S/m. The left end
of the pipeline is fixed, the right end is subjected to tensile strain, and the bottom of the
pipeline is set to electrical ground.
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2.4. Verification of Model Accuracy

Corrosion potential is the potential measured when a metal reaches a steady state
of corrosion in the absence of an applied current. It is the mixed potential of anodic and
cathodic reactions polarized by self-corrosive currents, which greatly affects the corrosion
of metals [34]. Before the numerical simulation, the rationality and accuracy of the finite
element model should be verified. The curve of the corrosion potential change with von
Mises stress of X100 pipeline steel is shown in Figure 3, and a comparison between the
experimental data in the literature and numerical simulation results is shown in Table 1. It
can be seen from the data analysis that the numerical simulation results in this paper fit well
with the experimental data of L.Y. Xu [35], with a maximum error of 0.27%, a minimum
error of 0.04%, and an average error of 0.059%. The results show that the finite element
model can simulate the pipeline stress corrosion accurately, and the mesh division and
boundary condition setting are reasonable and feasible.
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Table 1. Comparison of experimental data and simulation results.

Von Mises Stress (MPa) Corrosion Potential in Literature (V) Corrosion Potential of Simulation (V) Error (%)

6.116 −0.72154 −0.72195 0.057
25.446 −0.72156 −0.72193 0.051
51.218 −0.72163 −0.72197 0.048
82.364 −0.72163 −0.72199 0.050
121.024 −0.72167 −0.72201 0.046
159.681 −0.72178 −0.72203 0.035
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289.603 −0.72230 −0.72213 0.023
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721.271 −0.72353 −0.72298 0.076
768.518 −0.72368 −0.72318 0.069
808.242 −0.72389 −0.72361 0.039
820.036 −0.72424 −0.72526 0.141
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Table 1. Cont.

Von Mises Stress (MPa) Corrosion Potential in Literature (V) Corrosion Potential of Simulation (V) Error (%)

827.514 −0.72490 −0.72640 0.207
831.748 −0.72593 −0.72681 0.121
835.988 −0.72687 −0.72724 0.051
838.093 −0.72758 −0.72745 0.017
843.433 −0.72809 −0.72790 0.026
846.623 −0.72863 −0.72824 0.053
849.819 −0.72905 −0.72862 0.059
851.948 −0.72938 −0.72899 0.052
854.070 −0.72980 −0.72943 0.051
856.197 −0.73015 −0.73029 0.020

2.5. Simulation Analysis of Corrosion Situations

This paper undertakes a comprehensive analysis of pipeline corrosion over a 30-year
period, with calculations performed at 3-year intervals. A total of 10 simulations have
been conducted to assess the progression of corrosion in the presence of defects. The
evolution of defect dimensions over the corrosion timeline is presented in Table 2, and the
transformation of defect profiles is depicted in Figure 4. Analysis of the data shows that
the corrosion defect changed significantly. The depth of defects increased from 11.46 mm
to 16.798 mm, with an average increase of 0.54 mm every three years. The length of defects
increased from 200 mm to 210.649 mm, with an average increase of 1.065 mm every three
years. With the increase in the service life of pipelines, the stress corrosion leads to the
continuous thinning of the pipe wall and the increase in the defect area, which seriously
threatens the safe operation of pipelines.

Table 2. Change of defect dimension with corrosion time.

Corrosion Time (Years) Defect Depth (mm) Defect Length (mm)

3 11.981 200.569
6 12.507 201.243
9 13.041 202.017
12 13.580 202.888
15 14.122 203.857
18 14.662 204.925
21 15.199 206.104
24 15.733 207.419
27 16.266 208.909
30 16.798 210.649
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The initial corrosion defect depth of 11.46 mm is kept unchanged, and the initial
defect lengths are taken as 160 mm, 170 mm, 180 mm, 190 mm, 200 mm, 210 mm, 220 mm,
230 mm, 240 mm and 250 mm, respectively. By establishing a model and calculating the
defect profiles under different corrosion times, they are derived to provide a geometric
model for the subsequent numerical simulation analysis of magnetic flux leakage testing
signal detection.

3. Numerical Simulation Analysis of Magnetic Flux Leakage Testing
3.1. Magnetic Flux Leakage Testing Theory

Similar to electric field lines, magnetic induction lines are imaginary curves used to
help describe the direction of a magnetic field. The propagation of magnetic induction lines
obeys the boundary conditions of the electromagnetic field. When the magnetic induction
line passes through the different media interfaces of the two materials, the propagation path
is refracted due to the change in permeability [36]. A schematic diagram of the refractive
law of the magnetic induction line is shown in Figure 5.
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As shown in the figure, two media with different permeability are divided by interface,
and the normal components of magnetic induction intensity in medium 1 and medium 2 are
B1n and B2n, respectively. The magnetic field strength components of the circumferential
of medium 1 and medium 2 are H1t and H2t, respectively, the angle between magnetic
induction and normal is θ1 and θ2, and the permeability of medium 1 and medium 2 is µ1
and µ2, according to the boundary conditions of the two magnetic media.

B1n = B2n (11)

H1t = H2t (12)

The permeability ratio on both sides of the medium is equal to the tangent ratio of
the angle between the magnetic induction line and the normal line on both sides of the
medium, that is:

tan θ1

tan θ2
=

µ1

µ2
(13)

The magnetic induction line is incident from medium 1, refracted at the interface and
emitted from medium 2; when the size of µ1 is much greater than µ2, θ2 infinitely tends
to 0, and θ1 tends to 90 degrees. At this time, the magnetic induction line inside medium
1 becomes very dense and parallel to the interface. The greater the permeability of the
material constituting medium 1, the closer θ1 is to 90 degrees.
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The principle of magnetic flux leakage testing is schematically shown in Figure 6,
where an excitation device is applied to magnetize the pipe wall into near saturation. If the
pipe wall is continuous and free of defects, the magnetic induction line will be constrained.
The magnetic flux is parallel to the surface of the pipe wall and hardly forms a magnetic
field. If there are defects in the pipe wall, the magnetic induction line will change. Part of
the magnetic flux leaks into the space on the surface of the pipe wall, forming a leakage
magnetic field at the defect. At this time, sensors such as Hall elements are used to detect
the magnetic flux leakage on the surface of the pipe wall, and the magnetic flux leakage
signal can be analyzed to evaluate whether the pipelines have defects.
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Figure 6. Principle of magnetic flux leakage testing.

3.2. Finite Element Model of Magnetic Flux Leakage Testing

The finite element model of pipeline defect magnetic flux leakage testing is established
by COMSOL Multiphysics 6.0. The geometric model consists of a ferromagnetic X100 steel
pipeline, an excitation coil and a magnet yoke. The model adopts the corrosion defect
profile calculated in numerical simulation of pipeline stress corrosion, the positions and
sizes of the excitation coil and magnet yoke are shown in Figure 7. The magnetic flux
leakage signal detection path is set above the pipe wall to replace the Hall sensor, as shown
in the blue dashed line. In order to ensure the accuracy and smoothness of the magnetic flux
leakage signal, the defect area and the air region above it are divided by a sweeping mesh,
the unit size is set to 5 mm, and the rest are divided by a free triangle mesh. The complete
mesh consists of 33,990 mesh cells, with a maximum cell size of 60 mm, a minimum cell
size of 0.225 mm, and a maximum cell growth rate of 1.2.
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In the actual test, considering the geometric size and magnetization effect of the
magnetization device, the local magnetization method is generally selected. The magnetic
field signal in the magnetization area is detected to determine whether there is a defect
in the area and the geometry of the defect. In this paper, the yoke method is selected
to locally magnetize the defective pipelines, and the coil is excited to generate the direct
current magnetization, which can generate a stable magnetic field without a skin effect. The
excitation coil material is set to copper, and the relative permeability is 0.9999912; the yoke
material is selected from the COMSOL material library, regardless of loss. The pipeline
material is set to X100 pipeline steel with ferromagnetism, and the relative permeability
input B-H curve [37] is given as the nonlinearity of the material, as shown in Figure 8.
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Figure 8. B-H curve of X100 pipeline steel.

3.3. Effect of Magnet Yoke on Magnetic Flux Leakage Signal

The number of excitation coils and the current value will directly affect the magneti-
zation effect of the magnet yoke. The geometric model with defect length of 200 mm and
defect depth of 11.46 mm is established, and the magnetic flux leakage signal detection
path is set to 40 mm above the pipe wall. Currents of 3 A, 5 A, and 7 A are applied to the
excitation coil, and the coils are wound 400 turns, 500 turns, and 600 turns, respectively. The
magnetic flux leakage signal distribution under different parameter conditions is shown in
Figure 9:
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number signal with 5A current.

The figure shows that the magnetization effect of the magnet yoke on the pipe wall will
be enhanced with the increase in current value and number of excitation coils. Low current
and small coil turns will cause the curve to change less significantly. In the meantime, high
current and large coil turns will increase the calculation amount. Therefore, considering
the calculation accuracy and calculation speed, a 5A current and 500 coil turns are selected
in this study.

3.4. Effect of Geometric Features on Magnetic Flux Leakage Signal

According to the number of excitation coil and current value, the magnetic flux leakage
testing model is established, and the influences of defect depth, defect length and lifting
height on magnetic flux leakage signal distribution are studied, respectively. When the
defect depth is taken as a variable, the magnetic flux leakage signal detection path is set to
40 mm above the pipe wall, the defect length is 200 mm, and the defect depths are taken
as 8 mm, 9 mm, 10 mm, 11 mm and 12 mm. When the defect length is taken as a variable,
the magnetic flux leakage signal detection path is set to 40 mm above the pipe wall, the
defect depth is 11.46 mm, and the defect depths are are taken as 100 mm, 150 mm, 200 mm,
250 mm and 300 mm. When the lifting height is taken as a variable, the defect depth is
controlled at 11.46 mm, the defect length remains unchanged at 200 mm, and the magnetic
flux leakage signal detection paths are set to 30 mm, 40 mm and 50 mm above the pipe wall.
The magnetic flux leakage signal distribution under different geometric characteristics is
shown in Figure 10:

The figure shows that different geometric features lead to different magnetic flux
leakage signal distributions. As the defect depth increases, the extreme values of the axial
and radial components show a continuous increase, with a concomitant increase in the
enclosed area of the curve. Conversely, as the defect length increases, the extreme values of
both the axial and radial components decrease, accompanied by an increase in the width of
the peak of the curve. This observation implies a correlation between the defect dimension
and the extreme value, area and peak width of the curve. In addition, the extreme values
of the axial and radial components decrease as the lifting height increases. In this study, a
lifting height of 40 mm is chosen to ensure clear changes in the distribution curve of the
detected magnetic flux leakage signal for each component.
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Figure 10. Distribution of magnetic flux leakage signal under different geometric characteristics.
(a) Axial component of defect depth signal. (b) Radial component of defect depth signal. (c) Axial
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4. Corrosion Defect Regression Prediction
4.1. Magnetic Flux Leakage Signal Feature Extraction

The key to quantitative analysis of defect magnetic flux leakage signal is to extract the
feature of the distribution curve. Combined with the above analysis of the transformation
law of the magnetic flux leakage signal curve, the feature of the distribution curve is defined
as follows (Figure 11):

1. Peak value
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A baseline is established along the lower edge of the axial component curve, and the
disparity between the peak of the curve and this baseline is defined as the peak value of
the axial component (P1). In the meantime, the disparity between the positive peak and the
negative peak within the radial component curve is defined as the peak value of the radial
component (P2).

2. Area

A baseline is established along the base of the axial component curve, and the abso-
lute area enclosed by the curve and the baseline is defined as the peak area of the axial
component (A1). Similarly, by connecting the endpoints of the radial component curve to
form a baseline, the absolute area enclosed by the curve and the baseline is defined as the
peak area of the radial component (A2).

3. Full width at half maximum (FWHM)

The width of the axial component curve at half of its peak height is defined as the
FWHM of the axial component (W1). On the other hand, since the radial component curve
exhibits two peaks, the average of two width values is defined as the FWHM of the radial
component (W2).

4. Corrugation pitch

By calculating the disparity between the abscissa values of the negative and positive
peaks of the radial component curve, the resulting difference is defined as the corrugation
pitch of the radial component (S).

The magnetic flux leakage signal distribution of pipelines with different defect profiles
is calculated by using the magnetic flux leakage testing model. A total of 100 groups of
data are obtained by extracting the feature of the distribution curve, as shown in Table A1
of Appendix A.
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4.2. Kernel Function Extreme Learning Machine Improved by Genetic Algorithm

An extreme learning machine (ELM) is a single hidden layer feedforward artificial
neural network, which has faster operation speed and better generalization performance
than traditional algorithms [38]. In the training process of ELM, the connection weights of
the input layer and the hidden layer are randomly generated, and the connection weights
of the hidden layer and the output layer are obtained by solving the equation rather than
iteratively adjusting. Better performance can be obtained only by adjusting the number
of neurons in the hidden layer, which greatly enhances the learning speed. The network
structure of ELM is shown in Figure 12, which consists of the input layer, hidden layer and
output layer.
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In the figure above, xn is the eigenvector of the input sample; Wi is the connec-
tion weight of the input layer and the hidden layer; βi is the connection weight of the
hidden layer and the output layer; yn is the label vector corresponding to the sample;
h(x) = [h1(x), · · · , hi(x)] is hidden layer output, the calculation formula of hi(x) is
as follows:

hi(x) = g(Wi, bi, x) = g(Wix + bi) (14)

In Equation (14), g(·) is the activation function; bi is the deviation of the hidden layer unit.
In an extreme learning machine, the number of hidden layer neurons needs to be

determined to obtain the unique optimal solution. While the kernel function extreme
learning machine (KELM) replaces the unknown hidden layer feature mapping with the
kernel function, it does not need to determine the number of hidden layer nodes in advance
but only obtains its kernel function. The basic principle of the kernel function is to map the
input space sample data to the high-dimensional feature space by the nonlinear function,
and then process the high-dimensional feature space. The key point is to transform the
product operation in the high dimensional space after nonlinear transformation into the ker-
nel function calculation in the original input space by introducing the kernel function [39].
The kernel function formula is as follows:

Ωi,j = hi(x) · hj(x) = K
(
xi, xj

)
(15)

K
(

xi, xj
)
= exp

(
−‖x− xi‖2

δ2

)
(16)
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In Equation (16), K
(
xi, xj

)
is the element of the kernel matrix Ω; δ is the parameter of

the kernel function.
Meanwhile, the main means of the numerical solution is iterative operation, and the

general iterative method is easy to fall into the local minimal loop. The genetic algorithm
(GA) is a globally improved algorithm that follows the principle of survival of the fittest.
It uses the “random selection according to probability” search method to avoid the trap
of local optimal cleverly, and has good convergence. In order to improve the accuracy
of the neural network algorithm, a kernel function extreme learning machine improved
by genetic algorithm (GA-KELM) is proposed. Setting the population number to 20, the
maximum number of iterations to 100, the crossover probability to 0.7, and the mutation
probability to 0.3, the performance workflow of GA-KELM is shown in Figure 13.
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In this algorithm, the input weights of KELM training data and the threshold of
hidden layer nodes are mapped to genes on each chromosome in the GA population. The
chromosome fitness of GA corresponds to the training error of KELM, and the problem
of obtaining the optimal input weight and threshold is transformed into the problem of
selecting the optimal chromosome by reducing the chromosome fitness. Through GA
selection, crossover, mutation and other genetic operations, the optimal chromosome is
selected as the input weight and threshold of KELM after being improved. The output
weights of hidden layer neurons are calculated by the least squares method to calculate the
predicted output. The algorithm integrates the global search ability of GA and the strong
learning ability of KELM, which can effectively improve prediction accuracy.

4.3. Prediction Results and Analysis

The ELM and GA-KELM prediction models are established by MATLAB R2018a, and
100 sets of features of magnetic flux leakage signal distribution curves are selected as data
sets to predict corrosion defects. Each data set comprises eight distinct parameters. Among
them, P1, P2, A1, A2, W1, W2 and S are taken as inputs, and the defect depth and defect
length are, respectively, taken as outputs. In total, 80 groups of data are randomly selected
as the training set, and the remaining 20 groups of data are selected as the test set.
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Figure 14 shows the comparison of prediction results of the two models. It can be
seen from the figure that the accuracy of the GA-KELM model in predicting defect depth
and defect length is 98.8% and 98.2%, respectively, which is 5.4% and 5.2% higher than
that of the traditional ELM model. It shows that the GA-KELM model established in this
paper can well predict the corrosion defect dimension, the improved algorithm adopted
can effectively improve the prediction performance, and the prediction accuracy of the
improved model is significantly improved.
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5. Conclusions

In this paper, a calculation model of pipeline stress corrosion is established by the
numerical simulation method. Furthermore, this paper analyzes the transformation law
of magnetic flux leakage signal distributions. In addition, it combines improved artificial
neural network algorithms to predict the corrosion defect depth and length. The following
conclusions are deduced:

(1) In this study, the accuracy of the numerical simulation results for pipeline stress
corrosion is validated by published experimental data. Therefore, the effectiveness of
the finite element model established herein in calculating corrosion defect changes is
confirmed.

(2) Different geometric features result in different magnetic flux leakage signal distri-
butions. With the increase in defect depth, the area enclosed by the magnetic flux
leakage signal distribution curve increases, and the extreme value of the curve also
increases. As the defect length increases, the width of the curve crest increases, but
the extreme value of the curve decreases. Correspondingly, a rise in lifting height
corresponds to a conspicuous reduction in the curve’s extreme value.

(3) As described above, the established GA-KELM model demonstrates excellent predic-
tive ability, accurately predicting changes in corrosion defect depth and length, with
prediction accuracies of 98.8% and 98.2%, respectively, which shows improvements of
5.4% and 5.2% over the traditional ELM model.

6. Future Directions

There are still many limitations and deficiencies in the study, which need to be im-
proved in future work:
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(1) In the present study, magnetic flux leakage testing has been explored as a method for
detecting small-sized defects. However, it is crucial to acknowledge that the method
becomes impractical when the defect size exceeds the coverage area of the magnetic
yoke. Another noteworthy non-destructive testing approach is acoustic testing. In
acoustic testing, sound signals propagate along the pipe wall, and signals carrying
defect-related information can escape into the surrounding medium. Thus, the loca-
tion and size of defects can be determined with appropriate acoustic equipment [40].
Importantly, acoustic inspection technology is not constrained by defect size, making
it a valuable option for addressing larger defects.

(2) Moreover, it is essential to consider the impact of various factors on the magnetic
flux leakage signal, including the anti-corrosion measures applied to pipelines, the
properties of pipe wall coatings, and the chemical composition of pipe material. In
our future research, we will thoroughly investigate how these properties influence
the outcomes of non-destructive testing.

(3) Furthermore, the accurate determination of the defect’s location is of paramount impor-
tance. In our subsequent research endeavors, we intend to advance our methodology
to enable the precise detection of both defect size and defect location, thus enhancing
the comprehensiveness and effectiveness of our non-destructive testing approach.
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Nomenclature

σyhard hardening function
σexp stress–strain curve of X100 pipeline steel
εp plastic deformation
σe von Mise stress
E Young’s modulus
σys yield strength
ia local anode current density
i0,a exchange current density
Aa anode’s Tafel slope
ηa overpotential of the anode reaction
Eeq,a equilibrium potential of the anode reaction
Eeq0,a standard equilibrium potential of anode reaction
∆Pm overpressure that causes elastic deformation
Vm molar volume of steel
z electric charge of steel
F Faraday’s constant
T absolute concentration
R ideal gas constant
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v directional correlation factor
α coefficient
N0 initial dislocation density
ic local cathode current density
i0,c exchange current density
Ac cathode’s Tafel slope
i0,c,re f reference exchange current density of the cathode reaction without external stress/strain
ηc overpotential of the cathode reaction
Eeq,c standard equilibrium potential of the cathode reaction
v electrode boundary moving speed
M molar mass of iron
ρ density of iron
Bx axial component of magnetic flux density
By radial component of magnetic flux density
P1 peak value of axial component
P2 peak value of radial component
A1 peak area of axial component
A2 peak area of radial component
FWHM full width at half maximum
W1 FWHM of axial component
W2 FWHM of radial component
S corrugation pitch of radial component
Bn normal components of magnetic induction intensity
Ht magnetic field strength components of the circumferential
θ angle between magnetic induction and normal
µ permeability
xn eigenvector of the input sample
Wi connection weight of the input layer and the hidden layer
βi connection weight of the hidden layer and the output layer
yn label vector corresponding to the sample
h(x) hidden layer output
g(·) activation function
bi deviation of the hidden layer unit
Ωi,j the kernel function

K
(

xi, xj

)
element of kernel matrix

δ parameter of the kernel function
GA−KELM kernel function extreme learning machine improved by genetic algorithm

Appendix A

Table A1. The feature of magnetic flux leakage signal distribution curve.

Defect Depth Defect Length P1 A1 W1 P2 A2 W2 S

12.073 160.530 0.0021 0.3001 126.946 0.0021 0.3156 116.439 1164.044
12.671 161.141 0.0024 0.3314 121.415 0.0024 0.3660 119.899 1164.067
13.263 161.852 0.0028 0.3694 114.366 0.0027 0.4283 123.430 1164.091
13.852 162.612 0.0032 0.4150 106.596 0.0031 0.5037 126.542 1164.051
14.440 163.463 0.0037 0.4625 100.618 0.0035 0.5818 128.045 1166.076
15.027 164.388 0.0043 0.5163 95.281 0.0041 0.6708 128.343 1166.042
15.618 165.411 0.0049 0.5746 91.095 0.0047 0.7672 128.040 1166.075
16.214 166.518 0.0056 0.6364 88.083 0.0053 0.8687 127.563 1168.043
16.811 167.752 0.0062 0.7026 85.895 0.0060 0.9771 127.142 1168.079
17.412 169.133 0.0069 0.7740 84.344 0.0067 1.0933 126.868 1170.059
12.052 170.536 0.0021 0.3080 132.375 0.0021 0.3142 116.383 1164.044
12.637 171.160 0.0023 0.3381 126.743 0.0023 0.3648 119.851 1164.067
13.216 171.874 0.0027 0.3749 119.241 0.0026 0.4275 123.411 1165.002
13.791 172.672 0.0031 0.4173 111.344 0.0030 0.5033 126.526 1164.048
14.361 173.553 0.0036 0.4654 104.007 0.0034 0.5811 128.020 1165.077
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Table A1. Cont.

Defect Depth Defect Length P1 A1 W1 P2 A2 W2 S

14.930 174.519 0.0041 0.5144 98.674 0.0039 0.6712 128.353 1165.043
15.498 175.575 0.0047 0.5697 93.907 0.0045 0.7681 128.064 1166.080
16.067 176.739 0.0053 0.6284 90.372 0.0051 0.8705 127.611 1166.967
16.642 178.035 0.0060 0.6906 87.751 0.0057 0.9793 127.192 1168.026
17.217 179.504 0.0067 0.7569 85.860 0.0064 1.0966 126.934 1168.073
12.013 180.547 0.0020 0.3154 137.912 0.0021 0.3265 125.239 1164.045
12.569 181.187 0.0023 0.3450 131.904 0.0023 0.3741 128.874 1166.975
13.126 181.919 0.0026 0.3805 124.023 0.0026 0.4304 132.494 1165.004
13.681 182.741 0.0030 0.4204 116.041 0.0029 0.4952 135.288 1164.051
14.236 183.651 0.0035 0.4668 107.890 0.0033 0.5713 136.507 1166.078
14.789 184.651 0.0040 0.5147 101.847 0.0038 0.6499 136.434 1166.045
15.340 185.749 0.0046 0.5673 96.654 0.0043 0.7364 135.706 1166.085
15.890 186.962 0.0052 0.6235 92.596 0.0049 0.8289 134.705 1166.059
16.441 188.323 0.0058 0.6829 89.557 0.0055 0.9260 133.727 1168.034
16.991 189.883 0.0064 0.7459 87.312 0.0061 1.0286 132.915 1168.084
11.994 190.557 0.0020 0.3225 143.602 0.0020 0.3323 129.727 1167.952
12.534 191.214 0.0023 0.3520 136.944 0.0022 0.3840 133.687 1164.979
13.078 191.967 0.0026 0.3858 129.123 0.0025 0.4440 137.543 1164.092
13.628 192.813 0.0030 0.4247 120.482 0.0028 0.5143 140.569 1164.053
14.180 193.751 0.0034 0.4682 112.282 0.0032 0.5935 141.953 1166.081
14.728 194.785 0.0039 0.5162 104.989 0.0037 0.6817 141.990 1166.049
15.273 195.923 0.0044 0.5659 99.535 0.0041 0.7727 141.304 1166.091
15.815 197.186 0.0050 0.6205 94.876 0.0047 0.8729 140.189 1166.065
16.356 198.609 0.0056 0.6779 91.378 0.0053 0.9782 139.053 1167.958
16.898 200.255 0.0062 0.7387 88.747 0.0059 1.0887 138.046 1168.032
11.980 200.569 0.0020 0.3292 149.426 0.0020 0.3347 133.782 1165.955
12.507 201.243 0.0023 0.3588 142.023 0.0022 0.3804 137.744 1164.980
13.040 202.017 0.0025 0.3912 134.193 0.0024 0.4313 141.216 1164.024
13.580 202.888 0.0029 0.4287 125.294 0.0027 0.4914 143.830 1164.056
14.122 203.857 0.0033 0.4713 116.200 0.0031 0.5607 144.914 1166.085
14.662 204.925 0.0038 0.5177 108.371 0.0035 0.6367 144.620 1166.054
15.199 206.104 0.0043 0.5656 102.480 0.0040 0.7150 143.585 1166.030
15.733 207.419 0.0049 0.6183 97.294 0.0045 0.8019 142.120 1166.072
16.266 208.910 0.0054 0.6741 93.318 0.0005 0.8933 140.594 1168.050
16.798 210.649 0.0061 0.7329 90.293 0.0057 0.9895 139.217 1168.043
11.972 210.579 0.0020 0.3357 155.375 0.0019 0.3372 137.830 1164.042
12.491 211.270 0.0022 0.3653 147.207 0.0021 0.3831 142.127 1164.982
13.015 212.066 0.0025 0.3966 139.447 0.0024 0.4317 145.429 1164.026
13.543 212.963 0.0028 0.4332 129.895 0.0027 0.4902 148.014 1164.058
14.074 213.964 0.0032 0.4732 120.929 0.0030 0.5544 149.020 1166.088
14.606 215.070 0.0037 0.5195 111.842 0.0034 0.6305 148.652 1166.058
15.138 216.296 0.0042 0.5663 105.342 0.0039 0.7070 147.439 1166.036
15.669 217.669 0.0047 0.6175 99.660 0.0005 0.7912 145.750 1166.080
16.198 219.235 0.0053 0.6719 95.189 0.0050 0.8806 143.940 1168.063
16.727 220.154 0.0059 0.7291 91.755 0.0056 0.9744 142.272 1168.055
11.954 220.589 0.0019 0.3421 161.506 0.0019 0.3403 141.899 1165.956
12.455 221.295 0.0022 0.3716 152.693 0.0021 0.3853 146.342 1164.983
12.963 222.112 0.0025 0.4021 144.820 0.0023 0.4322 149.528 1164.027
13.475 223.035 0.0028 0.4372 135.357 0.0026 0.4876 151.990 1164.061
13.990 224.064 0.0032 0.4762 125.852 0.0029 0.5500 153.035 1166.024
14.509 225.206 0.0036 0.5198 116.717 0.0033 0.6209 152.708 1166.062
15.028 226.477 0.0041 0.5661 109.191 0.0038 0.6967 151.403 1166.041
15.546 227.907 0.0046 0.6143 103.416 0.0042 0.7754 149.671 1166.087
16.062 229.549 0.0051 0.6663 98.438 0.0048 0.8608 147.719 1168.072
16.577 231.494 0.0057 0.7213 94.543 0.0054 0.9510 145.841 1168.071
11.947 230.595 0.0019 0.3483 167.731 0.0019 0.3422 145.809 1164.957
12.443 231.312 0.0022 0.3774 158.373 0.0021 0.3868 150.505 1164.984
12.946 232.144 0.0024 0.4078 149.848 0.0023 0.4332 153.789 1164.028
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Table A1. Cont.

Defect Depth Defect Length P1 A1 W1 P2 A2 W2 S

13.456 233.087 0.0027 0.4418 140.262 0.0025 0.4864 156.195 1164.063
13.970 234.143 0.0031 0.4798 130.242 0.0028 0.5468 157.268 1166.027
14.490 235.319 0.0035 0.5219 120.647 0.0032 0.6151 156.932 1166.066
15.012 236.635 0.0040 0.5680 112.026 0.0036 0.6907 155.474 1166.046
15.535 238.127 0.0045 0.6152 105.672 0.0041 0.7680 153.526 1166.026
16.057 239.855 0.0050 0.6666 100.097 0.0005 0.8526 151.272 1168.081
16.578 241.922 0.0056 0.7210 95.718 0.0052 0.9422 149.063 1168.083
11.938 240.602 0.0019 0.3544 174.050 0.0018 0.3439 149.632 1164.043
12.425 241.332 0.0021 0.3831 164.249 0.0020 0.3877 154.483 1164.071
12.922 242.183 0.0024 0.4134 154.996 0.0022 0.4340 157.929 1164.030
13.429 243.151 0.0027 0.4461 145.640 0.0024 0.4845 160.216 1164.065
13.943 244.236 0.0030 0.4832 135.087 0.0027 0.5431 161.390 1166.030
14.462 245.452 0.0034 0.5237 125.195 0.0031 0.6085 161.113 1166.984
14.982 246.820 0.0039 0.5693 115.486 0.0004 0.6833 159.582 1166.052
15.501 248.378 0.0044 0.6153 108.584 0.0040 0.7586 157.488 1166.034
16.019 250.196 0.0049 0.6656 102.462 0.0045 0.8414 155.025 1168.027
16.537 252.392 0.0055 0.7190 97.558 0.0051 0.9297 152.541 1168.032
11.928 250.612 0.0019 0.3603 180.436 0.0018 0.3456 153.401 1164.043
12.406 251.359 0.0021 0.3887 170.309 0.0020 0.3884 158.374 1164.072
12.894 252.229 0.0023 0.4189 160.293 0.0022 0.4344 162.004 1164.031
13.392 253.219 0.0026 0.4506 150.999 0.0024 0.4825 164.214 1165.896
13.899 254.334 0.0029 0.4867 140.062 0.0027 0.5395 165.488 1166.033
14.413 255.589 0.0033 0.5261 129.601 0.0030 0.6032 165.311 1167.987
14.931 257.004 0.0038 0.5703 119.331 0.0034 0.6752 163.772 1166.057
15.451 258.625 0.0042 0.6154 111.809 0.0039 0.7490 161.591 1166.956
15.972 260.528 0.0048 0.6648 105.022 0.0044 0.8304 158.934 1168.036
16.494 262.843 0.0053 0.7172 99.550 0.0049 0.9175 156.207 1168.045
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