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Abstract: In this research, the authors combine multiobjective evaluation metrics in the (1 + 1) evolution-
ary strategy with three novel methods of the Pareto optimal procedure to address the learning-to-rank
(LTR) problem. From the results obtained, the Cauchy distribution as a random number generator for
mutation step sizes outperformed the other distributions used. The aim of using the chosen Pareto
optimal methods was to determine which method can give a better exploration–exploitation trade-off
for the solution space to obtain the optimal or near-optimal solution. The best combination for that in
terms of winning rate is the Cauchy distribution for mutation step sizes with method 3 of the Pareto
optimal procedure. Moreover, different random number generators were evaluated and analyzed
versus datasets in terms of NDCG@10 for testing data. It was found that the Levy generator is the
best for both the MSLR and the MQ2007 datasets, while the Gaussian generator is the best for the
MQ2008 dataset. Thus, random number generators clearly affect the performance of ES-Rank based
on the dataset used. Furthermore, method 3 had the highest NDCG@10 for MQ2008 and MQ2007,
while for the MSLR dataset, the highest NDCG@10 was achieved by method 2. Along with this paper,
we provide a Java archive for reproducible research.

Keywords: evolutionary strategy; learning to rank; LETOR; Microsoft Bing; multiobjective optimization;
Pareto optimal

1. Introduction

In information retrieval (IR), ranking retrieved documents according to their relevance
to a user query is an important task. To adjust the relevance of the retrieved documents,
a ranking system needs to be used after receiving the user’s query, as shown in Figure 1.
An optimization model is used to order the collection of available documents using such a
ranking system [1,2]. A number of unsupervised term vector models (TVMs), including the
vector space model (VSM), TF-IDF and Okapi BM25, were used in early IR research [2,3].
Based on these models, the documents that were retrieved were rated in terms of their
relevance to the user’s search terms following one scoring method (TWS) in IR systems.
It was found that these methods were insufficient for the development of effective IR
systems. There are several reasons for this, including the fact that scoring approaches
such as Okapi BM25 and various language models are limited in their ability to return
appropriate search results based on relevance judgments [3,4]. Consequently, multiple
scoring methods should be used to rank retrieved documents based on the user’s query.
Furthermore, other aspects, such as the importance of business documents on the web,
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should also be considered. Among other desirable features, the host server is taken into
account when ranking documents. A statistical machine learning approach traditionally
focuses on solving one single-objective optimization problem [4,5], that is, during a training
set, it is necessary to minimize the average loss. Several additional quantities, including the
complexity of the model, are either implicitly addressed by the choice of the model class or
are incorporated into the main objective by incorporating weighted regularization terms.
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Recently, the machine learning community has focused on additional quantities of
interest, such as the fairness, robustness, efficiency or interpretability of learned models.
Optimizing these can conflict with the goal of reducing training loss, and task-specific
trade-offs need to be considered. The problem with hard-coding such trade-offs is that
they may have undesirable consequences. The process of selecting them is also cumber-
some when multiple objectives are at stake. There has been an increase in interest in
multiobjective learning in recent years as a way to avoid the need for a priori trade-offs.
By performing multiobjective optimization at the same time as training the actual model,
the optimization either finds promising trade-off parameters simultaneously or computes
multiple solutions that reflect different trade-offs, ideally along the Pareto frontier. Despite
being algorithmically rich, the theory of multiobjective optimization and learning has been
little studied. Specifically, learning theory results such as generalization bounds are almost
completely absent. To overcome the mentioned limitations, a new approach is proposed in
this study that involves combining multiobjective evaluation metrics in (1 + 1)—an evolu-
tionary strategy—with three different methods and examining their effectiveness with a
single-objective evolutionary strategy. The contributions can be summarized as follows:

• A hybrid multiobjective algorithm is proposed for a more accurate exploration of the
IR problem search space. This objective is achieved by devising the multiobjective
evolutionary strategy with three different methods.

• The performance of the multiobjective evolutionary strategy is enhanced by auto-
matically choosing and optimizing search results by using three novel multiobjective
functions to determine which set of solutions are nondominant with regard to one
another and are superior to the rest in the search space.

• A comprehensive experiment was conducted to validate the effectiveness of the pro-
posed strategy and to compare its performance against that of state-of-the-art single-
objective evolutionary algorithms.
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• Detailed code for all experiments has been posted at https://www.researchgate.net/
publication/364265942_Multi-Objective_11-Evolutionary_Strategy_Multi-ESRank_
for_Learning_to_Ranking_Problem, accessed on 20 October 2022. This provides the
first example of multiobjective learning-to-rank Java archive applications of the
method proposed for research reproducibility.

2. Related Work

In this section, we introduce/discuss some related studies that applied multiobjective
methods to LTR problems.

A learning-to-rank process aims to produce a ranking model that is capable of pre-
dicting accurately the relevance of a set of queries and items, improving user satisfaction
and engagement. To obtain a ranking function, a structured process involving several
steps is required. Firstly, a dataset is gathered which includes queries, items and relevance
labels, ensuring a variety of scenarios for robustness. Following this, relevant features are
extracted from both queries and items, capturing the critical aspects that affect the relative
relevance of both. Once the training data have been obtained, they data are used to develop
a ranking function. Finally, a ranking list of documents associated with a new query is
created by using the ranking function [7,8].

The study in [8] presented a multiobjective LTR approach for commercial search
engines using LambdaMART, a state-of-the-art ranking algorithm. They modified the λ

functions to solve two associated problems with the current LambdaMART λ-gradient.
The goal was to stop the ranking model from trying to separate documents that were
already ordered and separated in addition to making ranking mistakes that persisted long
into training. Their proposed approach achieved significant improvements in terms of
accuracy over the baseline state-of-the-art ranker LambdaMART. The experiments were
performed on a large real-world dataset in which each query–URL pair had 860 features.
However, the dataset itself and the authors’ code package are not available to researchers
for research reproducibility.

The incorporation of relevant and well-engineered features into the dataset will en-
hance the model’s ability to generalize and provide informed ranking results. Several
evolutionary multiobjective feature-selection ranking algorithms have been proposed in
recent years [7,8]. According to Li et al. [9], a new decomposition-based multiobjective
immune algorithm called MOIA/DFSRank was proposed for the selection of features in
L2R. To ensure greater convergence and diversity of the initial populations, representative
features are selected for generation based on their importance and redundancy score. The
proposed algorithm utilizes two effective operators: clonal selection and mutation, where
the clonal selection operator generates clones to facilitate the search direction during evo-
lution, while the mutation operator retains excellent features with a high probability of
evolution. Kundu, P.P. et al. [10] employed the NSGA-II algorithm framework to introduce
a method for feature selection utilizing an SNN-based distance metric. This method aims
to concurrently maximize both the count of selected features and the classification accuracy.
Zhang et al. [11] utilized an enhanced MOPSO algorithm to effectively diminish the Ham-
ming loss value, even when utilizing a reduced number of features. In a related context,
Das, A. [12] presented a multiobjective evolutionary algorithm centered on relevance and
redundancy considerations. This approach demonstrated superior classification outcomes
while utilizing a reduced set of selected features. Mahapatr et al. [13] addressed the multi-
objective optimization (MOO) problem associated with multilabel LTR (training a model
using a different relevance criterion). Essentially, this framework is capable of consuming
any first-order gradient-based MOO algorithm to train a ranking model. Cheng et al. [14],
on the other hand, addressed the learning-to-rank problem by devising an algorithm
grounded in the NSGA-II framework, yielding commendable results. Nevertheless, there
remains a need for further enhancement of classification accuracy within this framework.

For commercial search engine preferences, the query–item relevance can be judged
based on different criteria. For instance, in a search for products, the search engine may

https://www.researchgate.net/publication/364265942_Multi-Objective_11-Evolutionary_Strategy_Multi-ESRank_for_Learning_to_Ranking_Problem
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rank products based on their quality or on the user’s price preferences. The research study
in [4] applied several multiobjective optimization methods with preference directions, such
as the traditional Pareto optimal search, to LTR problems. Their approach was applied
to three LTR datasets and worked effectively for all three datasets. The datasets included
the Microsoft Learning-to-Rank web search dataset (MSLR-WEB30K) [15], which is rep-
resented by a 136-dimensional feature vector, and E-commerce datasets. They presented
the maximum weighted loss as a novel model evaluation metric. The gradient-boosted
regression tree (GBRT or MART) [16] algorithm was used in the study. They found that
the single-objective MART outperformed the multiobjective MART. Thus, they proposed a
smooth remedy procedure to improve the performance of multiobjective MART compared
to using the traditional Pareto optimal method in this algorithm.

Multiobjective optimization methods have been developed and used for multitask
learning, especially for combinatorial optimization; however, their applications to LTR
problems are still a novel research topic.

A different line of research studies presented a multiobjective learning framework
where the authors used relevance labels and adjusted remedies for the ranking function
to satisfy multiple objectives to produce results satisfying specific criteria, such as scale
calibration [17] and fairness [18,19]. They used the Rank Neural Network (RankNET),
LambdaMART and Listwise Neural Network (ListNET) approaches [16]. Remedy pro-
cedures were used to overcome the gaps in performance between the single-objective
approaches and multiobjective ones [15]. On the other hand, evolutionary strategy LTR
(ES-Rank) outperformed MART, RankNET, LambdaMART and ListNET in previous re-
search [16]. Furthermore, the single-objective ES-Rank outperformed the 14 well-known
evolutionary and machine learning approaches.

Hence, the principal objective of this research is to introduce an innovative search-
space-exploration-procedures-based multiobjective algorithm using the Pareto optimal
approach. These procedures are used here as a remedy between single- and multiobjective
performance for the same algorithm to prove that the multiobjective version of the LTR
algorithm can outperform the single-objective version in some exploration circumstances.
Empirical findings attest to the heightened performance of the introduced algorithm in
tackling the challenges posed by the learning-to-rank problem.

3. Proposed Approach

In the field of optimization, metaheuristic algorithms are computational techniques for
solving complex optimization problems. Traditionally, optimization methods may struggle
when faced with this type of problem because of its size or nonlinearity or the presence
of multiple objectives that conflict. A metaheuristic is an approach to optimization that is
different from an exact optimization algorithm. While exact algorithms promise the best
solution given enough time and resources, metaheuristics offer approximate solutions that
are often of excellent quality. A single-objective heuristic addresses optimization problems
based on a single objective. The objective of these problems is to maximize or minimize a
single criterion or goal. By utilizing heuristics, an optimal solution to the given objective
function can be found. Multiobjective heuristics, on the other hand, are designed to solve
optimization problems with multiple conflicting objectives. This paper uses the (1 + 1)
evolutionary strategy algorithm for learning to rank (ES-Rank) in two variations, which are
single-objective and multiobjective evaluation metrics (as shown in Figure 2).

The single-objective ES-Rank has been used in the previous study in [16] in comparison
with 14 evolutionary and machine learning methods, and it outperformed them. It is
often necessary to optimize multiple criteria simultaneously in such problems, and these
objectives often conflict. In general, it is not possible to find a solution that optimizes
all objectives simultaneously due to inherent trade-offs. Several studies have shown that
multiobjective optimization is usually less accurate than the approach of optimizing each
fitness function individually. However, our method can be a strong rival to the single-
objective ES-Rank.



Electronics 2023, 12, 3724 5 of 17

Electronics 2023, 12, x FOR PEER REVIEW 5 of 19 
 

 

The single-objective ES-Rank has been used in the previous study in [16] in compar-

ison with 14 evolutionary and machine learning methods, and it outperformed them. It is 

often necessary to optimize multiple criteria simultaneously in such problems, and these 

objectives often conflict. In general, it is not possible to find a solution that optimizes all 

objectives simultaneously due to inherent trade-offs. Several studies have shown that mul-

tiobjective optimization is usually less accurate than the approach of optimizing each fit-

ness function individually. However, our method can be a strong rival to the single-objec-

tive ES-Rank.  

This study aims to find the most effective method for multiobjective learning in order 

to optimize performance in multiobjective learning. The present study introduces three 

methods, two of which are novel methods in the field of multiobjective optimization.  

 

Figure 2. Flowchart representation of the proposed algorithm. 

Our proposed optimization algorithm, the multiobjective (1 + 1) evolutionary strat-

egy, is a novel approach for tackling complex multi-ES-Rank problems. The problem in-

volves multiple objectives to be optimized, and no single solution may be considered to 

be the best across all objectives. In this algorithm, the decision variables are assigned ran-

dom values for a population of “individuals”, each representing a potential solution. In 

order to rank these individuals, this algorithm employs the Pareto principle. In a multi-

objective optimization problem, the Pareto optimal, also known as the Pareto frontier, is a 

set of solutions that are not considered to be dominated by any of the objectives. As a 

result, no solution in the set is superior to any of its competitors in all of its objectives, and 

at least one objective has improved without compromising any of the others. The frame-

work of the proposed multiobjective (1 + 1) evolutionary strategy is as follows.  

3.1. Step 1: Initialization 

Set initial values for the maximum algorithm iterations and population size, and then 

generate an initial population of candidate solutions (individuals), denoted as P(0), and 

assign random values to the decision variables for each individual.  

  

Figure 2. Flowchart representation of the proposed algorithm.

This study aims to find the most effective method for multiobjective learning in order
to optimize performance in multiobjective learning. The present study introduces three
methods, two of which are novel methods in the field of multiobjective optimization.

Our proposed optimization algorithm, the multiobjective (1 + 1) evolutionary strategy,
is a novel approach for tackling complex multi-ES-Rank problems. The problem involves
multiple objectives to be optimized, and no single solution may be considered to be the
best across all objectives. In this algorithm, the decision variables are assigned random
values for a population of “individuals”, each representing a potential solution. In order to
rank these individuals, this algorithm employs the Pareto principle. In a multiobjective
optimization problem, the Pareto optimal, also known as the Pareto frontier, is a set of
solutions that are not considered to be dominated by any of the objectives. As a result, no
solution in the set is superior to any of its competitors in all of its objectives, and at least
one objective has improved without compromising any of the others. The framework of
the proposed multiobjective (1 + 1) evolutionary strategy is as follows.

3.1. Step 1: Initialization

Set initial values for the maximum algorithm iterations and population size, and then
generate an initial population of candidate solutions (individuals), denoted as P(0), and
assign random values to the decision variables for each individual.

3.2. Step 2: Termination

If the termination condition has not been reached for a maximum number of iterations,
then continue; otherwise, print out the Pareto optimal set from P.

3.3. Step 3: Mutation

Using the objective function values for each individual, calculate the fitness value for
that individual. In order to calculate the fitness value, a ranking-based approach can be
used, such as a nondominated sorting rank. We utilized 3 different methods from a single
fitness objective function, ES-Rank. These 3 multiobjective ES-Rank methods use the Pareto
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frontier approach for the cumulative objective function MFitness. This cumulative fitness
function can be calculated by Equation (1).

MFittness = ∑ 5i = 1Ci × Fittnessi (1)

where Ci is the Pareto frontier coefficient i, which corresponds to the fitness evaluation
metric Fittnessi, and i is an integer number between 1 and 5. The fitness evaluation
metrics used in this study are the mean average precision (MAP), normalized discounted
cumulative gain (NDCG@10), reciprocal rank (RR@10), expected reciprocal rank (ERR@10)
and precision (P@10) at top 10 documents retrieved [20]. The 3 multiobjective ES-Rank
methods use 3 different representations for Ci :

• The first multiobjective ES-Rank approach uses Ci = 1 1 ∀ i, while i = {1, 2, 3, 4, 5}.
• The second multiobjective ES-Rank approach uses a traditional real random number

generator for assigning a real number value for the Ci coefficient for every fitness func-
tion in every evolving iteration with constraints. This constraint is that ∑ 5i = 1Ci = 1
in every evolving iteration.

• The third multiobjective ES-Rank approach uses a ziggurat Gaussian random number
generator to assign a real number value for the Ci coefficient for every fitness function
in every evolving iteration with constraints. This constraint is that ∑5

i=1 Ci in every
evolving iteration. The ziggurat Gaussian random number generator [21] generates a
normalized Gaussian random number between 0 and 1 rather than −50 and 50 as in
the traditional Gaussian random number generator.

3.4. Step 4: Population Evolution

To guarantee that the constraints in the second and third multiobjective ES-Rank on
Pareto frontier coefficients are met, we assume that the five Pareto frontier coefficients
generated using random number generators are Ci = {C1, C2, C3, C4, C5} in each evolving
iteration. There is no guarantee for the summation value for these coefficients to be 1
without a normalization factor. The normalization factor Nfactor can be calculated by
Equation (2).

Nfactor =
1

(C1 + C2 + C3 + C4 + C5)
(2)

Then, the Pareto coefficients are calculated by Ci = Nfactor× Ci, where i ≤ 5.
During each iteration, methods 2 and 3 use multiobjective randomization functions

based on traditional and ziggurat Gaussian distribution Pareto coefficients. In this man-
ner, more exploration can be achieved for a multiobjective search-space solution, while
exploitation can be limited to a single Pareto coefficient sum. A rank (r) is assigned to each
individual, with a lower rank indicating a higher level of fitness. Ranks and fitness values
are then used to select parents for reproduction. The probability of becoming a parent
increases for individuals with a lower rank and a higher fitness value.

3.5. Step 5: Population Update

Evolutionary strategy consists of two solutions, the current solution (parent) and a
candidate solution (offspring) that results from perturbing the parent. If offspring are
not at least as efficient as their parents, they will be discarded from consideration for the
following generation. As a vector of weights, the chromosome represents the evolving
ranking model.

Algorithm 1 outlines the multi-ES-Rank algorithm. The training and validating set
of query–document pairs provides a means of assessing evolutionary solutions in each
iteration, and the output of this algorithm is a ranking model for the dataset used in the
evolving phase. Using PCh as a parent chromosome, each gene is represented as a real
number, representing the significance of the corresponding feature for ranking the training
and validating data instances, where the data instances are queries and documents. Each
gene in steps 1 through 4 is initialized to a value of 0.5 in the parent chromosome vector.
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The Boolean parameter Good is used to indicate whether to repeat the previous mutation
steps from the previous generation or not. It is set to FALSE in step 5 when the previous
mutation steps are to be repeated.

A copy of PCh is assigned to OffCh in step 6. The evolving process is repeated until
the maximum generation MaxGenerations is reached; the number of iterations is 1300 in
this paper. The evolving procedure begins in step 7 and ends in step 24. The procedure
for managing mutations is demonstrated in steps 8–16 by choosing the number of genes
to mutate (RM). Four probability distributions are used to determine the mutation step
(steps 11 to 15): Gaussian, Cauchy, Levy and uniform. The successful evolution process
(which produced good offspring) for evolving iteration G is repeated in evolving iteration
G, as illustrated in step 9. Otherwise, the mutation procedure’s settings are reset, as
demonstrated in steps 11 to 15. Using the fitness metrics, steps 17 to 23 determine which
PCh or OffCh to use. Finally, in step 25, the relationship between dynamic feature weights
and query–document pairs is represented by the mathematical transposition of the feature
weights vector (i.e., multi-ES-Rank procedure).

Algorithm 1: MultiES-Rank: Multiobjective Evolutionary Strategy Ranking Approach
Input:A training setα (q, d) and a validation set ï(q, d) of query-document pairs of feature vectors.
Output:A linear ranking function F (q, d) that assigns a weight to every query-document pair indicating its relevancy degree.

1 Initialization:
2 For (Gen_i Є PCh) do
3 Gen_i = 0.0;
4 end
5 Good = FALSE;
6 OffCh = PCh;
7 For (G = 1 to MaxGenerations) do
8 If (Good==TRUE) Then

9
Use the same mutation process of generation (G-1) on OffCh to mutate next OffCh, that is, mutate the
same RM genes using the same Mutation Step;

10 Else
11 Choose number of genes to mutate RM at random from 1 to M
12 For (j = 1 to RM)
13 Choose random Gen_i in OffCh for mutation;
14 Mutate Gene_i using Mutation Step according to Probability Distributions used
15 end
16 end
17 If (((Fitness(PCh,α(q,d)) < Fitness(OffCh α(q,d))) && (Fitness(PCh, ï(q,d)) ≤ Fitness(OffCh, ï(q,d)))) Then
18 PCh = OffCh;
19 Good=TRUE;
20 Else
21 OffCh = PCh;
22 Good = FALSE;
23 end

24
Return: The linear ranking function F (q, d) = PCh, that is PCh at the end of the MaxGenerations contains the evolved vector W of M
feature weights.

4. Experimental Results

This section includes a thorough experimental investigation that compares the three
proposed learning-to-rank multiobjective strategies to a single-objective existing approach
in terms of five accuracy fitness metrics. MAP, RR, ERR, NDCG and P (mean average
precision, reciprocal rank, expected reciprocal rank—total precision, normalized discount
cumulative gain and average precision) at top 10 documents retrieved are the five metrics
used to evaluate accuracy, as stated in subsection IV-A. To evaluate the performance of
an LTR approach, the LTR technique is first applied to the training set. Afterwards, the
ranking model’s performance is evaluated using the test set to determine how well the LTR
algorithm makes predictions.
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4.1. Benchmark Datasets and Evaluation Fitness Metrics

Three benchmarking datasets are considered in this paper, as follows:
The MSLR-WEB30K dataset [22]: This dataset provides a comprehensive and realistic

set of query–document pairs with relevance labels. Additionally, there is a set of features
associated with each query–document pair that capture various aspects of the query and
the document. Among these features are textual features, numerical features and other
metadata that can be used to determine the degree of relevance of a document with respect
to a specific query.

LETOR 4.0 [23,24]: It is part of the LETOR (Learning to Rank for Information Retrieval)
dataset collection. A significant number of query–document pairs are included in the
dataset, each associated with a relevance label. Additionally, a variety of features are
included in the dataset that capture the characteristics of both queries and documents.
These include textual attributes, numerical attributes and other metadata. These features
are designed to aid ranking algorithms in determining the relevance of documents to
a query.

As can be seen in Table 1, these datasets have a number of different characteristics.
Compared to LETOR 4 datasets (MQ2007 and MQ2008), the Microsoft Bing Search dataset
(MSLR-WEB30K) has a much higher number of query–document pairs and features. There
are several low-level characteristics associated with each query–document pair, such as
term frequency and inverse document frequency. In order to determine low-level features
for all document parts (title, anchor, body and whole), a set of low-level features was
determined. In addition, there are high-level features that indicate how well the searches
and documents correspond. Additionally, hybrid features have been employed in previous
SIGIR conference papers including LMIR.ABS, LMIR.JM, LMIR.DIR and LMIR.DIR as well
as the Language Model with Absolute Discounted Smoothing [22–25] and Language Model
with Jelinek–Mercer smoothing [LMIR.JM]. There are 30,000 queries in the MSLR-WEB30K
dataset. MQ2008 contains fewer than 1000 queries, whereas MQ2007 contains 1692 queries.
There are a variety of query–document combinations for each query, which are based on a
set of relevant and irrelevant documents. A relevance label indicates the level of relevance
of a query when it is accompanied by a document (relationship query–document). As a
general rule, relevance labels are classified as 0 (for totally irrelevant), 1 (for moderately
relevant) and 2 (for very relevant). There is one exception to this rule, the MSLR-WEB30K
dataset, where values range from 0 (irrelevant) to 4 (perfectly relevant).

Table 1. Properties of the benchmark datasets used in the experimental study.

Dataset Queries Query–Document Pairs Features Relevance Labels No. of Folds

MQ2007 1692 69,623 46 {0, 1, 2} 5
MQ2008 784 15,211 46 {0, 1, 2} 5

MSLR-WEB30K 30,000 3, 771, 125 136 {0, 1, 2, 3, 4} 5

In this research, MAP, NDCG@10, P@10, RR@10 and ERR@10 were used as five distinct
fitness functions on the training sets [1]. They were also used as assessment measures for
the test-set ranking algorithms. These fitness functions were demonstrated in detail in [20].

4.2. Result Analysis and Discussion

This section gives an overview of the progress achieved using multiobjective LTR.
From the results obtained, we can say that using the Cauchy probability distribution as a
random number generator for mutation step sizes in multiobjective ES-Rank outperformed
Gaussian, Levy and uniform distributions. It also outperformed single-objective ES-Rank,
but the multiobjective method that uses the Cauchy distribution as the dominant method
in performance relies on the particular dataset used. Figures 3–5 illustrate the superiority
of the proposed methodologies for LTR for the three datasets used.
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From Figures 3 and 4, for both the MSLR-WEB10K and MQ2008 datasets, the single-
objective ES-Rank performance is higher than the multiobjective ES-Rank. This degradation
in performance is accepted in order to gain the multiobjective ranking. From Figure 5, it
is found that for the dataset MQ2007, the multiobjective ES-Rank with method 1 using
uniform and multiobjective ES-Rank with method 2 using Cauchy as a random number
generator for mutation step sizes both achieve high performance, with 6 and 7 winning
rates, respectively. This is better than the overall performance of the single-objective
ES-Rank. These results ensure the effectiveness of our proposed methods for both single-
objective and multiobjective optimization. Moreover, the dataset affects the performance of
ES-Rank for all the methods used.

To evaluate the methods of generated random numbers distribution, Figure 6 illus-
trates the NCDG@10 for the test set MSLR dataset. From Figure 6, we can conclude that
Levy is the best one for single-objective ES-Rank, while for multiobjective, Figure 6 shows
grouping results based on the method of optimization, where Levy is the best for method 1,
method 2 and method 3. Thus, Levy probability distribution as a random number generator
for mutation step sizes is recommended for single-objective and multiobjective ES-Rank
using all three methods. Moreover, method 2 with Levy achieves the highest NDCG@10
for the MSLR dataset.
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Figure 6. NDCG@10 relevance range for testing data (MSLR dataset) grouped by method.

For analyzing and evaluating different random number generators, Figures 6–8 illus-
trate the NDCG@10 for testing data for MSLR, MQ2007 and MQ2008. For the MQ2008
dataset, Figure 7 illustrates the NCDG@10 for the test set. From Figure 7, it is found that the
Gaussian probability distribution as a random number generator for mutation step sizes
is recommended for single-objective and multiobjective ES-Rank using all three methods.
Moreover, method 3 with Gaussian achieves the highest NDCG@10 for the MQ2008 dataset.

For the MQ2007 dataset, Figure 8 illustrates the NCDG@10 for the test set. From
Figure 8, it is found that Levy probability distribution as a random number generator for
mutation step sizes is recommended for multiobjective ES-Rank using all three methods;
however, Gaussian is recommended for single-objective ES-Rank. Moreover, method 3
with Levy achieves the highest NDCG@10 for the MQ2008 dataset. Thus, random number
generators clearly affect the performance of ES-Rank based on the dataset used.
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Multi-ES-Rank is an evolutionary strategy that uses a cumulative fitness function to
determine the quality of each evolving ranking model in each iteration. Additionally, as
the Pareto frontier contains no dominant solution, there is no other solution that performs
better on all objectives at the same time. The developed strategy explores the search space
and produces diverse solutions reflecting different trade-offs between multiple objectives
through the cumulative fitness function. As a result, developed algorithms provide decision-
makers with a variety of options from which to select so that they can make informed
decisions based on their individual preferences.

In summary, this paper introduces a multiobjective evolutionary strategy (multi-
ES-Rank) approach for learning-to-rank problems. In addition, we propose three novel
Pareto optimal methods in continuous optimization research. Furthermore, we provide
the Java archive package of the proposed approach for research reproducibility. From
the experimental results, multi-ES-Rank can outperform single-objective ES-Rank in some
circumstances of mutation step sizes and Pareto optimal methods for LTR data, as given
in Appendix A. The best performance can be gained with the method using Cauchy as a
random number generator for mutation step sizes in terms of winning rate. This causes the
multi-ES-Rank to outperform the single-objective ES-Rank in certain conditions. Moreover,
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the different random number generators are evaluated and analyzed versus the three
datasets in terms of NDCG@10 for testing data. It was found that the Levy generator is the
best for both the MSLR and MQ2007 datasets while the Gaussian generator is the best for
the MQ2008 dataset. Thus, random number generators clearly affect the performance of
ES-Rank based on the dataset used. Furthermore, method 3 achieved the highest NDCG@10
for MQ2008 and MQ2007, while for the MSLR dataset, the highest NDCG@10 was achieved
by method 2.

An important limitation of this study is the sensitivity of the evolutionary fitness
function to configuration parameters. The results of this study highlight the importance
of careful parameter tuning, but they also demonstrate that it is difficult to identify a
universally optimal configuration because it is often dependent upon specific datasets and
problem domains. Since there may not be one configuration suitable for different LTR tasks
and datasets, developing automated hyperparameter optimization techniques may mitigate
this limitation in the future. This study is also limited by the lack of dedicated multiobjective
optimization packages for comparison. Most research focuses on learning-to-rank models
with single objectives, such as mean squared error or pairwise ranking. However, in real-
world applications, it is often necessary to optimize conflicting objectives simultaneously.
The proposed techniques can be further evaluated in more complex optimization scenarios
where the performance of the proposed techniques can be evaluated on a broader scale in
future research.

5. Conclusions and Future Work

In this paper, we describe a general framework for learning to rank using the mul-
tiobjective (1 + 1) evolutionary strategy, which can be used with any type of data. As a
multiobjective method, the multi-ES-Rank algorithm is based on novel methodologies for
calculating cumulative fitness functions. A principled approach to maintaining the relative
quality of rankings based on different relevance criteria is provided. Three types of trade-off
(fitness calculation) specifications are formalized. The framework was validated using
three public datasets, and the source code package is available for reproducible research. A
number of directions will be explored to improve the current multi-ES-Rank algorithm in
the future, including applying the Pareto optimal methods on some other metaheuristic
methods and on some other optimization research domains, and additionally, enhancing
the developed package by combining offline and online learning components. The process
of offline optimization typically involves the use of historical data in order to train and
refine the ranking model, whereas the process of online optimization involves continuous
adaptation of the ranking model as a result of real-time user interactions. Using a hybrid
approach can enhance the performance and relevance of multi-ES-Rank in dynamic envi-
ronments by combining the stability and quality of offline optimization with the real-time
adaptation of online optimization.
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Appendix A

Table A1. Average results of the proposed methods using MSLR-WEB30K.

MSLR-WEB30K

Methods vs. Dataset MAP NDCG@10 RR@10 ERR@10 P@10 Winning Rate

Training

ES-Rank Gaussian 0.5659 0.3766 0.7544 0.2587 0.5879 3
Multi-ES-Rank 1 Gaussian 0.5386 0.3356 0.7317 0.2623 0.5536 0
Multi-ES-Rank 2 Gaussian 0.5594 0.3547 0.7541 0.2711 0.5813 0
Multi-ES-Rank 3 Gaussian 0.5548 0.3622 0.7588 0.2834 0.5815 2
ES-Rank Cauchy 0.4953 0.2441 0.5865 0.1833 0.4592 1
Multi-ES-Rank 1 Cauchy 0.4839 0.2457 0.6006 0.1874 0.4598 4
Multi-ES-Rank 2 Cauchy 0.4678 0.2251 0.5578 0.1687 0.4321 0
Multi-ES-Rank 3 Cauchy 0.4758 0.2408 0.5949 0.1869 0.4492 0
ES-Rank Levy 0.5827 0.3837 0.8020 0.3151 0.6079 3
Multi-ES-Rank 1 Levy 0.5761 0.3948 0.7982 0.3095 0.6098 0
Multi-ES-Rank 2 Levy 0.5734 0.4016 0.7992 0.3102 0.6144 2
Multi-ES-Rank 3 Levy 0.5516 0.3507 0.7602 0.2722 0.5745 0
ES-Rank uniform 0.4818 0.2357 0.5934 0.1906 0.4624 4
Multi-ES-Rank 1 uniform 0.4659 0.2316 0.5690 0.1836 0.4278 0
Multi-ES-Rank 2 uniform 0.4701 0.2336 0.5824 0.1805 0.4383 0
Multi-ES-Rank 3 uniform 0.4749 0.2397 0.5893 0.1862 0.4463 1

Validation

ES-Rank Gaussian 0.5763 0.3784 0.7657 0.2644 0.5970 3
Multi-ES-Rank 1 Gaussian 0.5461 0.3415 0.7364 0.2721 0.5608 0
Multi-ES-Rank 2 Gaussian 0.5671 0.3851 0.7565 0.2789 0.5908 1
Multi-ES-Rank 3 Gaussian 0.5624 0.3653 0.7613 0.2915 0.5860 1
ES-Rank Cauchy 0.5041 0.2490 0.5929 0.1896 0.4675 2
Multi-ES-Rank 1 Cauchy 0.4916 0.2507 0.6074 0.1941 0.4653 3
Multi-ES-Rank 2 Cauchy 0.4743 0.2276 0.5807 0.1752 0.4343 0
Multi-ES-Rank 3 Cauchy 0.4832 0.2441 0.6025 0.1929 0.4529 0
ES-Rank Levy 0.5913 0.3911 0.8099 0.3252 0.6188 4
Multi-ES-Rank 1 Levy 0.5835 0.4003 0.8078 0.3161 0.6186 0
Multi-ES-Rank 2 Levy 0.5780 0.4021 0.8070 0.3158 0.6168 1
Multi-ES-Rank 3 Levy 0.5604 0.3579 0.7761 0.2815 0.5831 0
ES-Rank uniform 0.4910 0.2389 0.5962 0.1976 0.4699 4
Multi-ES-Rank 1 uniform 0.4722 0.2339 0.5757 0.1882 0.4287 0
Multi-ES-Rank 2 uniform 0.4760 0.2352 0.5842 0.1859 0.4401 0
Multi-ES-Rank 3 uniform 0.4819 0.2427 0.5909 0.1913 0.4491 1

Testing

ES-Rank Gaussian 0.5685 0.3710 0.7540 0.2569 0.5879 3
Multi-ES-Rank 1 Gaussian 0.5404 0.3316 0.7317 0.2623 0.5559 0
Multi-ES-Rank 2 Gaussian 0.5605 0.3486 0.7541 0.2711 0.5849 0
Multi-ES-Rank 3 Gaussian 0.5576 0.1581 0.7588 0.2834 0.5874 2
ES-Rank Cauchy 0.4971 0.2455 0.5709 0.1875 0.4662 2
Multi-ES-Rank 1 Cauchy 0.4871 0.2457 0.6006 0.1874 0.4665 3
Multi-ES-Rank 2 Cauchy 0.4696 0.2228 0.5778 0.1687 0.4354 0
Multi-ES-Rank 3 Cauchy 0.4789 0.2396 0.5949 0.1869 0.4533 0
ES-Rank Levy 0.5819 0.3789 0.7973 0.3162 0.6071 2
Multi-ES-Rank 1 Levy 0.5775 0.3902 0.7982 0.3095 0.6152 1
Multi-ES-Rank 2 Levy 0.5734 0.3957 0.7992 0.3102 0.6132 2
Multi-ES-Rank 3 Levy 0.557 0.3492 0.7602 0.2722 0.5815 0
ES-Rank uniform 0.4856 0.2390 0.5906 0.1944 0.4664 4
Multi-ES-Rank 1 uniform 0.4673 0.2311 0.5921 0.1836 0.4332 1
Multi-ES-Rank 2 uniform 0.4717 0.2315 0.5824 0.1805 0.4414 0
Multi-ES-Rank 3 uniform 0.4769 0.2366 0.5893 0.1862 0.4487 0
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Table A2. The performance of the proposed methods using MSLR-WEB30K.

MSLR-WEB30K

Method Used/Winning Evaluation Rate Winning Rate

Single-objective ES-Rank

Gaussian
Evolving 6
Predictive 3

Cauchy Evolving 3
Predictive 2

Levy Evolving 7
Predictive 2

Uniform
Evolving 8
Predictive 4

Multiobjective ES-Rank

Method 1

Gaussian
Evolving 0
Predictive 0

Cauchy Evolving 7
Predictive 3

Levy Evolving 0
Predictive 1

Uniform
Evolving 0
Predictive 1

Method 2

Gaussian
Evolving 1
Predictive 0

Cauchy Evolving 0
Predictive 0

Levy Evolving 3
Predictive 2

Uniform
Evolving 0
Predictive 0

Method 3

Gaussian
Evolving 3
Predictive 2

Cauchy Evolving 0
Predictive 0

Levy Evolving 0
Predictive 0

Uniform
Evolving 2
Predictive 0

Table A3. Average results of the proposed methods using MQ2008.

MQ2008

Methods vs. Dataset MAP NDCG@10 RR@10 ERR@10 P@10 Winning Rate

Training

ES-Rank Gaussian 0.4745 0.5020 0.5287 0.9900 0.2793 1
Multi-ES-Rank 1 Gaussian 0.4798 0.5022 0.5460 0.0984 0.2763 0
Multi-ES-Rank 2 Gaussian 0.4781 0.5041 0.5492 0.0991 0.2757 0
Multi-ES-Rank 3 Gaussian 0.486 0.5088 0.5551 0.0998 0.2763 4
ES-Rank Cauchy 0.4649 0.4832 0.5121 0.0915 0.2685 1
Multi-ES-Rank 1 Cauchy 0.4403 0.4713 0.5074 0.0913 0.2683 0
Multi-ES-Rank 2 Cauchy 0.4512 0.4822 0.5179 0.0939 0.2723 0
Multi-ES-Rank 3 Cauchy 0.456 0.4856 0.5262 0.0940 0.2725 4
ES-Rank Levy 0.4827 0.5010 0.5479 0.0996 0.2785 3
Multi-ES-Rank 1 Levy 0.4776 0.5032 0.5508 0.0995 0.2753 1
Multi-ES-Rank 2 Levy 0.4789 0.5037 0.5440 0.0987 0.2761 1
Multi-ES-Rank 3 Levy 0.4728 0.4972 0.5385 0.0962 0.2734 0
ES-Rank uniform 0.4509 0.4756 0.5333 0.0943 0.2712 2
Multi-ES-Rank 1 uniform 0.4419 0.4749 0.5013 0.0910 0.2693 0
Multi-ES-Rank 2 uniform 0.4518 0.4830 0.5184 0.0932 0.2704 3
Multi-ES-Rank 3 uniform 0.4461 0.4765 0.5155 0.0926 0.2676 0
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Table A3. Cont.

MQ2008

Methods vs. Dataset MAP NDCG@10 RR@10 ERR@10 P@10 Winning Rate

Validation

ES-Rank Gaussian 0.5462 0.5613 0.5750 0.1013 0.2787 1
Multi-ES-Rank 1 Gaussian 0.5344 0.5663 0.6093 0.1047 0.2768 0
Multi-ES-Rank 2 Gaussian 0.5392 0.5728 0.6113 0.1056 0.2799 4
Multi-ES-Rank 3 Gaussian 0.5255 0.5572 0.6067 0.1016 0.2749 0
ES-Rank Cauchy 0.5118 0.5307 0.5528 0.0959 0.2698 1
Multi-ES-Rank 1 Cauchy 0.4863 0.5256 0.5486 0.0941 0.2698 0
Multi-ES-Rank 2 Cauchy 0.4982 0.5333 0.5574 0.0975 0.2710 3
Multi-ES-Rank 3 Cauchy 0.4992 0.5319 0.5517 0.0963 0.2717 1
ES-Rank Levy 0.5353 0.5636 0.6010 0.1059 0.2812 5
Multi-ES-Rank 1 Levy 0.5262 0.5594 0.5885 0.1013 0.2787 0
Multi-ES-Rank 2 Levy 0.5226 0.5558 0.5937 0.1015 0.2761 0
Multi-ES-Rank 3 Levy 0.5148 0.5501 0.5765 0.0991 0.2787 0
ES-Rank uniform 0.4939 0.5373 0.5589 0.0980 0.2723 5
Multi-ES-Rank 1 uniform 0.4920 0.5288 0.5455 0.0958 0.2710 0
Multi-ES-Rank 2 uniform 0.4849 0.5252 0.5368 0.0952 0.2704 0
Multi-ES-Rank 3 uniform 0.4888 0.5308 0.5499 0.0959 0.2710 0

Testing

ES-Rank Gaussian 0.455 0.4849 0.5056 0.0939 0.2630 0
Multi-ES-Rank 1 Gaussian 0.4626 0.4848 0.5460 0.0985 0.2636 1
Multi-ES-Rank 2 Gaussian 0.4521 0.4807 0.5492 0.0991 0.2630 0
Multi-ES-Rank 3 Gaussian 0.4599 0.4862 0.5551 0.0998 0.2698 4
ES-Rank Cauchy 0.4526 0.4643 0.4690 0.9130 0.2611 1
Multi-ES-Rank 1 Cauchy 0.4372 0.4630 0.5074 0.0913 0.2617 0
Multi-ES-Rank 2 Cauchy 0.4416 0.4655 0.5179 0.0939 0.2655 1
Multi-ES-Rank 3 Cauchy 0.4452 0.4728 0.5262 0.0940 0.2636 3
ES-Rank Levy 0.4505 0.4831 0.4945 0.0956 0.2643 1
Multi-ES-Rank 1 Levy 0.4509 0.4732 0.5508 0.0995 0.2623 2
Multi-ES-Rank 2 Levy 0.4492 0.4793 0.5440 0.0987 0.2655 1
Multi-ES-Rank 3 Levy 0.4521 0.4731 0.5385 0.0962 0.2636 1
ES-Rank uniform 0.4455 0.4617 0.4888 0.0946 0.2623 2
Multi-ES-Rank 1 uniform 0.4440 0.4675 0.5013 0.0910 0.2617 0
Multi-ES-Rank 2 uniform 0.4410 0.4701 0.5184 0.0932 0.2636 3
Multi-ES-Rank 3 uniform 0.4343 0.4667 0.5155 0.0926 0.2611 0

Table A4. The performance results of the proposed methods using MQ2008.

MQ2008

Method Used/Winning Evaluation Rate Winning Rate

Single-objective ES-Rank

Gaussian
Evolving 2
Predictive 0

Cauchy Evolving 2
Predictive 1

Levy Evolving 8
Predictive 1

Uniform
Evolving 7
Predictive 2

Multiobjective ES-Rank

Method 1

Gaussian
Evolving 0
Predictive 1

Cauchy Evolving 0
Predictive 0

Levy Evolving 1
Predictive 2

Uniform
Evolving 0
Predictive 0

Method 2

Gaussian
Evolving 4
Predictive 0

Cauchy Evolving 3
Predictive 1

Levy Evolving 1
Predictive 1

Uniform
Evolving 3
Predictive 3
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Table A4. Cont.

MQ2008

Method Used/Winning Evaluation Rate Winning Rate

Multiobjective ES-Rank Method 3

Gaussian
Evolving 4
Predictive 4

Cauchy Evolving 5
Predictive 3

Levy Evolving 0
Predictive 1

Uniform
Evolving 0
Predictive 0

Table A5. Average results of the proposed methods using MQ2007.

MQ2007

Methods vs. Dataset MAP NDCG@10 RR@10 ERR@10 P@10 Winning Rate

Training

ES-Rank Gaussian 0.4436 0.4234 0.5664 0.0983 0.3777 2
Multi-ES-Rank 1 Gaussian 0.4487 0.4271 0.5656 0.0994 0.3641 3
Multi-ES-Rank 2 Gaussian 0.4435 0.4234 0.5646 0.0989 0.3661 0
Multi-ES-Rank 3 Gaussian 0.4444 0.4219 0.5540 0.0980 0.3649 0
ES-Rank Cauchy 0.4327 0.4111 0.5419 0.0960 0.3469 1
Multi-ES-Rank 1 Cauchy 0.4322 0.4117 0.5421 0.0964 0.3548 0
Multi-ES-Rank 2 Cauchy 0.4317 0.4127 0.5429 0.0969 0.3576 4
Multi-ES-Rank 3 Cauchy 0.4252 0.4041 0.5385 0.0945 0.3524 0
ES-Rank Levy 0.4522 0.4292 0.5488 0.1000 0.3728 1
Multi-ES-Rank 1 Levy 0.4523 0.4325 0.5654 0.0997 0.3688 1
Multi-ES-Rank 2 Levy 0.4531 0.4295 0.5662 0.0981 0.3706 1
Multi-ES-Rank 3 Levy 0.4526 0.4322 0.5696 0.0986 0.3755 2
ES-Rank uniform 0.4350 0.4195 0.5331 0.0936 0.3414 1
Multi-ES-Rank 1 uniform 0.4374 0.4175 0.5473 0.0977 0.3601 3
Multi-ES-Rank 2 uniform 0.4196 0.4000 0.5344 0.0941 0.3465 0
Multi-ES-Rank 3 uniform 0.4294 0.4104 0.5395 0.0959 0.3560 1

Validation

ES-Rank Gaussian 0.4742 0.4520 0.5930 0.1066 0.3832 4
Multi-ES-Rank 1 Gaussian 0.4682 0.4511 0.5818 0.1054 0.3714 0
Multi-ES-Rank 2 Gaussian 0.4744 0.4515 0.5876 0.1047 0.3755 1
Multi-ES-Rank 3 Gaussian 0.472 0.4499 0.5925 0.1049 0.3714 0
ES-Rank Cauchy 0.4546 0.4336 0.5535 0.1006 0.3575 0
Multi-ES-Rank 1 Cauchy 0.4563 0.4325 0.5588 0.1005 0.3563 0
Multi-ES-Rank 2 Cauchy 0.4573 0.4383 0.5715 0.1027 0.3593 5
Multi-ES-Rank 3 Cauchy 0.4536 0.4293 0.5675 0.1008 0.3525 0
ES-Rank Levy 0.4742 0.4628 0.5931 0.1081 0.3838 3
Multi-ES-Rank 1 Levy 0.476 0.4541 0.6115 0.1071 0.3791 2
Multi-ES-Rank 2 Levy 0.4726 0.4524 0.5848 0.1046 0.3802 0
Multi-ES-Rank 3 Levy 0.4756 0.4560 0.5923 0.1072 0.3805 0
ES-Rank uniform 0.4601 0.4439 0.5495 0.0977 0.3525 0
Multi-ES-Rank 1 uniform 0.4664 0.4474 0.5853 0.1053 0.3643 4
Multi-ES-Rank 2 uniform 0.4437 0.4218 0.5458 0.0983 0.3504 0
Multi-ES-Rank 3 uniform 0.4574 0.4357 0.5616 0.1013 0.3581 1

Testing

ES-Rank Gaussian 0.4774 0.4650 0.5683 0.1094 0.4006 4
Multi-ES-Rank 1 Gaussian 0.4816 0.4623 0.5656 0.0994 0.3887 0
Multi-ES-Rank 2 Gaussian 0.4688 0.4528 0.5646 0.0989 0.3896 0
Multi-ES-Rank 3 Gaussian 0.4818 0.4623 0.5540 0.0980 0.3929 1
ES-Rank Cauchy 0.4561 0.4378 0.5524 0.1028 0.3694 2
Multi-ES-Rank 1 Cauchy 0.4621 0.4375 0.5421 0.0964 0.3723 1
Multi-ES-Rank 2 Cauchy 0.4611 0.4395 0.5429 0.0964 0.3735 2
Multi-ES-Rank 3 Cauchy 0.4534 0.4326 0.5385 0.0945 0.3726 0
ES-Rank Levy 0.4833 0.4590 0.5640 0.1074 0.3900 1
Multi-ES-Rank 1 Levy 0.4825 0.4669 0.5654 0.0997 0.3970 0
Multi-ES-Rank 2 Levy 0.4833 0.4675 0.5662 0.0981 0.3976 1
Multi-ES-Rank 3 Levy 0.4844 0.4678 0.5696 0.0986 0.3958 3
ES-Rank uniform 0.4635 0.4448 0.5462 0.1001 0.3586 1
Multi-ES-Rank 1 uniform 0.4706 0.4472 0.5473 0.0977 0.3777 4
Multi-ES-Rank 2 uniform 0.4509 0.4301 0.5344 0.0941 0.3676 0
Multi-ES-Rank 3 uniform 0.4622 0.4385 0.5395 0.0959 0.3732 0
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