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Abstract: With the development of the power internet of things, the traditional centralized com-
puting pattern has been difficult to apply to many power business scenarios, including power load
forecasting, substation defect detection, and demand-side response. How to perform efficient and
reliable machine learning tasks while ensuring that user data privacy is not violated has attracted the
attention of the industry. Blockchain-based federated learning (FL), proposed as a new decentralized
and distributed learning framework for building privacy-enhanced IoT systems, is receiving more
and more attention from scholars. The framework provides some advantages, including decentral-
ization, scalability, and data privacy, but at the same time its consensus mechanism consumes a
significant amount of computational resources. Moreover, the number of model parameters has in-
creased dramatically, leading to an increasing amount of transmitted data and a vast communication
overhead. To reduce the communication overhead, we propose an FL framework in the directed
acyclic graph (DAG)-based blockchain system, which achieves efficient and trusted sharing of FL
networks. We design an adaptive model compression method based on k-means to compress the FL
model and reduce the communication overhead of each round in FL training. Meanwhile, the original
accuracy-based tips selection algorithm is optimized, and a tips selection algorithm considering
multi-factor evaluation is proposed. Simulation experimental results show that the method proposed
in this paper reduces the total bytes of communication of the blockchain-based federated learning
system while balancing the accuracy of the FL model compared to previous work.

Keywords: federated learning; DAG; communication overhead; adaptive model quantization

1. Introduction

With the deep integration of internet of things (IoT) technology and the power grid,
the intelligent development of power IoT has gradually attracted people’s attention. Coor-
dinated scheduling between the power generation side, user side, and distribution network
is the key to the development of power systems. The scenarios include intelligent inspec-
tion, power load forecasting, and demand-side response. These tasks require a power
system with trusted data sharing capabilities and big data mining capabilities. However,
the development of new power systems faces some problems and challenges. First, the
traditional centralized computing framework is vulnerable to attacks by third parties, and
the data transmission process is at risk of data leakage and tampering [1]. Second, with the
development of artificial intelligence technology, the number of model parameters increases
significantly, and the limited resources in IoT devices make adapting to the development
of large models challenging. Third, people’s awareness and concerns about privacy are
growing. Governments have implemented data privacy legislation, such as the European
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Commission’s General Data Protection Regulation (GDPR) [2] and the U.S. Consumer
Privacy Bill of Rights [3].

In recent years, federated learning (FL) has been proposed as a distributed learning
framework for building a data privacy-enhanced power system. The authors in [4] sug-
gested that FL can solve the privacy problem among data owners. Lu et al. [5] proposed
a decentralized and secure FL model based on blockchain. This model integrates FL into
the consensus process of blockchain, which improves the system’s security without the
need for centralized trust. However, the traditional consensus mechanism causes extreme
resource consumption.

To avoid the extra resource consumption caused by blockchain, Li et al. [6] proposed
DAG consensus, a consensus mechanism designed based on the structure of a directed
acyclic graph (DAG). A blockchain system using such a consensus mechanism is called a
DAG blockchain. Compared with proof-of-work (PoW) and proof-of-stake (PoS), that have
been widely used in blockchain, the consensus mechanism designed on DAG consensus can
overcome some shortcomings, such as high resource consumption, high transaction fee, low
transaction throughput, and long confirmation delay. An important aspect of DAG-based
consensus mechanisms is the tip selection algorithm [7,8]. The algorithm determines the
selection of tips that should be approved when the next transaction is issued. That is the
parent node of the published new transaction connection. In the DAG consensus-based
scheme, the traditional tip selection algorithm always chooses the highest weight when
selecting, and its traditional transaction weight is calculated by counting the number of
approved transactions. Cao et al. [9] first combined the DAG blockchain with FL (DAG-FL).
DAG-FL adopts asynchronous FL to approve the nodes by verifying the accuracy of the
tips and the local models, and the local models with considerable accuracy of the local
models are selected to construct the global model.

However, there are two main problems in the current DAG blockchain-based federated
learning framework: first, the system communication overhead increases as the number of
federated learning model participants increases. Second, the model transmission process is
vulnerable to gradient leakage attacks [10–12]. Therefore, how to realize an efficient and
trustworthy federated learning framework with balanced learning accuracy has become an
urgent problem to be solved.

We note that there is a gradient compression approach to compress the uploaded
gradients [13] to reduce the burden of communication in each round. Model compression
refers to using various techniques to reduce the size, complexity, and computation of
machine learning models so that they can be deployed and run on resource-constrained
devices. Model compression can effectively reduce the storage and computing resource
requirements of the model, and improve the inference speed and efficiency of the model, so
as to realize efficient machine learning applications in resource-constrained scenarios such
as mobile devices and edge devices. In a federated learning system, due to the frequent
transmission of gradients, the communication overhead between an aggregation node
and multiple clients in distributed training is large, which limits the training efficiency of
federated learning. Luo et al. [14] verifies the applicability of model compression methods
in distributed deep learning. In addition, Beilharz et al. [7] proposed an accuracy-based tips
selection algorithm for specialization implicitly. Inspired by this, we offer a k-means-based
adaptive model quantization scheme to reduce the communication overhead in an FL training
task. Meanwhile, a grading-based tips selection algorithm is proposed to make specific changes
to the direction of FL iterations, taking into account the accuracy and overall communication
overhead of the system. The main contributions of this paper are as follows:

(1) A k-means-based adaptive model compression scheme is proposed to reduce the
communication overhead. Instead of transmitting the original model, the compressed
model is transmitted. It not only reduces the communication overhead of the nodes
but also improves the security of the system.
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(2) A grading-based tips selection algorithm is proposed, which integrates the accuracy
of each iteration during FL training and the overall communication overhead of the
system, so that the FL model iterates in the direction of high accuracy.

(3) The primary convolutional neural network (CNN) model is trained for the hand-
writing recognition tasks by using the MNIST dataset. Extensive experiments show
that our CDAG-FL scheme saves approximately 16% of the communication overhead
compared to the baseline method.

The rest of the paper is organized as follows: Section 2 introduces the related work,
Section 3 describes the system framework and workflow of the system, Section 4 analytically
models the communication overhead problem in DAG-based federated learning systems,
Section 5 proposes a k-means-based adaptive model quantization scheme and a grading-
based tips selection method, and Section 6 performs experimental simulation verification.
The last chapter summarizes the thesis work.

2. Related Work
2.1. Convergence Framework for DAG Blockchain and Federated Learning

Scholars have researched and proposed a framework for converging DAG blockchain
and FL. The earliest one is DAG-FL, proposed by Mingrui Cao et al. [9] to solve the problem
of device asynchrony and anomaly detection in an FL framework, avoiding the extra
resource consumption brought by the blockchain. It proposes a framework for FL using a
blockchain based on the direct acyclic graph (DAG), which achieves better performance in
terms of training efficiency and modeling accuracy compared with the existing typical on-
device FL systems. However, it needs to address the problem of communication overhead.
Based on this, Beilharz et al. [7] proposed a framework called directed acyclic graph
federated learning (SDAGFL). It not only overcomes the challenges of device heterogeneity,
single point of failure, and poisoning attacks, but also creates a unified solution for decentralized
and personalized FL. But again, it dose not consider the communication overhead.

However, in IoT scenarios, the computing nodes have limited computing and com-
munication resources with strict energy constraints. In order to optimize the SDAG-FL
system for IoT, Xiaofeng Xue et al. [15] proposed an energy-efficient SDAG-FL framework
based on an event-triggered communication mechanism, i.e., ESDAG-FL. The ESDAG-FL
can reasonably achieve the balance between the training accuracy and specialization of
the model and reduces nearly half of the energy consumption. Inspired by this, this pa-
per proposes a new SDAG-FL scheme for efficient communication, called CDAG-FL. We
design an adaptive model compression method based on the k-means mechanism and an
improved tips selection algorithm for the CDAG-FL system in power IoT. The relevant
research analysis of blockchain and federated learning architecture is shown in Table 1.

Table 1. Comparing our proposed scheme with existing methods.

Optimization
of Training
Efficiency

Optimization
of Model
Accuracy

Scalability Model
Compression

Optimization
of Tips

Selection

Literature [6]
Literature [11]
Literature [12]

CDAG-FL

2.2. Communication Overhead Issues

To address the problem of how to reduce the communication overhead in FL, Mingzhe
Chen et al. [16] used stochastic gradient quantization to compress the local gradient. He
optimized the quantization level of each device under the multi-access channel capacity
constraints to minimize the optimality gap, which reduces the communication overhead
of FL. However, we must consider the reduction of convergence speed brought by model
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compression to FL. Wei Yang et al. [13] analyzed the effect of fixed compression rate in
model compression on the number of iterations and training error in the training process,
proved that a suitable compression rate can better perform the compression algorithm,
and proposed an adaptive gradient compression algorithm, which provides a unique
compression rate for each client according to the actual characteristics of each client, to
improve the communication performance. However, it does not consider the influence
of the client training process. Peng Luo et al. [14] proposed a new ProbComp-LPAC
algorithm. The ProbComp-LPAC algorithm selects the gradient with a probability equation
and uses different compression rates in different layers of a deep neural network. In the
same layer, the more parameters, the lower the compression rate with higher accuracy.
ProbComp-LPAC is not only faster in training speed but also has high accuracy. However,
the compression rate of each layer needs to be adjusted manually, and its effect is limited.

3. System Model
3.1. System Framework Architecture

The DAG-based efficient communication federated learning system (CDAG-FL) pro-
posed in this paper is an asynchronous FL system, including the application layer, DAG
layer, and FL layer. A more detailed illustration of this system is shown in Figure 1.

Figure 1. The DAG-based efficient communication federated learning system (CDAG-FL) frame-
work diagram.

Application Layer: the application layer is deployed at the top layer of the system to
manage the system process and provide interfaces for external agents through intelligent
contracts. Firstly, external agents can issue FL tasks to nodes through intelligent contracts.
Secondly, during the FL process, the smart contract observes the transactions on the DAG
and comes to the test at regular intervals to determine whether the target model has been
reached. Finally, when the FL iteration termination requirement is reached, the application
layer issues an iteration termination command to the node through the smart contract.

DAG Layer: at the DAG layer, each node maintains the global DAG, where the pub-
lished transactions in the DAG contain authentication information, local model parameters,
and approval connections. Using P2P technology, nodes update the DAG by broadcasting
over the wireless network.
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FL Layer: the FL layer provides the function of FL model training. The FL layer obtains
the latest DAG by interacting with the DAG layer. It locally selects the models to be aggregated
using the tips selection algorithm, after which the models stored in the transactions on the
DAG are aggregated using the Federated Averaging algorithm to form the Average Models.
After further training using its dataset, it will encapsulate a newly trained model (Updated
Models) into a transaction on the DAG for publishing and processing.

3.2. System Workflow

The DAG-based efficient communication federated learning(CDAG-FL) system is an
asynchronous FL system without a centralized server, which deploys on mobile device
nodes such as smartphones, wearables, and IoT devices under a wireless network, and
these nodes collectively maintain a public DAG blockchain. We assume that these nodes
can communicate with each other, as shown in Figure 1.

Suppose the set of power IoT devices denote as D = {1, 2, 3, . . . , ND}, where ND is the
number of nodes and Di is the i-th node in D. Denote the training dataset on the Di as Si,
where Ni is the number of samples of Si. The local model trained by node Di at moment t
can denote ωt

i . Assume that the Transaction in the DAG blockchain structure divides into
four classes, and a complete model is stored in each class.

1. Initial Transaction: The initial transaction contains FL tasks and the initial model
parameters ω0.

2. Transaction: The primary transaction type contains the published model.
3. Tip Transaction: A unique transaction that contains the latest model and has not been

approved by other nodes.
4. New Transaction: The new node contains the model to be published.

In the CDAG-FL, the task publisher of federated learning can represent an external
agent, E, which holds a virtual machine to run smart contracts. The external agent, E,
publishes the initial global model, ω0, and federated learning tasks and observes the FL
process. If the model meets the requirements, it issues a stop iteration command, all nodes
stop iteration immediately, and the federated learning task ends.

The node Di will repeat the following five steps during this period to update the
model, as shown in Figure 1. Assume the node will update the model at the t0 start of the
FL iteration.

Step 1: After obtaining the latest DAG, the node receives k Tip Transactions by per-
forming k times of Grading-based Random Walks. The selection process is represented by
the orange dashed line in Figure 1. The k-selected Tip Transactions are marked with red
dashed lines in Figure 1.

Step 2: Then the local model, ω, and the models in these k Tip Transactions, ωt1
d1

, ωt2
d2

,

ωt3
d3

, . . . , ω
tk
dk

, where the parameters satisfy (t1, t2, . . . , tk ≤ t0, d1, d2, . . . , dk ∈ D), are ag-
gregated into one model, ωt0 , using the Federated-Averaging algorithm.

ωt0 =
1

k + 1

(
k

∑
j=1

ω
tj
dj
+ ω

)
(1)

Step 3: Next, the node Di uses m randomly selected samples from the local dataset as
a small batch of the Zi dataset in the local dataset, Si, to the aggregation model obtained
above ωt0 to perform µ rounds of training to receive a new model, ωi. The samples in Zi
can be represented as (xi, yi), where xi is the feature set and yi is the label set. Then, in each
FL iteration, the loss function of the local model, ωi, of the Di node can be expressed as
fzi(ωi) = l(xi, yi; ωi), which represents the prediction error of (xi, yi) in the ωi. Every time
FL iteratively trains the model, it hopes that the local model, ωi, can minimize Fi(ωi).

Fi(ωi) = fZi (ωi) (2)
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Step 4: After that, the models in the obtained k Tip Transactions, ωt1
d1

, ωt2
d2

, ωt3
d3

, . . . , ω
tk
dk

,
are used as reference models, and the node compares the new model, ωi, with the reference
models. If the test loss of the new model is lower than that of all the reference models, it
meets the requirements of the release. After that, the new model by the k-means-based
adaptive quantization method is ωi compressed into ω′i .

Step 5: The client publishes the compressed model, ω′i , encapsulated into a New
Transaction published to the public DAG blockchain, updating the DAG structure with its
k Tip Transactions as its parents. Otherwise, the model is not published, and the process
starts again.

Throughout the iterative process, the external agent, E, expects to obtain the global
model, ω, through the smart contract after several FL iterations to minimize F(ω), as
follows:

min F(ω) =
1

ND
∑
i∈D

Fi(ωi) (3)

3.3. Problem Formulation

After understanding the framework structure and workflow of the DAG-based effi-
cient communication federated learning system, we analyze its communication overhead.
According to Section 3.2, the system model training process can be divided into five steps:
node acquisition Tip Transactions, model aggregation, model training, model comparison,
and model release. According to the analysis in [10–12], we analyze the communication
overhead in the system as follows. The communication overhead metric in the system is de-
fined by the total amount of data communicated by all the nodes during the communication
process, which is constantly interacting and updating. In each round of communication,
the communication overhead of each node mainly comes from these two processes.

Node Acquisition Tip Transactions: The communication overhead of this process is
determined by the number of models it downloads and the size of the models it downloads,
i.e., the number of bits it transmits. It assumes that each node Di performs k times on
the DAG blockchain structure Grade-based Random Walk during each iteration. Suppose
that during the Grade-based Random Walk, the average number of models downloaded
per Grade-based Random Walk is n. BDi is the average number of bits of the downloaded
models by node Di during this process, which is also its moderate size. Therefore, the node
Di obtaining k Tip Transactions has the following communication overhead.

Cdown
Di

= k× n× BDi (4)

Model Comparison and Publishing: The communication overhead of this process is
determined by the size of its publishing model, i.e., its number of bits. It assumes that
the publish model condition x = 1 is satisfied; otherwise, x = 0. The node Di publishes a
model of size Bω

Di
. The communication overhead of the model comparison and publishing

process is shown below.

Cup
Di

{
Bω

Di
x = 1

0 x = 0
(5)

From the above analysis, we can obtain the node Di communication overhead during
one FL iteration as follows.

Ctotal
Di

= Cdown
Di

+ Cup
Di

= k× n× BDi + Cup
Di

(6)
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Assume that the number of communication rounds required for federated learning to
reach the predefined performance metric is N, during which a total of M nodes participate.
Therefore, its total amount of communication data is:

C =
M

∑
i=1

N

∑
j=1

Cdown
Di,j

+ Cup
Di,j

(7)

From the steps of updating the model by the nodes, we can see [13] that many model
parameters must be constantly exchanged between the participants. From the analysis of
the communication overhead in the system, we can see that the number of communication
rounds in the FL iteration and the amount of data transferred between nodes in a single
communication round are the main reasons for the high communication overhead. By
analyzing the primary sources of communication overhead in the steps, we learn that
reducing the amount of data in a single round of communication can rely on appropriate
model compression of the node models to reduce the size of the transmitted models
to reduce the bandwidth occupied by the communication to reduce its communication
overhead. On the other hand, with model compression on the node models, the size of
the models published by the nodes on the DAG blockchain may be different. In order to
reduce the total amount of transmitted data in the FL iteration process, it can rely on the
change of the method of selecting Tip Transaction in the FL iteration process from only
considering the accuracy [7] to also considering the bit size of the model, thus prompting
the federated learning to iterate in the direction of the small bit size of the model and high
accuracy as a way of reducing the total amount of transmitted data in the whole federated
learning process.

Taken together, the optimization objective equation for this work is:

Minimize
[

C, min
ω∈Rd

F(ω)

]
(8)

In other words, the optimization objective minimizes the federated learning training
loss function while minimizing the communication overhead during federated learning.

4. Optimization Methods

With the system communication overhead analysis and its established optimization ob-
jective in Section 4, we propose a k-means-based adaptive quantization model compression
method and a grading-based tips selection strategy to optimize this objective.

4.1. Adaptive Quantization Model Compression Based on k-Means

Model weight sharing quantization is a way of model compression that compresses
the parameters in the model from high bit bits to low bit bits, which can reduce the number
of bits in the model transmission and, in this way, reduce the amount of data transmitted in
a single round of communication in federated learning. Therefore, we propose an adaptive
quantization model compression method, which performs adaptive model quantization
compression on the model after the nodes have trained the model and before posting the
model to the DAG blockchain.

In deep learning, researchers [17] use quantization and weight-sharing methods for
model compression to reduce the number of bits of weights stored in the model. Weight
sharing means that multiple connections use the same weights. The general steps are first
to model the transmitted ω weights of each layer by clustering them into k classes by a
clustering algorithm, and all the weights in each category share the same value, i.e., the
weight of the cluster center. The model weights are stored through a clustering index, and
the clustering center is stored in a codebook data structure, as shown in Figure 2.

After the network model clusters, when storing and transmitting the model, the weights
of the model only need to be represented by the indexes of the clusters. During model
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transmission, only the indexes of model weights and the structure of the corresponding
codebook need to be transmitted, which significantly reduces the communication overhead.

Figure 2. Quantization of the k-means model for a certain layer with a clustering number of 4 [17].

4.1.1. Selection of Clustering Centers and Number of Clusters k

In the model quantization method based on k-means clustering, the choice of the
clustering number k is essential, affecting the size of the model quantization and the
effect after quantization. The selection of the traditional clustering number k, which sets
artificially, is usually 32 or 64. However, due to the different data quality of nodes in
federated learning, data heterogeneity, data distribution, etc., all nodes set to the same
number of clusters will affect the effect of federated learning. Similarly, the number of
weights for each layer of the network in the deep learning model is different, and setting
the same number of clusters for each layer will affect the effect of the model, and each
manual setting is very time-consuming.

Similarly, cluster center initialization has generally random uniform initialization,
density-based initialization, and linear method-based initialization. Its clustering centers
sample for density-based initialization, where the weight values distribute more. This
is because larger weights in neural networks are more important and are usually in the
minority. Therefore, this method produces a negligible probability of selecting essential
weights. In addition, for random uniform initialization, the selection is random and
unstable. Therefore, considering the above, in this paper we use a linear method-based
initialization that selects the clustering centers in a way that covers all the weights very
uniformly.

Through the above analysis, this paper adopts an adaptive model quantization scheme
to replace the original time-consuming and laborious method of manually setting the k
value, which first uses the adaptive model quantization scheme to learn the number of
clusters, k, at each model layer. It then searches for the clustering centers of the weights
according to the number of clusters at each layer based on the k-means algorithm.

During a particular round of iterations of federated learning, suppose the model
released by node Di is ω; for a certain layer of the model, we use the k-means algorithm for
clustering, assuming that the adaptive model quantization scheme yields that the weights
of the layer are classified as (L1, L2, . . . , Li, . . . , Lk) a total of k classes, where i ∈ [1, k].ui
is the cluster center of class Li. w denotes the parameters of the model. By optimizing
Equation (9), we can obtain the clustering center of the layer (u1, u2, . . . , uk).

arg min
k

∑
i=1

∑
w∈Li

‖w− ui‖2 (9)

After obtaining the number of clusters, k, and the clustering centers of the layer
(u1, u2, . . . , uk), the model can be quantized using weight sharing, where the initial parame-
ters of the model are represented by the index of the class it belongs to. A codebook records
all the classes and their clustering centers, as shown in Figure 2.
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4.1.2. Calculation of Quantized Partial Model Bits

After quantization through clustering and weights, the number of bits of the model are
calculated. Generally, deep network model parameters are represented by floating point
numbers of 32 or 64 bits.

In this paper, we assume that the model’s parameters are represented by b bits and
that the current layer has a total of n parameters with a clustering number of k. The current
layer is represented by the number of bits B = nb. After quantization, the model’s initial
parameters are represented by the class index to which they belong. Since it is binary
encoded in the computer, the number of bits required to represent the index of the k classes
is log2 k. In addition to this, the values of the k clustering centers are stored, and their
values are represented by b bits, as are the model parameters. Thus, for the current layer,
the number of bits after quantization is:

B′ = n log2 k + kb (10)

Since the number of clusters in each layer of the deep learning model differs, the
number of model parameters in each layer is also different. Assuming that the model has t
layers, the model ω has a bit number of:

Bω =
t

∑
i=1

nib (11)

where ni denotes the number of parameters in the i-th layer of the model, where ki indicates
the number of clusters in the i-th layer of the model; after quantization, the model ω′ of the
bit number is:

Bω′ =
t

∑
i=1

ni logki
2 +kib (12)

After five steps of FL iteration, it assumes that the model to be released by node Di
is ωi. In order to obtain the clustering number, k, of each network layer of the model, the
number of clusters of the model is obtained according to the mapping Equation (13).

kall = round(((maxk −mink) ∗ acci) + mink) (13)

where maxk denotes the maximum number of clusters (the maximum number of clusters is set
to 1024) and mink indicates the minimum number of clusters; setting the minimum number
of clusters to 4.acci denotes the node Di precision on the local test set. the round function
represents the integer value of the obtained floating point number within a certain range.

Suppose the model ωi has a total of t layers, respectively (1, 2, . . . i, . . . , t). For the i-th
layer of the model, assume that the number of parameters in this layer is ni, the number of
zero parameters in the layer is zeroi, and the mean of the parameters is xi. After calculation,
the number of absolute values of the parameter of this layer greater than xi is mi. For the
i-th layer of the model, the number of clusters is:

ki = round
(

mi
ni − zeroi

∗ kall

)
(14)

According to Equation (14), we can obtain the number of clusters of the t-layer network
for the model ωi, which is (k1, k2, . . . , ki, . . . , kt). After that, each layer network is clustered
separately according to the k-means clustering algorithm to obtain the quantized model, as
shown in Figure 3.
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Figure 3. Example of k-means-based adaptive quantization model compression method with layer
number t.

4.2. Grading-Based Tips Selection Strategy

In the DAG-based consensus scheme, the traditional tips selection algorithm randomly
traverses the DAG in the opposite direction of approvals, as shown in Figure 4, with the
orange line indicating its random wandering process. In the process of random wandering,
when selecting the next transaction the weight of the transaction is calculated by counting
the number of approved transactions, and this is used as the criterion for selection, always
selecting the one with the highest weight until the Tip Transaction is found.

Figure 4. Example of traditional weight-based tips selection method [7].

Inspired by [7,13], we propose a grading-based tips selection strategy. In this system,
after k-means-based adaptive model compression, the models stored in the transactions are
different sizes. Considering the communication overhead, the grade integrates the metrics
of model accuracy, size, and the number of times the model is approved. It uses them as
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the criteria for selecting the next transaction during the random wandering process. In the
selection of the next transaction in the randomized wandering process, it assumes that a
total of n transactions exist with {ω1, ω2, . . . , ωi, . . . , ωn}. There are a total of n potential
following models whose transactions label as {1, 2, . . . i, . . . , n}, the sizes of the models in
their transactions are, respectively, {B1, B2, . . . , Bi, . . . , Bn}, and the number of times the
model is approved is, respectively, {L1, L2, . . . Li, . . . , Ln}. Where m denotes the number of
all clients participating in federated learning, randomly select x samples in the local dataset
Si of node Di as a small batch of dataset Zi to test all those mentioned above next-step
latent models. The accuracies obtained are, respectively, {acc1, acc2, . . . , acci, . . . , accn}.
Assuming that the size of the initial model for federated learning is Bω0 , for the sake of

comparison, we use
(

1− Bi
Bω0

)
as a measure of how much the model compressed. The

same Li
m denotes how well the model is approved. By Equation (13), we can obtain the

grade of model ωi, after which the model selects the next step based on this grade, as
shown in Algorithm 1.

Si = α ∗ acci + β ∗
(

1− Bi
Bω0

)
+ γ ∗

(
Li
m

)
(15)

Among them, α, β, and γ are three variables to control and balance the impact of their
corresponding indicators on the scores.

Algorithm 1: Grading-based tips selection strategy
Input: DAG structure:G = (V, E), InitialNode, Initial model size:D0, Number of

FL nodes:m
Output: TipNode

1 nextNode = InitialNode, TipNode = Null;
2 while GetChild(nextNode) 6= Null do
3 //get the number of child nodes
4 n = len(nextNode);
5 child[n] = GetChild(nextNode);
6 Initial acc[n] = 0；Score[n] = 0;D[n] = 0; L[n] = 0;
7 for (i = 0; i < n; i ++) do
8 //get the relevant indicators of each child node
9 acc[i] = GetAccBasedLocalData(Child[i]);

10 D[i] = GetChildDataSize(Child[i]);
11 L[i] = GetChildApprovalNumber(Child[i]);

12 for (i = 0; i < n; i ++) do
13 Scorei = α ∗ acci +β ∗

(
1− Di

D0

)
+ γ ∗ Li

m ;

14 //get the subscript with the maximum rating
15 x = GetMaxIndexScore(Score[n]);
16 nextNode = child[x];

17 TipNode = nextNode;
18 return TipNode;

5. Simulation Analysis
5.1. Experiment Setting

Unlike traditional FL, the DAG blockchain-based FL system is an entirely asyn-
chronous framework without any centralized server. In order to simulate and validate the
effectiveness of the proposed k-means-based adaptive model quantization scheme and
grading-based tips selection strategy in solving the communication overhead problem, this
paper uses the DAG blockchain-based FL framework to model the environment of the
communication overhead problem. It involves and uses the open-source Python framework
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Pytorch to simulate and experiment with the tips selection algorithm, and the adaptive
model quantization scheme was manufactured and tested. The experiments simulate
the scenarios of an adaptive model compression scheme during FL training and the tips
selection algorithm during model transmission in the DAG blockchain environment.

Two quantization schemes simulate as a baseline for the adaptive model quantization
scheme to compare with the k-means-based adaptive quantization scheme proposed in this
paper. (1): No quantization: after nodes train the model, there is no model compression,
e.g., traditional FL system, DAG-FL, SDAG-FL, etc., and the FL process under DAG-FL is
simulated in this paper. (2): Fixed k-value: in this scheme, model quantization with the
same k-value applies to the model published by any node in the system to mimic the case
of manually setting the k-value, where the k-value takes an intermediate value.

Different accuracy-based methods for the tips selection algorithm are used in DAG
blockchain-based FL frameworks such as SDAG-FL and DAG-FL. In this paper, we simulate
the accuracy-based preference tips selection algorithm in SDAG-FL to compare it with the
grading-based tips selection algorithm proposed in this paper. Since the premise of using the
grading-based tips selection algorithm is that the nodes upload different numbers of model
bits, we used the adaptive quantization scheme proposed in this paper for the model first.

5.1.1. Datasets and Models

In an efficient DAG-based FL system for communication (CDAG-FL), we evaluated a
handwriting recognition task on the MNIST dataset with a 9:1 ratio of training and test sets
for each node.

Dataset: The MNIST dataset is a subset of the NIST (National Institute of Standards
and Technology) dataset, containing 60,000 figures for training and 10,000 for testing. The
numbers have been size normalized and located in the center of the images, which are of
fixed size (28 × 28 pixels) and have values from 0 to 1. For simplicity, each image has been
flattened and converted to a one-dimensional numpy array of 784 (28 × 28) features.

Model: A convolutional neural network (CNN) is used for the handwriting recognition
task. It contains two convolutional layers and two fully connected layers. The kernel size
of the convolutional layers is 5 using the RELU activation function. A maximum pooling
layer with a pool size and step size of 2 follows each convolutional layer. The two fully
connected layers contain 2048 and 10 neurons, respectively.

5.1.2. Training Hyperparameters Setting

The training hyperparameter settings in the experiment are shown in Table 2. The
first five are for FL algorithm simulation experiments. The first parameter is the number
of local iterations, which refers to the number of iterations of each FL node when training
the FL model. The second parameter is the local batch, which represents the number of
batches into which the local dataset of the FL node is divided. During training, the dataset
is trained batch by batch. The third parameter refers to the number of samples in each
batch. The fourth parameter refers to the learning rate of FL training. The fifth parameter
indicates that three nodes are selected each time to publish transactions.

Moreover, α, β, γ are the hyperparameters in the multi-factor evaluation scoring
method. These three parameters are for the convenience of adjusting the impact of accuracy,
communication overhead, and number of approvals on the tip selection algorithm. The
ninth parameter is the value of the fixed k value when performing the simulation experi-
ment. The tenth parameter is the maximum number of clusters in formula (13), and the
eleventh parameter is the minimum number of clusters in formula (13). The maximum
number of clusters is set to 1024, because generally the deep network model parameters
are represented by floating-point numbers, 32-bit or 64-bit. In the model quantification
method of this paper, the maximum number of clusters is set to 1024, which means that the
maximum number of quantized model parameters is represented by 10 bits, the minimum
number of clusters is 4, and the minimum number of quantized model parameters is
represented by 2 bits.



Electronics 2023, 12, 3712 13 of 16

Table 2. Training hyperparameter settings.

Parameter Set Up

Local epochs 3
Local batches 32

Batch size 32
Learning rate 0.001

Client per round 10
Choose the number of tips per round 3

α 60
β 35
γ 5

Fixed k value 514
maxk 1024
mink 4

5.1.3. Results Analysis

Training accuracy and loss are two standard metrics for evaluating model performance.
Accuracy is the percentage of correct predictions, and loss is the cross-entropy loss. First,
we assess the average accuracy and loss of the handwriting recognition task on the test
dataset. The evaluation results are shown in Figures 5 and 6.

Figure 5. The average training accuracy of the three different methods on the MNIST dataset.

Figure 6. The average training loss of the three different methods on the MNIST dataset.
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DAG-FL represents the scheme without quantization, and the Fixed k-value represents
the scheme with a fixed k-value. The evaluation results show that the adaptive quantization
scheme achieves similar accuracy and approximate loss as the baselines, demonstrating
its applicability. In addition, compared to the two baselines, our adaptive quantization
scheme achieves the targeted accuracy and loss faster and more rapidly.

To measure the communication overhead during the whole FL process, by using
Equation (7) in Section 4 and Equation (12) in Section 5, we can calculate the total commu-
nication volume (transmission data volume) of the three quantization schemes in federated
learning, that is, the number of bits transmitted by the models in MB, as shown in Figure 7.

Figure 7. Evaluation of the overall total communication volume for the three quantization schemes.

From Figure 7, we can learn that in federated learning, as the number of rounds
increases, compared to the two baselines, our adaptive quantization scheme reduces the
total amount of total communication and reduces the communication overhead, especially
for the baseline without quantization. From Figures 5–7, it can be seen that with the increase
of iterations, the degree of reduction in the communication overhead of the CDAG-FL
algorithm gradually decreases. Therefore, we believe that in each round of iteration, the
method of obtaining the optimal k value needs to be optimized. More advanced methods
can be considered to dynamically obtain the optimal k value, such as reinforcement learning.
The detailed experimental data comparison is shown in Table 3.

Table 3. Experimental results of model quantization compression on MNIST dataset on CNN.

Method Acc (%) Acc ↑ (%) Transmission
Bits (MB)

Transmission
Bits ↓ (%)

DAG-FL (Baseline) 88.32 0 627.29 0
Fixed k-value 89.19 0.98 527.44 15.91

Ours 88.82 0.56 508.86 16.07

Based on the quantization of the model for the tips selection algorithm, we have
carried out an experimental comparison of the two schemes, as shown in Figure 8, where
SDAG-FL represents the typical accuracy-based tips selection scheme.
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Figure 8. Evaluation of the overall total communication volume of the two tips selection algorithms.

Through Figure 8, we can see that as the number of rounds increases, relative to the
baseline, our grading-based tips selection scheme reduces the total amount of communica-
tion in the system and reduces the communication overhead of the system, and its effect is
more obvious as the number of rounds increases.

6. Conclusions

This paper proposes an efficient communication federated learning framework based
on the DAG blockchain (CDAG-FL). The CDAG-FL system overcomes the problem of
excessive communication overhead in existing blockchain-based FL systems. In the FL
model uploading phase, this paper proposes a k-means-based adaptive model quantization
scheme to quantize and compress the FL models. In addition, we design an improved tips
selection algorithm during the DAG-based consensus process and propose a grading-based
tips selection mechanism. Finally, we conducted simulation experiments to prove that the
proposed scheme can reduce the total amount of system communication by approximately
21.6% compared with the baseline method.

7. Discussion

This paper proposes an efficient federated learning framework (CDAG-FL) based on
DAG blockchain, in which the model compression method and tip selection algorithm
based on optimal k-value clustering have certain limitations. In this section, we discuss
how to develop the CDAG-FL system from two aspects, giving directions for future work.

7.1. Selection of the Optimal k Value

From the simulation results, it can be seen that with the iteration increases, the space
for the proposed scheme to reduce the communication cost decreases. The reason for this is
that, in each round, the formula for dynamically obtaining the optimal k value has yet to be
optimized. More advanced methods can be considered to dynamically and intelligently
obtain the optimal k value, such as reinforcement learning.

7.2. Tip Selection Algorithm with Multi-Factor Evaluation

In this paper, the three values of model size, accuracy, and number of batches are used
to evaluate the tip of a certain transaction to improve the consensus efficiency of the system.
However, hyperparameter settings in the tip selection algorithm need to be manually set
empirically. In future work, more automated methods can be used to control these factors,
and more factors can be introduced to improve the efficiency of the system.
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