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Abstract: In this paper, based on the pseudo-totem pole (PTP) circuit, a family of five-level PTP dual
boost converters (PDBC) is proposed. A dual boost converter has some unique advantages, such as
having no risk of bridge arm shoot-through and no problems related to switch body diode reverse
recovery; thus, it has a good potential for applications. First, the derivation process, working principle,
modulation and strategy of the topology are analyzed. Further, the number of power devices, switch
voltages and current stress of the proposed topology is analyzed. Finally, a representative five-level
PDBC experimental prototype is designed with AC input 220 V/50 Hz, DC output 400 V/1 kW, and
peak efficiency of 98.27%. The experimental results show that the five-level PDBC proposed in this
paper has higher efficiency and the correctness of its topology is verified.

Keywords: five-level dual boost converter; pseudo-totem pole (PTP); efficiency; voltage and
current stress

1. Introduction

With the development of power electronics technology, the neutral point clamped
(NPC) multi-level converter has attracted more and more scholars’ attention [1,2]. Multi-
level NPC converters have the advantages of high efficiency, high power density, low
total harmonic distortion (THD) and low voltage and current stress [3–5]. Therefore,
multi-level NPC converters are widely used in medium and high power, medium voltage
applications [6–9], such as electric vehicles (EVs), motor drives, electrical railway traction,
and DC-bus microgrids [10–13].

Compared to an IGBT, a power MOSFET has some excellent characteristics, such
as high frequency operation andlow switching and conduction losses. Therefore, power
MOSFETs are widely used in low-power converters to improve efficiency and reduce
volume. However, due to the poor reverse recovery characteristics of the body diode, those
that are MOSFET-based have a risk of device failure, which is related to the phase-leg shoot,
and this may cause false triggering of the gate voltage. Therefore, conventional H-bridge
converters often use IGBTs [14–17]. The dual boost/buck converter can avoid the shoot-
through problem effectively, and the freewheeling current flows through the independent
diode to resolve the MOSFET body diode reverse recovery problem [14–21]. However, due
to the two inductance structures of the dual boost/buck converter, the volume and weight
of the converter will increase. With this in mind, the multi-level dual boost/buck converter
has been proposed in [16,17,22], to reduce the size and weight of this type of topology.

The bridgeless converter has a high power factor (PF), low THD and high efficiency.
This type includes the basic bridgeless converters, bidirectional-switch bridgeless con-
verters, totem pole bridgeless converters and PTP bridgeless converters [22–24]. Among
these, the PTP bridgeless converter has a simple structure, few semiconductor devices
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conducting in the series loop and a natural dual-boost structure. In order to increase the
power density and reduce the THD, the PTP bridgeless converter must work at a higher
frequency. Moreover, all the active devices in the circuit carry a DC voltage, which causes
high voltage stress [3].

Figure 1 shows two common five-level converter topologies. Figure 1a is conventional
five-level converter (CFLC), which is widely used in bidirectional power flow scenarios
such as vehicle to grid (V2G) technologies. However, the number of switches is large; thus,
this can be further optimized to reduce the number of switches. Figure 1b is a unidirectional
five-level converter proposed in [25], which uses only one NPC bridge arm in the CFLC to
reduce the number of switches. However, there is no topology derivation process. In [4],
a new five-level converter with high power density is proposed and the current stress is
analyzed; however, the number of active devices is large, and the cost is high. In [14,16],
the PTP bridgeless structure is adopted to achieve a five-level, dual-buck, grid-connected
inverter, and these papers summarize a topology structure method to expand the circuit.
However, the utilization of these two input inductors is low.
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Figure 1. The common five-level converter topologies. (a) Conventional five-level converter; (b) 
Converter proposed in [25]. 
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Figure 1. The common five-level converter topologies. (a) Conventional five-level converter; (b) Con-
verter proposed in [25].

Based on the above analysis, the bridge arm of the topology proposed in [25] is used as
the prototype to obtain new five-level bridge arms. By cascading the five-level bridge arms
with the three-level PTP circuit, a family of five-level PDBCs is proposed. The proposed
PDBC optimizes the three-level PTP converter to address the large volume and large
switching losses and to retain the dual boost structure; thus, it has high reliability.

The structure of this paper is as follows. Section 2 derives the PDBC in detail and
analyzes the working principle. Section 3 designs the control and modulation strategy
of PDBC. In Section 4, the voltage and current stress are analyzed. Section 5 conducts
experimental verification on PDBC. Finally, Section 6 concludes the paper.

2. Topological Derivation and Operating Principle
2.1. Topological Derivation

Figure 2 shows the three most commonly used clamping bridge arm structures in
five-level converters. A new five-level converter can be obtained by cascading these three
clamping bridge arm structures with a three-level circuit.

In this paper, the bridge arm shown in Figure 2b is used to generate a new bridge arm,
as shown in Figure 3. For ease of description, the bridge arms are numbered below each
bridge arms, i.e., A1, A2. Firstly, the two diodes on the right side of A4 are replaced with
MOSFETs to get A1*. Then, S2 and S4 of A1* are removed and reconnected to get a new
bridge arm A2, as shown in Figure 3a. In the same way, S1 and S3 of A1* are removed and
reconnected to obtain a new bridge arm, A3, as shown in Figure 3b.
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Through the bridge arm transformation in Figure 3, new bridge arms A2 and A3
are derived. Figure 4 shows a family of five-level PTP dual boost converters, which are
named as PDBC-I, PDBC-II and PDBC-III. It can be seen in Figure 4 that the PTP dual boost
converter is cascaded with Figure 2a, A2, and A3 to generate the PDBCs.
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Compared to the traditional five-level converter, a family of PDBCs proposed in this
paper reduces the number of MOSFETs by four, so it can effectively reduce the converter
loss. It is worth mentioning that the three power flow converters proposed in this paper
can all achieve bidirectional power flow after a slight circuit modification.

2.2. Operating Principle

Based on the above analysis, this paper uses the PDBC-II as an example for the
working mode analysis. Figure 5 shows the key waveforms of one power cycle, which are
corresponding to the six working modes in Figure 6. For ease of analysis, it is assumed that
the circuit works in continuous conduction mode (CCM), the inductances and capacitors
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are large enough, the capacitor voltage UC1 = UC2 = Udc/2 and the DC voltage, Udc,
remains constant. Figure 6 shows the six working modes of PDBC-II, which correspond to
0, ±0.5Udc and ±Udc. The six working modes are analyzed as follows.
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In Working mode 1, during [t0, t1] shown in Figure 5, the grid voltages are ug > 0,
uaN = 0 and ubN = ug. In this mode, the current path is shown in Figure 6a. As shown in
Figure 6a, the switch S1 is ON, the diode D4 is ON and the other active components are
OFF. The capacitors C1 and C2 are discharging to the load RL.

In Working mode 2, during [t1, t2] shown in Figure 5, the grid voltages are ug > 0 and
uaN = ubN = Udc/2. In this mode, the current path is shown in Figure 6b. As shown in
Figure 6b, the switch S3 is ON, the body diodes of S2 and S4 are ON, the diode D1 is ON and
the other active components are OFF. The capacitor C1 is charging and C2 is discharging to
the load RL.

In Working mode 3, during [t2, t3] shown in Figure 5, the grid voltages are ug > 0
and uaN = ubN = Udc. In this mode, the current path is shown in Figure 6c. As shown in
Figure 6c, the body diode of S2 is ON, the diodes D1 and D4 are ON and the other active
components are OFF. The capacitors C1 and C2 are charging, and the AC power supplies to
the load RL.

In Working mode 4, during [t3, t4] shown in Figure 5, the grid voltages are ug < 0,
ubN = ug and ubN = 0. In this mode, the current path is shown in Figure 6d. As shown in
Figure 6d, the switch S2 is ON, the body diode of S3 is ON, the diode D3 is ON and the
other active components are OFF. The capacitors C1 and C2 are discharging to the load RL.

In Working mode 5, during [t4, t5] shown in Figure 5, the grid voltage ug < 0 and
uaN = ubN = −Udc/2. In this mode, the current path is shown in Figure 6e. As shown in
Figure 6e, the switch S4 is ON, the body diodes of S1 and S3 are ON, the diode D2 is ON and
the other active components are OFF. The capacitor C2 is charging and C1 is discharging to
the load RL.

In Working mode 6, during [t5, t6] shown in Figure 5, the grid voltages are ug < 0
and uaN = ubN = −Udc. In this mode, the current path is shown in Figure 6f. As shown in
Figure 6f, the body diodes of S1 and S3 are ON, the diodes D2 and D3 are ON, and the other
active components are OFF. The capacitors C1 and C2 are charging, and the AC power
supplies to the load RL.
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Based on the six working mode analyses above, the switching pulse distribution of
the PDBC-II is summarized in Table 1. Where “0” and “1” represent switching off and on,
“↑” and “↓” represent capacitor charging and discharging, respectively. It can be seen from
Table 1 that the PDBC-II has at most one switch ON in each mode, so the PDBC-II has a
lower conduction loss.

Table 1. Switching pulse distribution of PDBC-II.

Mode ig S1 S2 S3 S4 C1 C2 uaN ubN

1 >0 1 0 0 0 ↓ ↓ 0 ug
2 >0 0 0 1 0 ↑ ↓ Udc/2 Udc/2
3 >0 0 0 0 0 ↑ ↑ Udc Udc
4 <0 0 1 0 0 ↓ ↓ ug 0
5 <0 0 0 0 1 ↓ ↑ −Udc/2 −Udc/2
6 <0 0 0 0 0 ↑ ↑ −Udc −Udc

3. Control and Modulation Strategy
3.1. Control Strategy

In this paper, a double closed-loop control system suited for PDBCs is designed; both
the voltage outer loop and the current inner loop adopt the PI controller. The control block
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diagram of the PDBCs is shown in Figure 7. The transfer function of the PI link in Figure 7
can be expressed as Equation (1),

Gpi = (kp · s + ki)/s, (1)

where kp and ki are the proportional and integral coefficients, respectively.
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The voltage outer loop is used to keep the output voltage Udc stable; this output is
the reference value of the current inner loop. Firstly, the difference between the DC side
voltage, Udc, and its reference value, Udc*, is sent into the PI controller to obtain an error
signal. Then, the error signal is multiplied by the phase information of the grid voltage ug.
As a result, the input reference signal, ig*, of the current inner loop is obtained.

The current inner loop is used to ensure that the waveform of ig is sinusoidal and
controls the power factor close to 1. Firstly, the difference between the AC side current,
ig, and the reference signal, ig*, (the output of the voltage outer loop) is sent to the PI
controller. Then, the output of the PI controller is multiplied by kUdc*. Finally, its output
is the difference between this product and the grid voltage, ug, to get the PWM reference
signal, vref.

The neutral point (NP) balance of the DC side capacitor is attained by the phase delay
control method in this paper. Firstly, the difference between the voltage signals of the
capacitors C1 and C2 is compared to the reference value. Then, the result is sent to the
PI controller to obtain the correction signal, which is added to the modulation wave after
limiting the amplitude. Therefore, the NP voltage balance is achieved by adjusting the
capacitor charging and discharging time.

3.2. Modulation Strategy

In this paper, the multi-carrier PWM modulation strategy is used to generate a switch-
ing pulse distribution for the proposed PDBCs. The PDBC-II is used as an example to
illustrate the switching pulse distribution and bridge arm voltages uaN, ubN of the multi-
carrier PWM modulation strategy, as shown in Figure 8, where vc1(t), vc2(t), vc3(t), vc4(t)
and vref(t) represent four carrier signals and the reference signal, respectively. The reference
signal, vref(t), is compared to vc1(t), vc2(t), vc3(t) and vc4(t) to obtain the switching pulse
waveform of the switches S1, S2, S3 and S4, respectively.

In the positive half-cycle of the PWM modulation strategy, the duty cycle can be
derived from Equations (2)–(6), below. For these Equations, Ug,max, Ton and Toff are the
amplitude of AC voltage and the turn on and off times of the switch, respectively. The
modulation ratio M and duty ratio D can be defined as follows:

M = Ug,max/Udc (2)

and
D = Ton/(Ton + Toff). (3)
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Figure 8. Diagram of modulation strategy.

When 0 < vref(t) < 0.5, the PDBCs operate alternately in Working modes 1 and 2. At
this time, the inductance volt-second balance has the following relationship:(

ug − 0.5Udc
)
· Ton =

(
Udc − ug

)
· Toff. (4)

The duty cycle D1 is derived from Equations (2)–(4):

D1 = 1− 2M sin(wt). (5)

Similarly, when 0.5 < vref(t) < 1, the PDBCs operate alternately in Working modes 2
and 3. The duty cycle D2 can be obtained as follows:

D2 = 2− 2M sin(wt). (6)

When the PDBCs operate in the positive half-cycle, the resulting duty cycle change
curve, based on Equations (5) and (6), is shown in Figure 9,where the green curve represents
the duty cycle D1, the yellow curve represents the duty cycle D2 and θ1 and θ2 are the
angles of alternation between vc1(t) and vc2(t), respectively.
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It is assumed that, the amplitude of vref(t) is 1 (after normalization) and the θ1 and θ2
can be calculated as follows:

θ1 = arcsin0.5 =
π

6
(7)

D2 = 2− 2M sin(wt). (8)

4. Performance Analysis
4.1. Voltage Stress Analysis

Based on the working mode analysis of Figure 6, the switch and diode voltage stresses
of the three PDBCs are summarized, as shown in Table 2. It can be seen from Table 2
that part of the components voltage stress on the three-level bridge is reduced by half.
In addition, the PDBC-II and PDBC-III have three components with voltage stresses of
reduced by half, while the PDBC-I has only two components with voltage stresses reduced
by half. Therefore, in terms of cost, PDBC-II and PDBC-III have lower costs compared
to PDBC-I.

Table 2. Voltage stress of three PDBCs.

Components PDBC-I PDBC-II PDBC-III

S1,2 Udc Udc Udc
S3,4 Udc/2 Udc/2 Udc/2
D1,2 Udc Udc Udc
D3 Udc Udc/2 Udc
D4 Udc Udc Udc/2

4.2. Current Stress Analysis

To estimate the conduction loss of the switches and diodes, it is necessary to calculate
the average and the root mean square (RMS) of the current flowing through the switches
and diodes. In this section, the PDBC-II is used as the example in which the current stress
analysis is conducted. Figure 10 shows the current stress simulation waveform of PDBC-II
in the Matlab/Simulink environment. It is clear, from Figures 9 and 10, that the switching
times of the duty cycles D1 and D2 are Tg/12 and 5Tg/12 (Tg is one power frequency
cycle), respectively. Based on Figure 10, the theoretical derivation of the average value
and RMS value of the current flowing through the semiconductor device can be calculated
using Equation (9) through (18). For the following calculations, it is assumed that the AC
side current is a sine wave, the DC side voltage remains unchanged, and the switching
frequency f s is much greater than the grid frequency f g.

The current RMS and average of the diodes D1 and D2 are calculated using
Equation (9):

I
2

D1,2,rms
= 2

Tg

[∫ Tg
12

0 (1− D1) · ig2dt +
∫ Tg

4
Tg
12

(
ig+0.5Ig,max

2

)2

dt

]

ID1,2,avg = 2
Tg

[∫ Tg
12

0 (1− D1) · igdt +
∫ Tg

4
Tg
12

(
ig+0.5Ig,max

2

)
dt
] . (9)

Substituting Equation (5) into Equation (9), the current RMS and average of diodes D1
and D2 can be obtained: ID1,2,rms =

√
6Ig,max

24
√

π
·
√

6π + 15
√

3 +
(

128− 72
√

3
)

M

ID1,2,avg =
Ig,max
12π ·

[
π + 3

√
3 +

(
2π − 3

√
3
)

M
] . (10)
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The current RMS and average of the MOSFET S1 and S2 are calculated using
Equation (11): 

I
2

S1,2,rms
= 2

Tg

[∫ Tg
12

0 D1 · ig2dt +
∫ 3Tg

4
7Tg
12

(
ig+0.5Ig,max

2

)2

dt

]

IS1,2,avg = 2
Tg

[∫ Tg
12

0 D1 · igdt +
∫ 3Tg

4
7Tg
12

∣∣∣ ig+Ig,max
2

∣∣∣dt
] . (11)

Substituting Equation (5) into Equation (11), the current RMS and average of the
MOSFET S1 and S2 can be obtained: IS1,2,rms =

√
6Ig,max

24
√

π
·
√

14π − 21
√

3 +
(

72
√

3− 128
)

M

IS1,2avg =
Ig,max
12π ·

[
12− π − 3

√
3 +

(
3
√

3− 2π
)

M
] . (12)

The current RMS and average of MOSFET S3 is calculated using Equation (13):
I

2

S3,rms
= 4

Tg

[∫ Tg
12

0 D1 · ig2dt +
∫ Tg

4
Tg
12

D2 · ig2dt +
∫ 3Tg

4
Tg
2

ig2dt
]

IS3,avg = 2
Tg

[∫ Tg
12

0 D1 · igdt +
∫ Tg

4
Tg
12

D2 · igdt +
∫ 3Tg

4
Tg
2

∣∣ig∣∣dt
] . (13)

Substituting Equations (5) and (6) into Equation (13), the current RMS and average of
MOSFET S3 can be obtained: IS3,rms =

Ig,max

2
√

3π
·
√

3
√

3 + 10π − 32M

IS3,avg =
Ig,max

π ·
(√

3 + 2− πM
) . (14)
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The current RMS and average of MOSFET S4 is calculated using Equation (15):
I

2

S4,rms
= 4

Tg

[∫ Tg
12

0 D1 · ig2dt +
∫ Tg

4
Tg
12

D2 · ig2dt
]

IS4,avg = 4
Tg

[∫ Tg
12

0 D1 · igdt +
∫ Tg

4
Tg
12

D2 · igdt
] . (15)

Substituting Equations (5) and (6) into Equation (15), the current RMS and average of
MOSFET S4 can be obtained: IS4,rms =

Ig,max

2
√

3π
·
√

3
√

3 + 10π − 32M

IS4,avg =
Ig,max

π ·
(√

3 + 2− πM
) . (16)

The current RMS and average of diodes D3 and D4 current is calculated using
Equation (17):

I
2

D3,4,rms
= 2

Tg

[∫ Tg
12

0 (1− D1) · ig2dt +
∫ Tg

4
Tg
12

(1− D2) · ig2dt
]

ID3,4,avg = 4
Tg

[∫ Tg
12

0 (1− D1) · igdt +
∫ Tg

4
Tg
12

(1− D2) · igdt
] . (17)

Substituting Equations (5) and (6) into Equation (17), the current RMS and average of
diodes D3 and D4 can be obtained: ID3,4,rms =

Ig,max

2
√

6π
·
√

32M− 3
√

3− 4π

ID3,4,avg =
Ig,max

2π ·
(

πM−
√

3
) . (18)

Figure 11 shows the change curve of the current average and RMS of the switches
and diodes with the modulation ratio, M, after normalization of Ig,max. It can be seen from
Figure 11 that the current RMS value and average for each of the components have the same
trend. Since Ig,max are normalized, the trend shown in Figure 11 is also applicable under
different power levels, which is of great significance for studying the working principle of
the rectifier.
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To verify the correctness of the current stress formula developed in this paper, the
current stress value of the switches and diodes is measured in the Matlab/Simulink envi-
ronment under a 1 kW power rate. Figure 12 shows the comparison between the calculated
value and the simulated value of the current stress. It can be seen from Figure 12, the
calculated current stress in this paper is consistent with the simulated value, which verifies
the correctness of the current stress formula.
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4.3. Loss Analysis

Based on the above current stress analysis, this section analyzes the loss and efficiency
of the proposed PDBCs. The losses of the MOSFET mainly include conduction losses and
switching losses. When the MOSFET is on-state, the on-state resistance, rds, results in the
conduction losses. The conduction losses Pcon can be calculated as (19), where IS,rms is the
RMS value of the current flowing through the MOSFET, which can be obtained from the
current stress analysis:

Pcon = IS,rms
2 · rds. (19)

During the drain current and voltage conversion processes of the MOSFET, the switch-
ing losses are generated. These can be calculated using Equation (20), where Uin, Io, ton,
toff, and f s are the RMS value of the input voltage, the output current, the switching pro-
cess drain current and voltage conversion crossover time and the switching frequency,
respectively:

Psw = 0.5Uin · Io ·
(

ton + to f f

)
fs. (20)

Similarly, the power losses of the diode in a cycle consists mainly of static losses and
dynamic losses. For the static losses, since the fast recovery diode is employed in this paper,
there are only on-state losses considered. The dynamic losses of the diode can be calculated
with Equation (21), where Uf is the forward conduction voltage, ID,avg is the average value
of the diode:

PSon =
∫ Tg

0
u · idt/Tg = Uf · ID,avg. (21)

Compared to the reverse recovery time, tr, the forward recovery time, tf, is negligible;
therefore, the turn-on losses can be ignored. The turn-off losses can be calculated using
Equation (22), where Urp and Irp are the reverse peak voltage and current, tb is the reverse
current fall time:

PDoff =
∫ t2

t0

uF(t) · iF(t)dt/TS = 0.5Urp Irptb fs (22)

In this paper, the MOSFETs and diodes employ IRFP450 and RHRP3060, respectively.
According to the data sheets, the parameters for IRFP450 and RHRP3060 are shown in
Table 3. The switching frequency is f s = 20 kHz.



Electronics 2023, 12, 3722 12 of 16

Table 3. Component parameters.

Components Parameters Values

IRFP450

On-state resistance, rds 0.4 Ω
On-delay time, td(on) 17 ns

Rise time, tr 47 ns
Turn-off delay time, td(off) 92 ns

Fall time, tf 44 ns

RHRP3060

Conduction voltage, Uf 1.7 V
Reverse peak voltage, Urp 600 V
Reverse peak current, Irp 250 µA

Reverse current fall time, tb 18 ns

Based on Equation (9) through (22), the losses of the proposed three PDBCs and
the CFLC at different output powers are calculated. According to the results of the loss
calculations, the efficiency diagrams at different output power rates are generated, as
shown in Figure 13. From this, it can be seen that the four circuits reach peak efficiency
at approximately 300 W. However, when the output power is over 300 W, the efficiency
declines slowly as the output power increases. The peak efficiency of the PDBC-I is 98.27%,
which is the highest in the four circuits. In addition, as the output power level increases,
the efficiency of the PDBC-I reaches the highest of the four circuits. Therefore, the PDBC-I
is more suitable at a higher power rate. Figure 13b shows the experimental efficiency and
theoretical efficiency of the PDBC-II circuit, and the efficiency analysis is expressed in the
Figure 13b. The maximum experimental efficiency is approx. 96.5%, which is lower than
the theoretical efficiency. Since there are actual circuits that exist as auxiliary circuits (drive
circuit, sampling circuit, et al.), the actual loss is higher than those in the theoretical analysis
results. Nevertheless, in the theoretical calculation and practical experimental results, the
trend of overall efficiency distribution is consistent.
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5. Experimental Verification

In order to verify the feasibility of the PDBC proposed in this paper and the correct-
ness of the theoretical analysis, PDBC-II [shown in Figure 4b] is selected for corresponding
experimental verification, as shown in Figure 14. The experimental circuit design includes
an EMI circuit, auxiliary power supply, main power circuit, signal sampling circuit, MOS-
FET drive circuit and protection control circuit. The controller employs DSP28335 and
the MOSFETs and diodes employ IRFP450 and RHRP3060, respectively; the experimental
circuit parameters are shown in Table 4.
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Table 4. Main parameters.

Parameters Label Value

Input filter inductors L1, L2 2 mH
DC-side capacitors C1, C2 1000 µF

Input voltage ug RMS 220 V
Output voltage Udc 400 V

Rated output power Po 1000 W
Grid frequency f g 50 Hz

Switching frequency f s 20 kHz

Figure 15 shows the PDBC-II steady-state experimental waveforms of the input and
output sides at 1 kW rated power. Figure 15a shows the voltage waveforms of the single-
phase AC power supply voltage, ug, the input side current, ig, the DC side voltage, Udc,
and UC1 and UC2. As seen from Figure 15a, the input power supply voltage, ug, is in phase
with the input side current, ig, and it is sufficiently consistent to achieve power factor
correction. The DC side voltage, Udc, is stable at 400 V, and the capacitor voltages UC1
and UC2 remain dynamically balanced at 200 V. Figure 15b shows the bridge arm voltage
uaN, ubN waveform and the input inductor current iL1, iL2 waveform. As can be seen from
Figure 15b, the waveform of inductor current iL1 phase is ahead 180◦ of the inductor current
iL2. Similarly, the bridge arm voltage uaN, ubN waveform changes in positive and negative
half-cycles alternately, which is consistent with Figure 6 and Table 1.
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Figure 16 shows the PDBC-II switching pulse distribution experimental waveform. As
can be seen from Figure 16, the switches S1–S4 have a short, high-frequency switching time.
As a result, the switching losses of PDBC-II are relatively low. In addition, the switches S3
and S4 symmetrically action in positive and negative half-cycles, which is consistent with
the switching pulse distribution of Table 1.
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Figure 18 shows the THD test results of PDBC-II at 1 kW rated power. As can be seen 
here, at the switching frequency of 20 kHz, the THD of PDBC-II is 3.2%, which meets the 
IEC 6100-3-2 standard.  

Figure 16. Switching pulse distribution experimental waveform.

Figure 17 shows the PDBC-II voltage and current stress experimental waveforms of
the switches at 1 kW rated power. Figure 17a shows the voltage stress waveforms of the
switches S1–S4. It can be seen from Figure 17a that the maximum voltage stress of the
four switches is US1 = US2 ≈ 400 V and US3 = US4 ≈ 200 V; i.e., the partial voltage stress is
halved, which is consistent with the voltage stress analysis in Table 2. Figure 17b shows the
waveform of the inductor current, diode D1 current, iD1 and the switch S1 current, iS1. As
can be seen here, the waveform of the switch current iS1 is enveloped by the waveform of
the current iL1 of the inductor L1 in the positive half cycle. In addition, the currents iD1 and
iS1 change at high frequencies during the [0, Tg/12] and [5Tg/12, Tg/2] (where Tg is the
grid period), which is the same as the simulation waveforms in Figure 10.
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Figure 17. Voltage and current stress experimental waveforms. (a) The voltage stress waveform of
switches S1–S4; (b) The inductor current iL1, diode D1 current iD1, and the switch S1 current iS1.

Figure 18 shows the THD test results of PDBC-II at 1 kW rated power. As can be seen
here, at the switching frequency of 20 kHz, the THD of PDBC-II is 3.2%, which meets the
IEC 6100-3-2 standard.
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6. Conclusions

In this paper, combining the three-level PTP circuit and the five-level NPC bridge arm,
a family of PDBCs is proposed by transforming the NPC bridge arm. The proposed circuit
reduces the volume of the filter inductor to increase the power density of the circuit and
improves the working efficiency of the circuit. Through comparative analyses of voltage
and current stress and loss, the following conclusions are drawn.

(1) The experimental results show that the PDBCs proposed in this paper have good
input and output waveforms at low switching frequency. Therefore, the PDBCs can
improve overall efficiency by reducing switching losses.

(2) The efficiency of the five PDBCs proposed in this paper is higher than that of a CFLC.
The PDBC-I has the smallest loss and the highest efficiency, with a peak efficiency of
98.27%, and its overall performance is the best.

(3) Compared with the conventional three-level PTP circuit, the five PDBCs proposed
in this paper have higher power density, and the voltage stress of some devices is
reduced by half. In addition, the PDBC-II and PDBC-III have more devices with
voltage stresses halved; thus, their cost is lower.
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