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Abstract: In recent years, health-monitoring systems have become increasingly important in the
medical and safety fields, including patient and driver monitoring. Remote photoplethysmography is
an approach that captures blood flow changes due to cardiac activity by utilizing a camera to measure
transmitted or reflected light through the skin, but it has limitations in its sensitivity to changes in
illumination and motion. Moreover, remote photoplethysmography signals measured from nonskin
regions are unreliable, leading to inaccurate remote photoplethysmography estimation. In this study,
we propose Skin-SegNet, a network that minimizes noise factors and improves pulse signal quality
through precise skin segmentation. Skin-SegNet separates skin pixels and nonskin pixels, as well as
accessories such as glasses and hair, through training on facial structural elements and skin textures.
Additionally, Skin-SegNet reduces model parameters using an information blocking decoder and
spatial squeeze module, achieving a fast inference time of 15 ms on an Intel i9 CPU. For verification,
we evaluated Skin-SegNet using the PURE dataset, which consists of heart rate measurements
from various environments. When compared to other skin segmentation methods with similar
inference speeds, Skin-SegNet demonstrated a mean absolute percentage error of 1.18%, showing an
improvement of approximately 60% compared to the 4.48% error rate of the other methods. The result
even exhibits better performance, with only 0.019 million parameters, in comparison to DeepLabV3+,
which has 5.22 million model parameters. Consequently, Skin-SegNet is expected to be employed
as an effective preprocessing technique for facilitating efficient remote photoplethysmography on
low-spec computing devices.

Keywords: deep learning; skin segmentation; remote photoplethysmography; vital sign monitoring

1. Introduction

The field of health monitoring has grown significantly in recent years owing to the
increasing interest in personal healthcare such as telemedicine and wearable healthcare
devices. One of the most important health-monitoring approaches is the measurement of
cardiac activity. There are several methods for the contact measurement of the heart rate,
e.g., electrocardiography (ECG). However, ECG devices, which record the electrical poten-
tials generated by the heart, are not suitable for home healthcare because they are typically
bulky or inconvenient owing to the use of contact sensors. Photoplethysmography (PPG)
is an alternative to ECG that measures changes in blood flow through light transmitted
through the skin or reflected light after passing through the skin. In addition, ECG features
are highly correlated with PPG features [1]. Compared to ECG, PPG is easier to perform
and uses inexpensive equipment.
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Also, PPG can be performed using remote cameras such as a webcam or a mobile
camera. This is called remote PPG (rPPG) [2,3]. rPPG has the advantage that it can be
used by anyone, anywhere, as it does not require a high-performance camera and can be
performed using a consumer-level camera, such as a smartphone camera. However, to
measure cardiac activity with high reliability based on rPPG, there is also a limitation that
noise factors caused by motion and illumination must be sufficiently controlled. There are
various approaches for noise reduction, and noise can be reduced through accurate skin
segmentation, as shown in Figure 1. In this paper, we propose a region-of-interest (ROI)
selection method for rPPG improvement that enables real-time inference even on edge
devices through deep learning-based fast skin segmentation.

(a) (b)

Figure 1. Examples of rPPG measurements according to the skin segmentation method. (a) When the

skin is not properly segmented, and (b) when the skin is correctly segmented.

The contributions of this study are as follows:

e Existing studies on rPPG have emphasized the importance of skin segmentation.
However, few attempts have been made to improve rPPG by skin segmentation.
This study confirmed a noise reduction and rPPG improvement with Skin-SegNet
and confirmed that the rPPG improvement is higher in noisy environments caused
by talking or motion artifacts. Skin-SegNet shows an average improvement of 20%
in terms of the MAPE compared with existing threshold-based skin segmentation
methods (YCbCr [4], HSV [5]). Additionally, the average success rate of heart rate
estimation within 5 bpm in a talking environment is 9.5%.

e  Due to the nature of image processing, there is a trade-off between accuracy and
processing speed. However, Skin-SegNet achieves state-of-the-art (SOTA) performance
in terms of accuracy and speed. Skin-SegNet-based rPPG measurement shows 10 times
faster processing speed than existing deep learning methods of ROI selection, and there
is no significant difference in performance. The inference time of Skin-SegNet was
15 ms, which is a level capable of real-time processing (>30 frames per second (FPS)).

2. Related Works

In recent years, studies have explored the challenges of rPPG, such as changes in
ambient light and the movement of subjects. Representative rPPG extraction methods
include principal component analysis (PCA) [6], CHROM [7], POS [8], and OMIT [9].

PCA [6] is similar to independent component analysis, and it is used to extract rPPG
signals. The average and variance of the RGB signals in each area are calculated by dividing
the ROI into the entire face, forehead, and cheeks. Results have shown that the forehead is
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the most uniform area. Furthermore, it has been experimentally shown that noise increases
as the size of the ROI decreases.

CHROM [7] is an rPPG algorithm that linearly combines color-difference signals by
assuming a normalized skin color. A simple face detector and skin mask are used to select
the ROL A clean rPPG signal is obtained by removing the pixels that contaminate the rPPG
signal, such as a mustache.

POS [8] is based on CHROM, and it is robust to movement. It extracts a pulse
signal through a projection plane orthogonal to skin. A support-vector-machine-based
discriminator and learning-based object tracker are used for ROI selection.

OMIT [9] is a powerful rPPG algorithm for compression artifacts that is based on QR
decomposition. Two methods are used for ROI selection: U-Net-based skin segmentation
and patch selection based on facial landmark coordinates.

Generally, the rPPG process is categorized into ROI selection, pulse signal extraction,
and signal processing. ROI selection requires skin segmentation because only the skin
pixel region is relevant for rPPG signals [10]. As PPG signals are extracted from skin
pixels, preprocessing is crucial for extracting accurate skin regions, regardless of the rPPG
extraction method. The exclusion of a few skin pixels negligibly affects the rPPG signal
extraction performance. However, the inclusion of eyebrows, hair, reflected light, and
shadow areas other than the skin can have a significant adverse effect on the performance.
There are several advantages of performing skin segmentation during rPPG.

First, rPPG is sensitive to motion artifacts. It is difficult to remain still without moving
the face and to not blink, which can result in noise when rPPG is performed using a
camera [6]. This motion noise can be reduced by excluding the relatively active areas of the
eyelids and lips.

Second, glasses, hair, and beards can contaminate rPPG signals. To reduce the effect of
these factors, studies have simply narrowed the face area or divided it into smaller areas
without dividing the skin [9,11]. However, this approach reduces the ROI, thereby making
rPPG more sensitive to noise [7].

Finally, convex surfaces, such as the nose and lips, can cause specular reflection and
negatively affect the rPPG performance when these areas are included as skin pixels. These
three problems can be solved by accurately segmenting the largest possible skin area to
obtain a reliable signal.

PCA and CHROM perform rPPG signal extraction by using threshold-based skin
segmentation methods such as YCbCr [4] and HSV [5] to select skin regions as ROIs to
obtain pulse signals. Bobia’s work [12] emphasizes that ROI selection during rPPG signal
extraction is an important step for obtaining reliable signals. In addition, another study by
Bobia [13] states that the quality of the ROI directly affects the quality of rPPG signals.

The simplest skin segmentation method is threshold-based, which uses a limited range
of colors of human skin. However, this method is not suitable for the reliable measurement
of rPPG signals because it is based on colors.

In recent years, methods that use superpixels and deep learning have been developed
as alternatives to threshold-based skin segmentation. Superpixel-based methods are fre-
quently used for image segmentation and object tracking. An image is segmented into
small, uniform regions with similar characteristics, and image processing is performed
using these regions as basic units.

Recently, a superpixel method that uses the simple linear iterative clustering (SLIC)
algorithm was developed [14]. This method, which is relatively faster than the superpixel
method, uses a superpixel extracted via an energy-driven sampling algorithm. Bobia’s
work [13] applied the SLIC-based superpixel method to skin segmentation. This work
reports that accurate skin segmentation is important when extracting rPPG signals and
that the SLIC-based superpixel method provides satisfactory accuracy at 25 fps for a
640 x 480 pixel image. However, we aim to use skin segmentation for rPPG signal extrac-
tion. This is a part of the preprocessing stage, and thus, it should not require a long time.
Although a speed of 25 fps is not low, we require a higher speed. Therefore, we do not use
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a superpixel method in comparative study because it is difficult to find the correct value
for the superpixel hyperparameter, i.e., the speed.

Deep learning is being applied to various fields owing to recent developments, and its
performance is significantly higher than that of existing methods.

Tran et al. [15] attempted to obtain a clean rPPG signal via skin segmentation using
DeepLabV3+ [16]. A heart rate estimation accuracy of over 90% was achieved using
DeepLabV3+ and the adaptive pulsatile plane (APP) method. The highest accuracies were
similar to those obtained using CHROM and POS.

It could not be confirmed whether skin segmentation had a significant effect on rPPG
signals because signals were obtained using the APP method. In addition, owing to the
processing speed problem, face detection was performed only at the beginning of the
process. Signals were extracted by performing skin segmentation only once in the region
where the face was found. Even small movements of a subject can cause signals to be
extracted from the incorrect skin area.

SINet [17] shows good performance in the field of portrait segmentation. SINet reduces
the number of parameters by more than 90% while maintaining the accuracy of several
existing models. Furthermore, it is suitable for our purpose because it successfully runs at
over 100 fps on mobile devices. Therefore, the structure of our proposed network inherits
the information blocking decoder and spatial squeeze module, which are lightweight and
performance-enhancing techniques of SINet [17].

Lee et al. [18] proposed the extreme lightweight skin segmentation networks (ELSNet)
for measuring rPPG. Despite the fast inference speed of 167 frames per second (FPS), the
overall performance of the rPPG measurement was improved, and the improvement was
greater in environments with frequent motion.

In this study, we propose a real-time skin segmentation network (Skin-SegNet) that
measures reliable signals. Skin-SegNet is specialized for the improvement of rPPG signal
extraction by fast and accurate ROI selection. It learns facial structural elements to remove
the eyebrows, hair, eyes, nose, and mouth, which may interfere with rPPG signal extraction.
Skin-SegNet improves the success rate of heart rate estimation by approximately 6% within
5 bpm. In addition, it was confirmed that these rPPG enhancements are generalized
enhancement methods that can be applied to the PCA, CHROM, POS, and OMIT rPPG
extraction algorithms. An average performance improvement of 9.5% and 20% is confirmed
in a talking environment and in terms of the mean absolute percentage error (MAPE),
respectively. Skin-SegNet shows an inference time of 15 ms using only an Intel i9 CPU. This
implies that real-time processing is possible even if the model runs during the preprocessing
of rPPG.

3. Method

This section describes the structure of the proposed skin segmentation model and the
experimental setup used to confirm the improvement in the performance of the rPPG signal
extraction algorithm by the skin segmentation model. A network design of Skin-SegNet
consists of the information blocking decoder and spatial squeeze module proposed by
SINet [17].

In addition, the rPPG performance comparison shown in Figure 2 is performed to
compare the performance between Skin-SegNet and the existing methods. The first step in
the process is to acquire face images. The performance of each method is evaluated using
the PURE dataset. In the third process, the existing methods and the Skin-SegNet-based
image processing method are performed to confirm the improvement of rPPG performance
through skin segmentation improvement. In addition, an rPPG performance comparison
was performed according to fair-skin segmentation by applying all four types of rPPG
extraction methods.

During the rPPG measurement process, the same method of the traditional rPPG
measurement process was applied except for the skin segmentation process, which is the
second step in Figure 2. After removing noise through signal processing, rPPG extraction is
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performed. After that, the heart rate is calculated using frequency analysis through FFT,
and performance is compared using rPPG metrics such as MAPE, coverage, SNR, and
Pearson correlation coefficient. In the fifth step of Figure 2, four types of rPPG extractions
are performed. This is also a process of verifying performance improvement through skin
segmentation, and performance comparison experiments were conducted only based on
the type of skin segmentation method.

All methods are applied individually for
performance comparison.

! HSV
|

ELSNet

| | Deeplabv3+ Mobile
1

:| Decplabv3+ HR
! Skin-SegNet
—— 1| (The proposed Method) Pixel intensity series of R,G,B
(1) Face Image acquisition (2) Face detection T T e channels
through web camera (3) Skin segmentation

All methods are applied Detrending
individually for
performance comparison.
——————————— "
CHROM

Signal-to-noise ratio 4=

Pearson correlation

1

1

: ’ Bandpass filtering

1

- (4) Signal processing
1

coeflicient
A s T '
(7) Performance comparison for Power spectral density(FSD) (5) rPPG Extraction
validation of improving rPPG (6) FFT-based heart rate acquisition

performance by Skin-SegNet

Figure 2. Overview of rPPG performance comparison to validate improvement through skin segmen-
tation using Skin-SegNet.

3.1. Information Blocking Decoder

Information blocking can reduce the ambiguity of the model during object boundary
segmentation to decrease the errors between the background and object, which are com-
monly encountered in segmentation. A typical case is when the model inaccurately judges
the background or an edge. Figure 3 shows an example in which the clothes and head parts
are not correctly segmented.

(a) (b)

Figure 3. Example of segmentation errors that occur mainly around object boundaries. (a) Original

image, and (b) typical example of segmentation errors. Blue and red indicate false negatives and false
positives, respectively.

Recent studies [16,19-21] addressed this problem by reusing high-resolution feature
maps in encoders. However, unlike other studies, SINet imports only the parts about which
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the model is uncertain without importing the information of the high-resolution feature
map. This is referred to as information blocking. The descriptions and related expressions
for information blocking are as follows:

¢ = max (softmax(X)) 1)

In Equation (1), is the confidence score, is the feature map, and is the probability value
of each class.
Information Blocking Map =1 —c (2

The information blocking map expressed by Equation (2) is obtained by subtracting the
reliability score obtained from Equation (1) from 1. Elementwise convolution is performed
on the information blocking map, and a high-resolution feature map is obtained in this
manner. This ensures that only the low-confidence parts (the high-value parts of the
information blocking map) can obtain information from the high-resolution feature map.

3.2. Spatial Squeeze Module

Unlike the multipath structure [22], the S2 block uses a multireceptive field scheme
that processes global information while reducing latency by applying average pooling.
The S2 module used in SINet [17] consists of a split transform—merge structure [19,20,23]
to cover the multireceptive field using two S2 blocks [17]. The S2 module uses pointwise
convolution, channel shuffle, and group pointwise convolution to reduce computation.
The size of feature maps is reduced by half. Then, they are passed through S2 blocks
and merged. The feature map merged with the input feature map is added as a residual
connection. The PReLU activation function is used. Figure 4 shows the S2 module and
S2 block.

CxWxH
CXWXxH
1x1
l Group Conv Shuffle
Average pooling l
(NXN)
WL gxwa
X=X =
- N N
=1 S2 Block $2 Block
Depthwise Conv ﬂ,
CX—X=
l Concatenation
Prely ey ||
Elementwise Conv
H
CX—XxX—
N CXWXH
U li
psampling I +) -
CxWxH
CxXWxH
(a) (b)

Figure 4. Architecture of Skin-SegNet. The S2 module consists of the bottleneck layer. Informa-
tion blocking is a method for fine skin segmentation. (a) Depthwise separable convolution, and
(b) squeeze and excitation.
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e

@ SE block . DSConv + SE
.’ S2-module

3.3. Real-Time Skin Segmentation Network (Skin-SegNet)

In SINet, a structure optimized for portrait segmentation is created using a network.
In this study, we design a network optimized for skin segmentation in detected face regions
using the S2 block, group convolution, and information blocking. However, we use a
different model architecture and network depth. The overall model structure is shown in
Figure 5.

Encoder Decoder

ﬂ Upsampling

@ Pointwise addition

@ Pointwise multiplication ' Information Blocking

Pointwise Conv

Figure 5. Architecture of Skin-SegNet. The S2 module consists of the bottleneck layer. Information
blocking is a method for fine skin segmentation. DS: depthwise separable convolution, SE: squeeze
and excitation.

The input image is passed through two layers, i.e., a convolutional layer with two
strides and a batch normalization layer, and PReLU before the encoder. Thereafter, the
feature map passes through depthwise separable (DS) convolution and a DS + squeeze-
and-excitation (SE) lock composed of SE blocks. At the back of the encoder, the feature
map is passed through the S2 block six times, and the final encoder output is computed
using point-by-point convolution. The setup of Skin-SegNet is described in Table 1. The
performances of Skin-SegNet and existing skin segmentation methods [4,5] are compared
for the four rPPG methods introduced in Section 2.

Table 1. Architecture of Skin-SegNet. The S2 module consists of the bottleneck layer. Information
blocking is a method for fine skin segmentation. DS: depthwise separable convolution, SE: squeeze
and excitation.

# Input Operation Output kp

1 3 x 244 x 244 SE block 12 x 112 x 112 Downsampling

2 12 x 112 x 112 SE block 16 x 56 x 56 Downsampling

3 16 x 56 x 56 DS + SE block 16 x 28 x 28 Downsampling

4 16 x 28 x 28 S2 module 32 x 28 x 28 [k=3,p=1],[k=5p=1]
5 32 x 28 x 28 S2 module 32 x 28 x 28 [k=57p=1][k=3p=2]
6 32 x 28 x 28 S2 module 32 x 28 x 28 [k=57p=2][k=3p=4]
7 32 x 28 x 28 S2 module 32 x 28 x 28 [k=5p=1],[k=5p=1]
8 32 x 28 x 28 S2 module 32 x 28 x 28 [k=3,p=2],[k=3,p=4]
9 32 x 28 x 28 S2 module 32 x 28 x 28 [k=3,p=1][k=5p=2]
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Table 1. Cont.
# Input Operation Output kp
10 48 x 28 x 28 Concatenation, Conv2d 2 x 28 x 28 Encoder output
11 2 x 28 x 28 Bilinear2d 2 X 56 x 56 Upsampling
12 16 x 56 x 56 Conv2d 2 X 56 x 56 Shortcut
13 2 x 56 x 56 Gate function 2 x 56 x 56 Information blocking operation
14 2 X 56 x 56 Bilinear2d 2 x 112 x 112 Upsampling
15 2 x 112 x 112 Bilinear2d, Conv2d 2 x 224 x 224 Upsampling

Skin-SegNet removes the areas that may interfere with rPPG signal extraction and
detects the maximum skin area. It is experimentally confirmed that accurate and fast skin
segmentation using Skin-SegNet significantly improves the rPPG measurement perfor-
mance in various movement and conversation environments.

4. Result
4.1. Datasets

Training dataset: The CelebAMask-HQ dataset [24] contains 30,000 high-resolution
facial images selected from the CelebA dataset. It consists of 19 facial components, e.g.,
skin, nose, eyes, eyebrows, lips, hair, and accessories. The CelebAMask-HQ dataset allows
for the editing of facial components; therefore, we trained Skin-SegNet using this dataset to
detect only skin regions.

Evaluation dataset: The PURE dataset [25] validates the robustness of Skin-SegNet
against noise artifacts caused by illumination and motion. The PURE dataset contains rPPG
data in six environments, which include resting, talking, slow and fast movement, and
small and medium rotation.

4.2. Evaluation

Table 2 presents the rPPG performance obtained when Skin-SegNet-based skin seg-
mentation is applied to the PURE dataset. Three rPPG performance metrics are used, i.e.,
the MAPE and two values of coverage, as given by Equations (3)—(6).

100k | yi — f(x)
MAPE = —) . |&¥=——2—~ 3
k Zl:l Vi ( )
Table 2. Average evaluation result of four rPPG methods in all experimental environments.
Methods MAPE Coverage5 Coverage3 SNR r(V/72)

YCbCr [4] 5.58 80.25% 66.0% 0.9290 0.83
HSV [5] 9.53 73.25% 60.50% 0.8782 0.75
ELSNet [18] 4.48 85.25% 71.50% 1.0004 0.88
Deeplabv3+ Mobile [16] 2.01 96.78% 95.17% 1.5479 0.88
Deeplabv3+ HR [16] 1.99 96.80% 95.11% 1.5647 0.88
Skin-SegNet (ours) 1.81 96.78% 95.17% 1.6077 0.89

In Equation (3), k is the index of the 1 s sliding window. y; is the exact heart rate
corresponding to the index. f(x;) is the estimated heart rate corresponding to the exponent.

(0, ifd(k)>T
bi(T) = {1, ifdk)<T @
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In Equation (4), k is the index of the 1 s sliding window. d(k) is the heart rate error
function corresponding to the index k. T is the bpm threshold of the binary function by (T).

Coverage T = Li b(T) Z;S(T) )

The coverage given by Equation (5) represents the success rate of the time series obtained
using the binary function. Therefore, the performance improves as the coverage increases.

Y3 spectrum(n)

SNR = (6)

YB_ spectrum(n) — Zﬁ'ﬁ} ~ spectrum(n)

In Equation (6), the minimum and maximum human heart rates are 42 bpm and
210 bpm, respectively, which correspond to 0.7 Hz (f,;,,) and 3.5 Hz (fy14x) in the frequency
domain, respectively. The peak frequency is defined as the most dominant frequency in
the bpm range defined above. A and B denote the peak frequency with a margin of 0.7 Hz
subtracted from or added to it, respectively. Figure 6 shows a visual representation of f,,;,
fmax, A, and B.

0.35 1

0.30 1

0.25 A1

0.20 1 fmin h

0.15 fmax

Amplitude

0.10 1

0.05 A1

0.00 A1

T T T T T

0 2 4 6 8 10 12 14
Frequency(Hz)

Figure 6. Examples of fi,, fmax, A, and B in Equation (6) (fiax and f,;,, are given by peak frequency
+0.7 Hz; A and B are frequencies corresponding to 42 bpm and 210 bpm, respectively).

4.3. Evaluation Result

Table 2 shows the average performance of all rPPG methods. The performance of deep
learning-based methods outperforms the color domain-based methods YCbCr and HSV in
all evaluation metrics. This result shows that rPPG extraction performance can be improved
only by improving ROI selection based on image processing. In Table 3, Skin-SegNet has
the fastest inference time and fewest model parameters among the deep learning-based
methods. Table 3 shows that Skin-SegNet can perform more than 30 FPS with only CPU
operation. Also, Table 2 shows that the heart rate-based rPPG evaluation results are better
or there is no significant difference, even though the speed is more than 10 times faster and
the model parameters are less than 1/100 the weight.
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Table 3. Inference times of skin segmentation methods using only CPU. (CPU: Intel(R) Core(TM)

i9-9900K, ms: milliseconds, G: giga, M: million).

Methods Mean (ms) Max. (ms) MACs (G) Parameters (M)
Deeplabv3+ Mobile [16] 124 130 35.66 5.22
Deeplabv3+ HR [16] 324 359 6.03 71.71
ELSNet [18] * 5 7 0.023 0.01
Skin-SegNet (ours) * 12 15 0.047 0.019

* This symbol indicates that the model is capable of real-time inference.

The improvement of rPPG performance through deep learning-based ROI selection
is noticeably increased in a talking environment. Table 4 shows the performance im-
provement in a talking environment on the PURE dataset. Compared to conventional
methods, rPPG measurement using deep learning-based ROI selection shows performance
improvements ranging from a minimum of 5% to a maximum of 20% compared to YCbCr
and HSV. Coverage T in Table 2 is the probability that the error between the estimated
bpm and ground-truth bpm is less than T bpm. A detailed explanation is shown in

Equations (4) and (5).

Table 4. Evaluation result of four rPPG methods in talking environment.

rPPG Method Skin Segmentation Method MAPE Coverage5 Coverage3
YCbCr [4] * 9 63.41% 49.57%
HSV [5]* 11.7 54.45% 39.49%
ELSNet [18] * 6.7 71.22% 51.0%
CHROM [7] Deeplabv3+ Mobile [16] 1.9 93.83% 90.51%
Deeplabv3+ HR [16] 1.9 94.47% 91.48%
Skin-SegNet (ours) * 2.3 93.65% 91.18%
YCbCr [4] * 10.2 60.45% 48.67%
HSV [5]* 11.2 58.76% 42.33%
ELSNet [18] * 6.9 67.09% 55.39%
OMIT [9] Deeplabv3+ Mobile [16] 1.7 95.52% 94.29%
Deeplabv3+ HR [16] 1.7 95.46% 94.03%
Skin-SegNet (ours) * 1.8 95.19% 93.31%
YCbCr [4] * 8.7 65.49% 49.18%
HSV [5]* 20.9 42.32% 32.43%
PCA [6] ELSNet [18] * 6.7 68.87% 54.11%
Deeplabv3+ Mobile [16] 1.6 95.92% 94.60%
Deeplabv3+ HR [16] 1.5 96.67% 94.58%
Skin-SegNet (ours) * 2.1 94.81% 93.35%
YCbCr [4] * 14.7 44.38% 34.47%
HSV [5]* 16.0 43.80% 30.75%
POS [8] ELSNet [18] * 14 46.66% 35.12%
Deeplabv3+ Mobile [16] 1.9 96.72% 92.30%
Deeplabv3+ HR [16] 1.8 96.47% 91.74%
Skin-SegNet (ours) * 24 95.81% 93.05%

* This symbol indicates that the model is capable of real-time inference.

Table 5 shows the rPPG evaluation results in the fast translation environment that
includes motion noise caused by head movement. Skin-SegNet shows SOTA-level rPPG
measurement in motion and illumination noise reduction despite having the fastest infer-
ence time. Therefore, in Tables 4 and 5, the improvement due to Skin-SegNet was confirmed
more clearly in an environment with frequent motion noise. This means that rPPG pulse

signal quality can be improved only by improving skin segmentation.
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Table 5. Evaluation result of four rPPG methods in fast translation environment.

rPPG Method Skin Segmentation Method MAPE Coverage5 Coverage3
YCbCr [4] * 9.5 62.84% 48.58%
HSV [5] * 12.9 60.48% 45.11%
ELSNet [18] * 74 69.17% 54.41%
CHROM [7] Deeplabv3+ Mobile [16] 1.1 98.03% 96.36%
Deeplabv3+ HR [16] 1.1 98.61% 97.60%
Skin-SegNet (ours) * 1.2 98.63% 97.76%
YCbCr [4] * 10.6 62.14% 47.23%
HSV [5]* 12.2 62.42% 49.41%
ELSNet [18] * 7.6 67.97% 55.08%
OMIT [7] Deeplabv3+ Mobile [16] 1.0 98.56% 97.39%
Deeplabv3+ HR [16] 1.2 98.18% 97.69%
Skin-SegNet (ours) * 1.2 98.59% 97.39%
YCbCr [4] * 9.8 63.32% 49.70%
HSV [5] * 26.4 60.29% 45.40%
PCA [6] ELSNet [18] * 74 68.31% 55.37%
Deeplabv3+ Mobile [16] 1.0 98.39% 97.85%
Deeplabv3+ HR [16] 1.2 98.13% 97.60%
Skin-SegNet (ours) * 14 98.19% 97.10%
YCbCr [4] * 14.6 53.46% 39.70%
HSV [5] * 18.2 55.47% 42.08%
POS [8] ELSNet [18] * 13.4 56.27% 41.83%
Deeplabv3+ Mobile [16] 14 98.68% 96.36%
Deeplabv3+ HR [16] 1.4 98.34% 96.91%
Skin-SegNet (ours) * 1.0 98.42% 97.80%

* This symbol indicates that the model is capable of real-time inference.

Figure 7 shows that real-time processing is possible at an average speed of 30 fps on
an Intel i7 CPU when it is operated simultaneously with the face detection model using
OpenCV in the Python environment.

i

Figure 7. Real-time processing at an average speed of 30 fps on the i7 CPU when it is operated
simultaneously with the face detection model using OpenCV in Python.
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5. Discussion

rPPG has been extensively investigated in recent years. However, the improvement
in the performance of rPPG through image processing has not been examined in detail.
Furthermore, most studies have focused on pulse signal extraction and signal-processing-
based noise reduction rather than ROI selection. In this study, it was experimentally verified
that rPPG signal extraction could be improved by utilizing skin segmentation. The results
demonstrated the importance of ROI selection in the rPPG process.

To the best of our knowledge, most existing ROI selection methods use face-landmark-
based regions [26-28] and threshold-based skin segmentation [4,5]. Superpixel-based [13,14]
and deep learning-based methods [15,16] have been used to improve rPPG signal extraction
performance through ROI selection. Although studies have examined deep learning-
based ROI selection using DeepLabV3+ [16], they have not investigated performance
improvement by optimizing rPPG skin segmentation. Therefore, this study proposes
Skin-SegNet to improve the rPPG performance based on the fastest skin segmentation
network. In addition, it is shown that the improvement in the rPPG performance through
skin segmentation is better in an environment with motion artifacts, such as a talking and
fast translation environments.

Experimental results show that ROI selection and pulse signal extraction are essen-
tial for applying the rPPG technology to fitness, mobile, or driving environments with
considerable noise. Moreover, for general applications, rPPG must be robust against the
facial expressions, head movements, and facial movements caused by talking, and lighting
changes must be considered. Therefore, future studies can examine the mitigation or
removal of the motion noise generated in a wild environment through ROI selection to
improve the rPPG performance. This work uses the PURE dataset, which consists of a
talking environment, head movement, and rotation. However, these occur concurrently in
a wild environment. Therefore, in the future, experiments can be performed using datasets
from real-world environments.

Additionally, as shown in Table 6, we performed additional experiments to confirm the
accuracy according to heart rate on the PURE dataset with a heart rate range of 40~150 bpm.
For heart rates lower than 50 beats per minute, the error is higher than the overall average
MAPE of 1.81. However, in the case of data over 100 bpm, it was confirmed that the error
was lower than the average. In the PURE dataset, there were 10 subjects, and 2 subjects
corresponded to high heart rate data of more than 100 bpm, and even this was about 10%
when compared with the ratio. In addition, the cases of 80-90 and 90-100 bpm, which
have the highest MAPE, had few data, and this was unreliable because the result was for
one subject. This is a limitation of this study, considering the balance of heart rate ranges,
and acquiring a dataset with a sufficient number of at least 10 subjects per heart range to
confirm rPPG characteristics will be pursued in future work. In addition, similar studies
include studies on rPPG characteristics according to skin type and transparency.

Table 6. MAPE and time length according to heart rate in PURE dataset [25].

HeartRate(HR)Range MAPE (%) Number of Frames Time (s)
40 < HR < 50 2.59 14,737 491
50 < HR < 60 1.54 24,886 830
60 < HR < 70 1.21 20,433 681
70 < HR < 80 0.51 26,184 873
80 < HR < 90 26.9 4596 153
90 < HR < 100 524 663 22

100 < HR < 110 0.75 800 27
110 < HR < 120 0.3 512 17
120 < HR < 130 0.5 5483 183
130 < HR < 140 1.59 3979 133

140 < HR < 150 0.52 263 9
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The attention mechanism can be applied to skin segmentation in deep learning-based
rPPG signal measurement. Attention-based performance improvements in facial expression
and motion recognition have been obtained in recent years [29,30]. In addition, an ROI
mask can be used for training deep learning models. Hwang et al. [31] used a torso
ROI mask to train a breathing signal output for a convolutional neural network model.
The value of the ROI mask contained information about the direction and amplitude of
respiration. Therefore, this information was used as training data. This ROI-mask-based
data preprocessing helped train a noise-tolerant model, which is a training method that
considers noise and can be applied to deep learning-based rPPG model training.

6. Conclusions

It is experimentally confirmed that rPPG performance can be improved through skin
segmentation during ROI selection. We propose Skin-SegNet, which rapidly and accurately
finds only the pixels in the skin region. Skin-SegNet prevents motion noise by excluding
the lip region and eyelids from the ROL. In addition, it helps obtain a reliable rPPG signal
by removing the parts that may contaminate the signal, such as glasses and hair, to find
only actual skin pixels. Skin-SegNet performs feature extraction using a small amount
of computation by applying the S2 block and group convolution to SINet for real-time
processing. Skin-SegNet is a lightweight model that is more than 10 times faster than
the Deeplabv3+ structure but shows SOTA-level rPPG measurement. Also, Skin-SegNet
shows a performance improvement of up to 20% compared to conventional color domain
approaches such as YCbCr and HSV. Skin-SegNet shows the fastest skin segmentation
inference time at 15 ms on an Intel i9 CPU and has SOTA-level rPPG performance. Therefore,
Skin-SegNet can be used in the preprocessing part of various rPPG application fields, and
it can be expected to be used in low-end devices such as mobile devices.
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