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Abstract: The detection of skin lesions involves a resource-intensive and time-consuming process,
necessitating specialized equipment and the expertise of dermatologists within medical facilities. Le-
sion segmentation, as a critical aspect of skin disorder assessment, has garnered substantial attention
in recent research pursuits. In response, we developed a portable automatic dermatology detector
and proposed a dual-CAM weakly supervised bootstrapping model for skin lesion detection. The
hardware system in our device utilizes a modular and miniaturized design, including an embedded
board, dermatoscope, and display, making it highly portable and easy to use in various settings. Our
software solution uses a convolutional neural network (CNN) with a dual-class activation map (CAM)
weakly supervised bootstrapping model for skin lesion detection. The model boasts two key charac-
teristics: the integration of segmentation and classification networks, and the utilization of a dual
CAM structure for precise lesion localization. We conducted an evaluation of our method using the
ISIC2016 and ISIC2017 datasets, which yielded findings that demonstrate an AUC of 86.3% for skin
lesion classification for ISIC2016 and an average AUC of 92.9% for ISIC2017. Furthermore, our system
achieved diagnostic results of significant reference value, with an average AUC of 92% when tested on
real-life skin. The experimental results underscore the portable device’s capacity to provide reliable
diagnostic information for potential skin lesions, thereby demonstrating its practical applicability.

Keywords: skin lesion detection; class activation maps; weakly supervised; deep neural networks;
portable system

1. Introduction

Skin cancer is a rapidly growing type of cancer worldwide. In 2021, the American
Cancer Association reported 108,480 new cases of skin cancer and 11,990 deaths in the
United States [1]. Skin cancer has high morbidity and mortality rates, with a survival rate
of over 95% for early diagnosis and less than 20% for late detection [2]. Early detection
and treatment of melanoma is crucial, as it can be visually examined by dermatologists on
the skin surface. Nonetheless, the process of visual examination using a dermatoscope is
characterized by time-intensive efforts, necessitating elevated skills and focused attention.
The accuracy of outcomes is intricately tied to the level of expertise possessed by the
medical practitioner. As a result, there has been growing interest in developing computer-
aided diagnosis (CAD) systems that can assist dermatologists in improving the accuracy,
efficiency, and objectivity of diagnosis while addressing these challenges.

In CAD systems, skin lesion segmentation and classification are the two most impor-
tant tasks in skin cancer detection. The segmentation task is used to detect the locations and
boundaries of lesions, and the classification task is used to diagnose types of skin lesions.
i.e., seborrheic keratosis (SK), melanoma (MELA), and nevus (NE). In the current study,
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the above skin lesion image segmentation and classification tasks face three challenges:
(1) training segmentation and classification networks require a large number of labeled
datasets; (2) complex backgrounds such as hair, blood vessels, air bubbles, and other inter-
ferents affect the quality of lesion segmentation, as shown in Figure 1; and (3) segmentation
and classification tasks are relatively independent, and their intrinsic connections cannot
be tapped to enhance each other.
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Figure 1. Examples of typical skin lesion images with a complex background. (a) Hair-affected
cases, (b) lesions similar to blood vessels, (c) cases with bubble interference, and (d) cases with
other interferents.

Numerous automatic skin lesion segmentation and classification methods have been
proposed in the literature [3–8]. Among these, deep convolutional neural network (DCNN)-
based approaches have shown great success in medical image segmentation and classifi-
cation [4–8]. In skin lesion segmentation (SLS), the proposed methods are typically based
on fully convolutional networks (FCNs) [3] and U-Net [4]. For instance, Kaymak et al. [5]
proposed a new FCN architecture for skin lesion image segmentation by modifying the
convolutional neural network (CNN) architecture. Lei et al. [6] achieved superior segmen-
tation performance by integrating a skip connection and dense convolution U-Net-based
segmentation module with a dual discrimination module. In skin lesion classification (SLC),
CNN-based approaches have demonstrated remarkable results and surpassed other tradi-
tional methods that require manual feature extraction. Recently, Zhang et al. [7] proposed
an attention residual learning convolutional neural network (ARL-CNN) model for skin
lesion classification, while Tang et al. [8] introduced a novel two-stage multi-modal learning
algorithm (FusionM4Net) for multi-label skin disease classification. However, it is worth
noting that the above studies rely on a large number of labeled datasets. Unfortunately,
obtaining labeled samples is challenging, and most easily obtainable images are unlabeled.

Weakly supervised semantic segmentation (WSSS) was proven to be a cost-effective
approach for semantic segmentation by utilizing weak labels instead of pixel-level masks.
Several WSSS methods were proposed, including using image-level labels [9], bounding
box annotations [10], and scribbles [11]. Liang et al. proposed a reiterative learning frame-
work for weakly annotated biomedical images [12], and Liu et al. introduced cross-image
region mining with a region prototypical network for weakly supervised segmentation [13].
Despite the success of WSSS in image semantic segmentation, there is still a lack of re-
search on utilizing image-level labels to cascade multiple class activation maps (CAMs) for
improved target localization.

It is widely acknowledged that segmentation plays a crucial role in computer vision
applications, as it provides regions of interest for classification that allow for the extraction
of discriminative features. On the other hand, classification has the advantage of providing
local fine-grained information for images of the same class with similar features. However,
despite their complementary nature, segmentation and classification are often treated as
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separate tasks, and their potential synergies, such as utilizing inter-class similarities and
intra-class differences to facilitate each other, are rarely explored in current research.

In this paper, we propose a dual-CAM weakly supervised bootstrapping model for skin
lesion detection. The model consists of three modules: a primary segmentation network
module, a dual-CAM-guided classification network module, and a secondary segmentation
network module. First, the primary segmentation network generates a rough lesion mask.
Then, in the dual-CAM module, the rough mask and category labels are cascaded as pixel-
level and image-level labels, respectively, to obtain CAM as a pseudo mask that accurately
localizes and classifies skin lesions. Third, the localization information learned using dual-
CAM is transferred to the rough mask generated with primary segmentation and fed into
the secondary segmentation network, which accurately performs lesion segmentation. In
addition, we use softmax cross-entropy loss (SCE) to activate the converged CAM1 with
binary cross-entropy loss (BCE) for a second time to reduce mask ambiguity. Furthermore,
inspired by the widespread use of Dice loss in biomedical image segmentation to address
class imbalance, we compose a cascade loss using BCE and SCE for CAM1 and CAM2,
respectively, and jointly use it with Dice loss. We extensively evaluate the proposed
method using both the ISIC2016 and ISIC2017 datasets. Compared with other skin lesion
segmentation and classification methods, our approach achieves high-quality masks and
superior segmentation performance metrics.

The contributions of this paper can be summarized as follows:

• A novel approach for skin lesion segmentation is proposed by integrating segmenta-
tion and classification networks to extract common features of images.

• A weakly supervised semantic segmentation method for obtaining lesion pseudo
masks is presented, achieved using a dual CAM cascade of image-level and pixel-level
labels, which are fed into the segmentation network to transfer localization information
and improve lesion segmentation accuracy.

• A portable skin lesion segmentation system was developed and successfully applied
to real human skin testing, making the results of this study clinically relevant.

2. Related Work
2.1. Skin Lesion Segmentation and Classification

DCNN-based methods are widely used for skin lesion segmentation, with many
approaches based on the Unet architecture and its variations. For instance, Li et al. [14]
used a U-Net model trained on a manually created hair mask dataset to segment hair
from skin lesion images. Tang et al. [15] proposed a separable-Unet with stochastic weight
averaging, which enhanced the pixel-level discriminative representation capability of FCNs
by capturing context feature channel correlation and higher semantic feature informa-
tion. Recently, attention mechanisms have become popular in skin segmentation, such as
attention DeepLabv3+ [16] and the active learning ensemble with a multi-model fusion
method (ALEM) [17], adaptive dual attention module (ADAM) [18], attention synergy
network (AS-Net) [19], and comprehensive attention convolutional neural network (CA-
Net) [20]. These methods aim to leverage more global clues for more accurate segmentation.
Lightweight networks are also a hot topic of research. For instance, Khouloud et al. [21]
proposed an inception residual network for skin lesion segmentation and classification.
Xie et al. [22] adapted the DeepLabv3+ network to a skin lesion segmentation task using
mutual bootstrapping deep convolutional neural networks. Sarker et al. [23] proposed
a lightweight and fully automatic skin lesion segmentation model that achieved precise
segmentation with minimum resources.

Despite the success of these approaches, classification and segmentation are typically
studied as separate tasks, and information between them is rarely exploited to facilitate each
other. Nonetheless, some models have achieved state-of-the-art effects on dermatological
segmentation and classification tasks, such as the feature adaptive transformers network
(FAT-Net) [24] and the fully transformer network (FTN) [25].
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2.2. SLS Based on the Less Labeled Sample Strategy

In the medical domain, obtaining labeled data for image segmentation tasks that
require pixel-level annotation, such as skin lesion segmentation, is challenging due to its
limited availability. To tackle this issue, several strategies were proposed, such as semi-
supervised learning [26], active learning [17], self-supervised learning [27], and weakly
supervised learning [28]. For instance, Li et al. [26] proposed a semi-supervised method
for skin lesion segmentation, while Punn et al. [27] introduced a self-supervised learning
framework that used unsupervised redundancy reduction to acquire data representation.
Meanwhile, Chu et al. [29] applied multi-task learning to weakly supervised lesion seg-
mentation. However, these methods rely on a small number of labeled datasets, which may
lead to suboptimal performance due to the deviation in the training process. In contrast,
active learning provides an alternative strategy to query samples in an interactive manner
for iteration.

Recently, weakly supervised learning has gained popularity, and our proposed seg-
mentation algorithm also uses this approach [30]. Weakly supervised learning typically
consists of three steps: (1) obtaining a localization map of the target using a classifica-
tion model, (2) generating pixel-level labels for the image-level labeled images based on
the localization map, and (3) the segmentation model trained with the pixel-level labels.
Specifically, we obtain lesion pseudo-masks using a dual CAM cascade of image-level and
pixel-level labels with a weakly supervised semantic segmentation (WSSS), which enables
us to transfer the localization information for accurate lesion segmentation, even in the
presence of complex backgrounds.

2.3. Loss Function for Semantic Segmentation

In the realm of image processing, image segmentation and classification share a funda-
mental connection as image segmentation inherently involves pixel-level classification. The
selection of appropriate loss functions for deep learning models engaged in image segmen-
tation holds paramount importance as they significantly influence the algorithm’s learning
process. Machine learning loss functions can be classified into four types: distribution-
based, including BCE and SCE; region-based, like Dice loss; boundary-based, exemplified
by Hausdorff distance loss; and composite [31]. Cross-entropy [32] is a prevalent metric
used to quantify the disparity between two probability distributions of a random variable
or a set of events. Cross-entropy losses, such as BCE and SCE, find extensive application in
classification tasks, demonstrating remarkable efficacy in pixel-level segmentation.

The Dice coefficient serves as a measure of similarity between two images, and Dice
loss [33] has emerged as a widely used loss function in biomedical image segmentation,
primarily addressing the challenge of class imbalance. Building upon these foundations,
Liang et al. [12] combined BCE and Dice loss to craft a specialized loss function for biomed-
ical image segmentation, which facilitated accelerated model convergence and prevented
local minima entrapment. Similarly, Xie et al. [22] devised a rank loss function and syner-
gistically integrated it with Dice loss to contend with class imbalance and the disparities
between hard and easy pixels within segmentation networks. Inspired by these advance-
ments, we introduce a cascade loss mechanism that integrates BCE and SCE for CAM1
and CAM2, respectively, harmoniously combined with Dice loss. Our empirical investiga-
tions underscore the effectiveness of this amalgamated loss function in accelerating model
convergence and effectively addressing challenges related to class imbalance.

3. Method

The portable system designed in this study comprises both hardware and software
components, primarily addressing the segmentation and classification of skin lesion images.
The operational framework of the system can be summarized as follows: Initially, skin
lesion region images are captured using a dermatoscope (digital microscope). Subsequently,
these images are fed into the segmentation network model, which delineates the contours
of the lesions. Finally, the classification network provides suggestions regarding the lesion
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type. The subsequent sections provide a detailed explanation of both the hardware and
software systems.

3.1. Hardware System

As shown in Figure 2, the proposed portable skin disease detection system consists
of an image acquisition system, a display, and an embedded card. The image acquisition
system is connected to the embedded card with a data cable and collects images using a
skin microscope installed on a stand, which can magnify up to 1000 times. We designed the
display and processor to be integrated into a compact box for convenient portability. The
embedded card is placed at the bottom of the box with a ventilation port on the cover for
hardware protection and heat dissipation. The display is located at the top and supported
by the cover at a certain angle for easy viewing. The models of the skin microscope, display,
and embedded card are 3-in-1 1000×, 5-inch HDMI LCD display, and Jetson Xavier NX,
respectively. The main technical parameters are listed in Table 1.
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Figure 2. Simulated zoomed-view schematic diagram showing the portable skin lesion detector and
its corresponding physical representation.

Table 1. Main Technical Parameters of the Measurement System.

Skin Microscope

Description 3-in-1 1000× electronic magnifier
Resolution 1920 PX × 1080 PX

Magnification 1000 times
Adjustable Lighting 8 LED

Manufacturer Shanghai Qigong Instrument Equipment
Co., Ltd., Shanghai, China

Display

Description 5-inch HDMI LCD
Resolution 800 PX × 480 PX

Touch screen type Capacitive

Manufacturer Shenzhen Weixue Electronic Technology
Co., Ltd., Shenzhen, China

Embedded Card

Description Jetson Xavier NX
Size 70 mm × 45 mm
CPU 6-core NVIDIA Carmel ARM
GPU 384-core NVIDIA VoltaTM GPU

Memory LPDDR4x, 8 GB
Storage EMMC 16 GB + SSD 1 TB

Manufacturer NVIDIA
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3.2. Software Solution

The proposed method, illustrated in Figure 3, is composed of three main modules: a
primary segmentation network module (PSN), a dual-CAM-guided classification network
module (DCCN), and a secondary segmentation network module (SSN). The PSN and SSN
collectively aim to obtain segmented images of skin lesions. Structurally akin, they both use
the architecture of DeepLabv3+. However, the SSN distinguishes itself by integrating the
lesion localization information, CAM2, obtained from the DCCN into its feature ensemble.
In contrast, the DCCN serves as a classification network utilizing pixel and image labels
to garner accurate lesion localization information. First, the PSN generates a rough lesion
mask. Then, in the dual-CAM module, the rough mask and category labels are combined as
pixel-level and image-level labels, respectively, to obtain class activation maps as pseudo-
masks. These masks help accurately localize and classify skin lesions, as shown in Figure 4.
Third, the localization information learned with dual-CAM is transferred to the rough mask
generated using the PSN, and it is fed to the SSN for accurate lesion segmentation. Finally,
we input the acquired skin lesion images into the trained model and obtain the diagnostic
reference conclusion after performing the segmentation and classification steps.
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3.2.1. PSN

The primary segmentation network (PSN) plays a crucial role in providing the dual-
CAM-guided classification network (DCCN) with prior knowledge of the lesion location,
which improves its localization and identification capabilities. We train the PSN on a
training set Dp = (Xp, Yp), consisting of n images, to obtain a coarse lesion mask. Here,
Xp represents the image pixel and Yp represents its pixel label, where y = 1 denotes the
lesion and y = 0 denotes the background. To enhance the segmentation performance of
the network and overcome the effect of complex backgrounds on lesions, we use a transfer
learning approach. Specifically, we pre-train the segmentation network using the MS-
COCO and PASCAL VOC 2012 datasets using classical DeepLabv3+ as the segmentation
network and aligned Xception as the backbone network. Additionally, we modify the
decoder by adding a 1 × 1 convolutional layer before the final upsampling and adjust the
channels to 1. The parameters of this convolutional layer are randomly initialized and
activated using the ReLU function.

3.2.2. DCCN

In the dual-CAM-guided classification network module (DCCN), the rough mask and
category labels are cascaded as pixel-level and image-level labels, respectively, to obtain the
final-CAM as a pseudo-mask to help it accurately localize and classify skin lesions. To train
this network, we use the dataset Dd = (Xd, Yd) containing m images, where Xd denotes the
image pixel and Yd denotes the category label of the image. For the skin lesion classification
task in this paper, Yd has three categories: seborrheic keratosis (SK), melanoma (MELA),
and nevus (NE), denoted as yd ∈ {SK, MELA, NE}. We use the popular classification
network Xception as the backbone to extract features. The algorithm in this section is
shown in Figure 4 and described in detail as follows.
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The PSN generates both images and masks, which are then fed into Xception. Mean-
while, the features f (x) are also inputted into the fully connected (FC) layer for prediction
after undergoing global average pooling (GAP). As a result, the prediction logits can be
represented as:

p = F1(G( f (x))) (1)

where F and G represent abbreviations for FC and GPA, respectively. Then, the BCE loss is
calculated using P and the pixel-level label yd−PSN as stated in Equation (2):

Lb = − 1
M

M

∑
m=1

y[m] log φ(p[m]) + (1− y[m]) log[1− φ(p[m])] (2)

where p[m] denotes the prediction logit of the d-th class, φ(·) is the sigmoid function, and
M is the total number of foreground object classes. Based on the features f (x) and the
weights Wk of the corresponding FC layers, the CAM is obtained for each image extraction,
as stated in Equation (3):

CAMm(x) =
ReLU(wT

m f (x))
max(ReLU(wT

m f (x)))
(3)

Next, we use CAM-1 as a pseudo-mask applied to f (x) to extract the corresponding
class of features fm(x). We calculate the multiplication of elements between CAM-1 and
each channel of f (x) using Equation (4):

f c
m(x) = CAMm ⊗ f c(x) (4)

where f c(x) and f c
m(x) denote the single channels before and after multiplication (using

Equation (3)), respectively, and C is the number of feature category maps (i.e., channels).
With this step, we finish training the pixel-level label classifier. Next, we use FC2 to further
train the image-level label classifier. As such, we define new prediction logits for x:

p′ = F2(G( fm(x))) (5)

Using this method, we transform the multi-label image model, which utilizes binary
cross-entropy (BCE), into a single-label feature model that utilizes a softmax cross-entropy
(SCE) loss function. The SCE loss is expressed as follows:

Ls = −
1

∑M
i=1 y[i]

M

∑
m=1

y[m] log
exp(p′m[m])

∑j exp(p′m[m])
(6)

where y[m] and p′m[m] denote the m-th element of y and p′m, respectively. We use Ls to
update the model.

Following the retraining process, we extract CAM2 from image x for each category m
using the following procedure:

CAMm(x) =
ReLU(w′Tm f (x)

)
max(ReLU(wT

m f (x)))
(7)

where w′m is the classification weight corresponding to the m-th class.
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3.2.3. SSN

The secondary segmentation network (SSN) stands as a pivotal module harnessing
the lesion localization insight, CAM2, obtained from the original input image and the dual
CAM-guided classification network (DCCN). This combination is instrumental in achieving
precision in lesion segmentation images. Using a structure reminiscent of DeepLabv3+,
the SSN unfolds in a series of deliberate steps. Primarily, the original input image is en-
coded with the Xception backbone network, supported using pre-trained weights. In this
encoding phase, the integration of dilated convolutions facilitates a wider local field of
view. Subsequently, a feature pyramid undertakes the extraction of multi-scale features.
Consecutively, the pinpointed lesion localization information, CAM2, sourced from the
DCCN, is seamlessly integrated into the ensemble of features. Ultimately, the decoding
process leads the SSN to accurately delineate lesion segmentation outcomes. The archi-
tecture of SSN is depicted in Figure 5, which shares the same network structure as a
PSN but incorporates location information into the segmentation process. Specifically, the
encoder-generated feature maps are concatenated with CAM2 and then passed through
1 × 1 convolution. The resulting feature map generated using CAM2 is then fed to the
decoder for fine-grained segmentation.

3.2.4. Hybrid Loss Function

Given that our proposed model involves separate classification and segmentation
tasks during training, it is crucial to utilize specific loss functions to ensure fast and stable
convergence. To address the intra- and inter-class imbalance problem in training data,
we use Dice loss for segmenting both the PSN and SSN networks. In addition, we use
cascading losses with the combination of binary cross-entropy (BCE) and focal symmetric
cross-entropy (SCE) to construct the DCCN, which extracts precise location information.
To combine these losses into a single cohesive metric, we define a hybrid loss function as:

Lhybird = Lseg + Lcls (8)

where Lseg is the Dice loss, defined in Equation (9), and Lcls is the classification cascade
loss, defined in Equation (10).

Ldice = 1− 2 ∑i yi pi

∑i yi + ∑i pi
(9)

Lcls = Lb + Ls (10)

where y represents the ground truth and p signifies the network’s prediction.
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4. Experiments and Results
4.1. Datasets

Two datasets provided by the International Skin Imaging Collaboration (ISIC), namely,
the ISIC 2016 and ISIC 2017 benchmark datasets, are utilized to assess the proposed seg-
mentation approach. The ISIC 2016 skin lesion challenge dataset [34] comprises 900 images
(727 non-melanoma and 173 melanoma) for training and 379 images (304 nonmelanoma
and 75 melanoma) for testing, with pixel sizes ranging from 566 × 679 to 2848 × 4228. The
ISIC 2017 skin lesion challenge dataset [35] includes 2000 images (1626 non-melanoma and
374 melanoma) for training and 600 images (483 nonmelanoma and 117 melanoma) for
testing. The pixel sizes of the images range from 453 × 679 to 4499 × 6748. As part of our
data preprocessing, we uniformly resized the image pixels to 224 × 224 and expanded our
training data using resources from the ISIC website.

4.2. Performance Evaluation

We evaluate the performance of our proposed segmentation approach using the
evaluation metrics suggested in ISIC 2016 and ISIC 2017, including pixel-wise accuracy
(ACC), sensitivity (SEN), specificity (SPE), the Dice coefficient (DIC), the Jaccard index (JAI),
and the area under the curve (AUC). These metrics are defined in Equations (11)–(16).

The pixel-wise accuracy (ACC) calculation formula is as follows:

ACC =
TP + TN

TP + TN + FP + FN
(11)

The sensitivity (SEN) calculation formula is as follows:

SEN =
TP

TP + FN
(12)

The specificity (SPE) calculation formula is as follows:

SPE =
TN

TN + FP
(13)
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The Dice coefficient (DIC) calculation formula is as follows:

DIC =
2 ∗ TP

2 ∗ TP + FP + FN
(14)

The Jaccard index (JAI) calculation formula is defined as follows:

JAI =
TP

TP + FP + FN
(15)

The area under curve (AUC) calculation formula is defined as follows:

AUC =
∫ x1

x0

Tpr(Fpr)dFpr (16)

where Tpr is the true positive rate and Fpr is the false positive rate. x0 and x1 (x1 > x0)
indicate the confidence scores for negative and positive cases, respectively. The definitions
of TP, TN, FP, and FN are listed in Table 2.

Table 2. Definitions of TP, TN, FP, and FN.

Ground Truth (Lesion) Ground Truth (No Lesion)

Segmentation result (lesion) TP FP
Segmentation result (No lesion) FN TN

4.3. Implementation Details

To mitigate the influence of complex backgrounds in images and to augment the
training dataset, we utilized various data augmentation techniques. These techniques
included adding random noise to the image, randomly cropping the center of the training
image from 50% to 100% of the original image, randomly rotating from 0 to 10 degrees,
shearing from 0 to 0.1 radians, shifting from 0 to 20 pixels, scaling 120% of the width and
height, and flipping both horizontally and vertically. The resulting enhanced images were
then resized to 224 × 224 for training purposes. We set the batchsize of the PSN and SSN to
16 and the batchsize of the DCCN to 32, using Adam as the optimizer with a learning rate
of 0.001. All experiments were conducted using a platform featuring an Intel(R) Core (TM)
i7-7820X CPU @ 3.60 GHz and four 12 GB NVIDIA GeForce 2080 Ti GPUs.

4.4. Classification Experiments and Results

We conducted a comparison between the DCCN network used for classification in
this paper and several representative methods for skin lesion classification, and the results
are listed in Tables 3 and 4. We also provide a visualization of the segmentation and
classification results for various modules in our proposed model, including the PSN, CAM1,
CAM2, SSN, and segmentation ground truth, and classification of diagnostic results, as
shown in Figure 6. For the ISIC2016 dataset, the methods for comparison include the top
five methods of the ISIC 2016 Lesion Classification Challenge, Team-CUMED, Team-GTDL,
Team-BF-TB Thiemo, Team-ThrunLab, and Team-Jordan Yap, as well as synergic deep
learning (SDL, 2019) [36], global-part CNN model with data-transformed ensemble learning
(GP-CNN-DTEL, 2020) [37], deep attention branch networks (DABN-ELW, 2021) [38] and
deep metric attention learning CNN (DeMAL-CNN, 2022) [39]. For the ISIC2017 dataset,
the methods for comparison include SDL, GP-CNN-DTEL, DABN-ELW, and DeMAL-CNN.
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Table 3. Classification performance (%) comparative result with different methods on ISIC
2016 dataset.

Methods ACC SEN SPE AUC

Team-CUMED 85.5 50.7 94.1 80.4
Team-GTDL 81.3 57.3 87.2 80.2

Team-BF-TB Thiemo 83.4 32.0 96.1 82.6
Team-ThrunLab 78.6 66.7 81.6 79.6
Team-Jordan Yap 84.4 24.0 99.3 77.5
SDL [36] (2019) 86.3 - - 82.2

GP-CNN-DTEL [37] (2020) 86.3 32.0 99.7 86.1
DABN-ELW [38] (2021) 86.3 66.8 89.1 83.6

DeMAL-CNN [39] (2022) 87.3 65.3 94.7 85.8
Our method 87.4 69.7 98.3 86.2

Note: ACC: accuracy, SEN: sensitivity, SPE: specificity, AUC: area under the curve.

Table 4. Classification performance (%) comparative result with different methods using ISIC 2017
for melanoma and seborrheic keratosis images.

Methods
Melanoma Seborrheic Keratosis Average

ACC SEN SPE AUC ACC SEN SPE AUC AUC

#1 [40] 82.8 73.5 85.1 86.8 80.3 97.8 77.3 95.3 91.1
#2 [41] 82.3 10.3 99.8 85.6 87.5 17.8 99.8 96.5 91.0
#3 [42] 87.2 54.7 95.0 87.4 89.5 35.6 99.0 94.3 90.8
#4 [43] 85.8 42.7 96.3 87.0 91.8 58.9 97.6 92.1 89.6
#5 [44] 83.0 43.6 92.5 83.0 91.7 70.0 99.5 94.2 88.6

SDL [36] (2019) 88.8 - - 86.8 92.5 - - 95.8 91.3
GP-CNN-DTEL [37] (2020) 85.0 37.6 96.5 89.1 93.5 72.2 97.3 96.0 92.6

DABN-ELW [38] (2021) 86.2 37.6 91.7 88.3 92.8 83.3 94.5 96.1 92.2
DeMAL-CNN [39] (2022) 85.5 61.5 90.6 87.5 92.7 88.1 91.1 96.7 92.1

Our method 87.1 55.6 94.6 89.2 92.7 75.6 95.7 96.6 92.9

Note: ACC: accuracy, SEN: sensitivity, SPE: specificity, AUC: area under the curve.
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Segmentation ground truth. Last row: Classification of diagnostic results.
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As illustrated in Tables 3 and 4, following precise lesion localization using the SSN, the
images achieve optimal segmentation results. Both datasets exhibit superior performance
on the DCCN classification network. On the ISIC 2016 dataset, in comparison with state-of-
the-art methods, our model demonstrates an almost 1% enhancement in SEN. Moreover,
ACC and AUN slightly outperform other methods, while SPE slightly lags behind Team-
Jordan Yap and GP-CNN-DTEL. For the ISIC2017 dataset, we obtained the best performance
in SEN and AUC in the Melanoma category and AUC in the Seborrheic Keratosis category,
while not achieving significant improvement in other metrics. Improving the network
performance in these metrics will be one of our future research directions.

4.5. Hybrid Loss and the Effect on Experimental Results

In this study, we introduce a novel hybrid loss that merges binary cross-entropy loss
(BCE) and softmax cross-entropy loss (SCE), individually assigned to CAM1 and CAM2.
This hybrid loss is used in conjunction with the Dice loss. To assess the efficacy of this hybrid
loss and its impact on experimental outcomes, we conducted comprehensive experiments
using the ISIC2017 dataset. We conducted separate experiments using BCE, SCE, and a
combination of both as classification loss, measuring and recording the corresponding AUC
values. The results, as depicted in Figure 7, highlight a significant observation. It becomes
evident that using either BCE or SCE alone as the loss function for the DCCN model is
less effective compared with the synergistic application of both losses. Furthermore, in
the process of selecting the appropriate loss functions for CAM1 and CAM2, a noteworthy
finding emerged. Using BCE for CAM1 and SCE for CAM2 yielded the most favorable
classification AUC values, as evidenced by the illustrated red curve.
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4.6. Effectiveness of the Dual CAM

To verify the effectiveness of the dual CAM, we conducted a series of experiments
using the DCCN network using only CAM1 with pixel-level labels, only CAM2 with image-
level labels, and a combination of both. As illustrated in Figure 8, the combination of
dual CAMs resulted in the highest AUC values, confirming its efficacy. This highlights
how the DCCN network cascades the coarse mask and category labels as pixel-level and
image-level labels, respectively, to obtain the best CAM as a pseudo-mask that aids the SSN
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network in precisely localizing and segmenting skin lesions. Furthermore, our proposed
model achieved an AUC value exceeding 0.8 during the training phase when the number
of samples reached 50%, equivalent to the performance of the other two cases that required
75% of the number of samples. This indicates that our method requires fewer labeled
samples than other approaches while delivering superior classification performance, a
promising strategy for reducing the cost of training deep learning networks that typically
require large amounts of labeled data. This is particularly relevant in practice.
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4.7. System Testing

We tested the efficacy of the portable detector described in this paper on the skin of
four volunteers, two males and two females, and obtained promising results, as illustrated
in Figure 9. Our device produced clear and detailed images of the skin lesion area, and
when coupled with the segmentation and classification algorithm presented in this paper, it
achieved precise segmentation of the lesion area. The performance metrics of our method,
as compared with the Unet and ResNet_Unet algorithms are shown in Table 5. The
performance results demonstrate that our approach significantly outperforms these classical
algorithms. It should be noted that since we lack professional medical knowledge to make
clear diagnostic results, the test results of this experiment are based on reference conclusions
obtained from the healthy physical conditions of four volunteers. In addition, the masks
we labeled were not very accurate, which resulted in lower segmentation metrics.

Table 5. Segmentation performance (%) comparative result with classical algorithms on human
skin images.

Methods ACC SEN SPE DIC JAI

Unet 52.64 41.45 87.96 51.15 39.23
ResNet_Unet 66.23 70.59 75.04 56.35 44.33

ours 83.84 90.18 81.16 58.68 45.46
Note: ACC: accuracy, SEN: sensitivity, SPE: specificity, DIC: Dice coefficient, JAI: Jaccard index.
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5. Conclusions

In this study, we introduced a novel portable automated dermatology detector and
put forward a dual-CAM weakly supervised bootstrapping model designed for the seg-
mentation of skin lesions. The model comprises three key components: a PSN responsible
for generating preliminary lesion masks, a DCCN used for accurate lesion localization with
the utilization of coarse masks and lesion categories as pixel-level and image-level labels,
respectively, and an SSN tasked with transferring the localization data to the preliminary
lesion masks to achieve precise segmentation. Our method’s efficacy was evaluated ex-
tensively in terms of skin lesion segmentation and classification performance across the
ISIC2016 and ISIC2017 datasets. Moreover, the successful application of the developed
portable dermatology detector underscores its clinical significance. The performance of
the portable system in human testing yielded satisfactory results. Looking ahead, we
intend to explore the implementation of a lightweight network to decrease the hardware
demands and consequently reduce the device’s overall cost. Additionally, we aim to estab-
lish stronger collaboration with dermatologists to establish a shared skin lesion database,
with the ultimate goal of enhancing diagnostic accuracy and providing timely medical
intervention for patients.
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