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Abstract: The single-pixel imaging technique can reconstruct high-quality images using only a bucket
detector with no spatial resolution, and the image quality is degraded in order to meet the demands
of real-time applications. According to some studies of algorithm performance, the network model
performs differently in simulated and real-world experiments. We propose an end-to-end neural
network capable of reconstructing 2D images from experimentally obtained 1D signals optimally. In
order to improve the image quality of real-time single-pixel imaging, we built a feedback module
in the hidden layer of the recurrent neural network to implement feature feedback. The feedback
module fuses high-level features of undersampled images with low-level features through dense
jump connections and multi-scale balanced attention modules to gradually optimize the feature
extraction process and reconstruct high-quality images. In addition, we introduce a learning strategy
that combines mean loss with frequency domain loss to improve the network’s ability to reconstruct
complex undersampled images. In this paper, the factors that lead to the degradation of single-pixel
imaging are analyzed, and a network degradation model suitable for physical imaging systems
is designed. The experiment results indicate that the reconstructed images utilizing the proposed
method have better quality metrics and visual effects than the excellent methods in the field of
single-pixel imaging.

Keywords: single-pixel imaging; feature feedback; feature extraction; learning strategy

1. Introduction

In a single-pixel imaging (SPI) system [1,2], the reference beam is structurally modu-
lated to illuminate the target scene. For measurement, the single-pixel detector samples the
reflected light several times from the target scene. Based on the second-order correlation of
the fluctuations in the light field, spatial information about the target can be calculated [3].
In low-light conditions, single-pixel detectors with larger active areas are easier to fabricate
and have higher light sensitivity. It is possible to build a low-cost imaging system using SPI
in low-light environments, making it widely used in optical imaging, including Spectral
Image Analysis [4], 3D Imaging [5,6], Remote Sensing [7], and Terahertz Imaging [8–10].

The SPI light encodes some of the target scenes corresponding to multi-row coordi-
nates and column coordinates and acquires one-dimensional measurements by a pre-built
imaging system for the encoded light. Sun et al. reconstructed images with a resolution of
256× 256 using 106 random matrices (the number of measurements is much larger than the
number of pixels in the reconstructed image) [11]. However, the quality of the reconstructed
images is extremely poor and differs greatly from conventional imaging systems based on
a surface array sensor [12]. Due to its extremely long acquisition time and poor quality
of image reconstruction, SPI is not suitable for all applications [13–16]. The deterministic
model-based measurement strategy is an effective method of preventing long acquisition
times for SPI and low-quality reconstructed images [17]. Hadamard Single Pixel Imaging
is a method that uses a part of the Hadamard matrix as the measurement matrix [18].
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HSPI can acquire the Hadamard frequency domain and reconstruct the target scene using
inverse operations. HSPI requires fewer measurements for accurate reconstruction than, for
example, Fourier Single Pixel Imaging (FSPI) [19]. In terms of image reconstruction, HSPI is
more efficient and provides superior results. Several studies have shown that by optimizing
the ordering of Hadamard bases, memory consumption for matrix generation and storage
can be reduced, and image reconstruction speed can be increased [20,21]. Sun et al. have
designed the Russian Dolls sort to simplify image reconstruction at a later stage [22]. Yu
proposed a new cake-cutting method that achieves an optimized pattern sequence by
directly rearranging the number of internal slices of the base pattern in ascending order [23].
In some cases, this enables a more accurate reconstruction of images under conditions of
low noise. However, it is still difficult for some real-time applications to strike a balance
between the number of measurements and the quality of the image.

Deep learning (DL) is widely used in the image field for its excellent feature extraction
capabilities [24,25]. In a recent SPI study, Higham et al. developed a Deep Convolutional
Auto-encoder Network (DCAN) and degradation model to reconstruct undersampled
single-pixel images in real time by training the degraded signal against a clean signal [26].
Saad et al. proposed a framework that combines Skip-connection and denoising self-coding
structures [27], in which Skip-connection preserves image features and then recomputes
them in order to reconstruct a high signal-to-noise image using predetermined information.
Lu et al. combined Generative Adversarial Networks (GAN) with U-net networks to
propose the SPI-CGAN model [28], which uses Wasserstein loss to reconstruct images at
low sampling rates. However, reconstructing high-quality images with low sampling rate
signals is still challenging [29]. Since the low sampling rate signal contains a limited amount
of scene information, the boundary between the reconstructed image subject and the
background can be blurry, and the texture information can be difficult to reconstruct. Recent
research has applied feedback mechanisms to network architectures to refine high-level
features and return them to the previous convolutional layers [30]. It is possible to refine
low-level coded information through top-down working, which can improve the network’s
ability to learn the features of an image as a result. Currently, deep learning-based SPI tasks
focus solely on transforming low-level features into high-level ones, neglecting to map and
transfer high-level features into low-level ones. Additionally, existing deep learning-based
SPI methods generally rely on a single sampling rate and a fixed value of noise as the
primary source of image degradation [31]. As the noise level of the simulated degraded
image cannot be matched to that of the real undersampled image, significant differences in
performance are observed between the training model in simulated experiments and in
real-world applications [32].

To address the above problems, this paper proposes a new SPI network, the Single-
Pixel Imaging Feedback Attention Network (SPIFAN), which utilizes high-level features
to guide (refine) undersampled low-level features through feedback connections. The
proposed SPIFAN consists of an RNN with a Feedback Block (FB), which is composed
of a dense residual block and an attention block. The dense residual block is capable of
capturing rich high-level features from undersampled image features and associating them
with low-level features. The attention module is composed of a dual attention structure
consisting of a channel attention module and a spatial attention module, resulting in a more
informative representation of sampled signal features. As the feature weights of the SPI
sampled signals differ in position, we utilize a hybrid dilation Conv layer with different
dilation rates during feature extraction to obtain a larger perceptual field, balancing the
effect of feature weights on the overall detail of the reconstructed image, resulting in better
image reconstruction. The proposed method utilizes the hidden state in each iteration
as part of the input for the next iteration, ensuring that the input for the next iteration
contains high-level features of the image. A combination of image mean loss and frequency
loss is used to help the network progressively learn complex single-pixel undersampled
images. In addition, a complex and practical degradation model for SPI is designed in
order to approximate the real HSPI undersampled images to the extent possible, which



Electronics 2023, 12, 3838 3 of 18

consists of a random low-pass filter (1–10%) and multiple noise degradations. Simulation
and experimental results show that using our proposed method improves the sharpness
and detail texture of undersampled images while avoiding artifacts and blurring. The
reconstructed images have the best visual effect compared to the existing excellent SPI
image reconstruction methods. In terms of quality metrics, the reconstructed images have
the best numerical performance. The proposed method compares favorably with traditional
HSPI methods and advanced SPI methods.

2. Related Work

In this section, we present work related to SPI based on deep learning. First, we
describe HSPI and discuss the balance between the sampling rate and the quality of real-
time images. Then, we discuss what causes SPI image degradation. Finally, we discuss the
shortcomings of the current approach to SPI that uses DL.

2.1. HSPI

Figure 1 illustrates the SPIFAN imaging system used in this paper. The HSPI recon-
structs the target image by acquiring the Hadamard spectrum of the target scene and using
the inverse Hadamard Transform. The Hadamard spectrum consists of a set of Hadamard
coefficients, each of which corresponds to a unique Hadamard basis. The lens is used
to form an image of the Object on the digital micromirror device (DMD), using a DMD
to realize a number of projections of a reference beam modulated by the corresponding
Hadamard basis. A photomultiplier tube (PMT) measures the intensity of the reflected light
and digitizes the signal via the Digitizer. Second-order correlations for image reconstruc-
tion are computed using the Computer based on optical field fluctuations. The proposed
SPIFAN algorithm achieves high-quality image reconstruction.
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Figure 1. Diagram of the experimental setup of the SPIFAN system.

The single-pixel light intensity measurement is mathematically equivalent to the inner
product of the Hadamard basis and the object. The two-dimensional Hadamard transform
H{} with the target image I(x, y) is defined as:

ĨH(u, v) = H{I(x, y)} =
M−1

∑
x=0

N−1

∑
y=0

I(x, y)(−1)q(x,y,u,v) (1)

where (x, y) are the coordinates of the spatial domain of I(u, v) are the coordinates of the
Hadamard domain of I, and Ĩ is the results of the inverse Hadamard transform of image
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I. M and N represent the rows and columns of the Hadamard matrix, respectively, where
n = log2N and:

q(x, y, u, v) ≡
n−1

∑
i=0

[gi(u)xi + gi(v)yi] (2)

g0(u) ≡ un−1
g1(u) ≡ un−1 + un−2
g2(u) ≡ un−2 + un−3

...
gn−1(u) ≡ u1 + u0

(3)

the terms ui, vi, xi, and yi are the binary representations of u, v, x, and y, respectively.
In some practical applications, in order to increase the imaging rate, it is common

practice to decrease the sampling rate and reduce the number of measurements made on the
object, thereby reducing the total imaging time. The sampling rate is usually controlled at
1–10%, which is the cause of blurring and distortion in the reconstruction, greatly limiting
the application scenarios of SPI.

2.2. Feedback Mechanism

Feedback is defined as the output of the system as part of the input during causal
iteration, which in turn influences the work of the system [33–36]. In DL, the feedback
mechanism can support the network in using high-level features of the output to optimize
the weights of the previous convolution kernel. Recent research has shown that feedback
mechanisms have been applied to a variety of computer vision tasks [37–40]. For the SPI
task, Antonio et al. used an RNN network with temporal memory to control the delivery
and loss of features [41]. Ikuo et al. improved the quality of the reconstructed images
by chunking the measurement data input and accumulating and updating them in an
RNN [42]. These methods propagate feature information in a way that includes only the
forward propagation of low-level features to high-level features in the process of going
from an undersampled image to a final high-quality image, ignoring the role of high-level
features in guiding low-level features. We propose a Feedback Block (FB) in this paper
as the basis of SPIFAN in order to maximize the use of high-level features. In the FB,
feature information is propagated between levels through dense skip connections in order
to optimize feature mapping and extraction.

2.3. Attention Mechanism

The observation matrices used for compression perception are generally orthogonal
in nature and have the property of energy concentration. The more uniformly distributed
the image data is, the more the data in the resulting simulated compressed sample value
matrix is concentrated on the edges. Essentially, this mechanism highlights important
characteristics of the input object and reassigns feature weights accordingly.

Zhang proposed the Residual Channel Attention Networks (RCAN) based on the
channel attention mechanism [43]. Hu et al. proposed the Squeeze-and-Excitation module
to obtain channel attention by globally averaging the pooling of input features. The spatial
attention mechanism focuses on which information features are important in the spatial
domain [44], with a high weight indicating a high importance to that frequency domain.
Through weighting operations, the model can effectively focus on relevant features and
ignore irrelevant features. Wang et al. proposed a residual attention network where the
attention module is designed as a codec structure [45]. Woo S et al. proposed CBAM
(Convolutional Block Attention Module), which is a hybrid attention module based on
spatial attention and channel attention [46].
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2.4. Degradation Models

In a physical SPI system, the measurements are corrupted by a mixture of Gaussian
and Poisson noise [47]. Gaussian noise is independent of the measurement signal and
is generated by fluctuations in the circuit; Poisson noise is related to the measurement
signal and is generated by the discrete nature of the charge. The instability of real noise can
lead to different levels of distortion in the reconstructed image [48]. Therefore, when the
training model in its ideal state is used in a physical SPI system, its performance can be
severely degraded.

3. Materials and Methods

In this section, we describe the SPIFAN architecture in detail. We begin by introducing
the network as a whole and introducing the feedback mechanism. Following this, we
describe in detail the dense residual block as well as the attention module of the feedback
module. To obtain more accurate training data, we design a suitable degradation model for
undersampled signal features.

3.1. Overview of Network Architecture

The single-pixel image reconstruction feedback network proposed in this paper con-
sists of three parts: feature extraction, feedback, and image reconstruction. Figure 2
illustrates the network structure.
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Our feedback network uses simulated 1D bucket signals as input to perform the
reconstruction of high-quality images directly from 1D undersampled signals. Firstly, a
fully connected layer of size 1024 by 1 is used to determine the internal correlation of the
undersampled signal, and next, a powerful single-pixel feedback reconstruction network
is utilized to reconstruct the target image. In the feature extraction part, two Conv layers
(3 × 3) are utilized to achieve dimensionality reduction of the low-level features in the
stream normalized by the fully connected layer and are used as part of the input to the
feedback module.

As part of the first iteration, FL
1 is assumed to be the high-level feature FH

0 of the FB
output at the same time as the initial FB input. For the t-th iteration, FL

t and FH
t−1 are

spliced together and used as inputs to the FB. FH
t−1 can be used as feedback information

to guide the extraction of low-level features. The output of FB, FH
t, is used both for image

reconstruction in IHR
t and to guide low-level feature extraction in the next iteration. In the

image reconstruction part, the high-level features are upsampled by two deconvolution
layers to recover the feature map size to 64 × 64. Reconstruction of the final image is
completed by the Conv layer (1 × 1).
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3.2. Feedback Block

The feedback module uses the output high-level features to refine the low-level fea-
tures, thus enabling optimization of the feature extraction process for the next iteration. The
FB contains a dense residual module and a balanced attention module, and the connections
between the various groups are made using dense jump connections. This enhances the
network’s capacity, reduces gradient disappearance, optimizes high-level features, and
is useful for reusing features. In addition, each mapping group does not contain a Batch
Normalization layer (BN layer). For training, the BN layer takes the mean and variance
of the batch, and for testing, it takes the mean and variance of the whole dataset. In sit-
uations where the training and test sets differ significantly, the BN layer may negatively
affect the visual impact of the reconstruction and minimize the generalizability of the
model. It has been shown that, in some PSNR-oriented image reconstruction tasks (such as
Super-resolution [49], Deblurring [50], etc.), eliminating the BN layer improves network
performance and generalization and simplifies computation.

At the t-th iteration, FB outputs the more accurate high-level feature FH
t after combin-

ing the high-level feature FH
t−1 from the previous iteration with the low-level feature FL

t

from the current iteration. In FB, the low-level feature FL
t and the feedback information

FH
t−1 are concatenated and compressed by a 1× 1 Conv layer to produce the first low-level

feature L0
t. After feature dimensionality reduction is the dense residual module (RD),

which consists of a dense residual unit consisting of a 3 × 3 convolution with ReLU activa-
tion and a 1 × 1 convolution layer. This part computes the input fusion features to fully
learn and extract the deep features. The output of the last dense residual unit is connected
to the input of the RD module, which performs feature fusion and dimensionality reduction
by 1 × 1 convolution and serves as the input to the Balanced Attention Module (BAM).
The BAM contains two paths for channel and spatial attention. In the channel attention
path, the input C × H ×W feature maps are transformed into C × 1 × 1 channel-level
feature maps by averaging the pooling layers. Then, feature dimensionality reduction and
activation operations are implemented by two 1 × 1 Conv layers and a ReLU activation
layer. The feature map is then transformed into a C × 1 × 1 output weight vector using a
Sigmoid layer. In the spatial attention path, the input C × H ×W feature map is converted
into a spatial feature map of size 1 × H ×W by the maximum pooling layer. The 7 × 7
Conv layers and Sigmoid layers then convert the feature maps into spatial output weight
vectors of size 1 × H ×W. In order to obtain the weight values of the attention features,
the two output weight vectors are dot produced with the input feature map. Finally, the
feedback feature FH

t is output through the 3 × 3 Conv layer. The output FH
t serves two

purposes: on the one hand, it is used as input to the feedback module in the next iteration
to improve the efficiency of the feature mapping in refining low-level features. On the
other hand, as a high-level feature, it assists the SPIFAN network in completing the image
reconstruction for this iteration.

3.3. Multi-Balance Attention Module (MBAM)

The use of large convolutional kernels in SPI networks based on attention mechanisms
enables a more compressed undersampling of the output feature map. However, the use
of large convolutional kernels is limited in the feature extraction part because of the large
number of computational parameters they add to the network. Therefore, we propose a
multi-scale balanced attention module, MBAM, which captures the multi-scale patterns of
upsampled feature maps using dilation convolution. MBAM consists mainly of dilation
convolution with a convolution kernel size of 3 and a dilation rate of [1,2,5]. Figure 3 shows
the structure of MBAM.
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The equivalent convolution kernel size for the dilated convolution shown in Figure 3
is calculated as follows:

K = k + (k− 1)(n− 1) (4)

where K denotes the equivalent convolutional kernel size, k denotes the actual convolutional
kernel size, and n denotes the expansion rate. Therefore, the equivalent kernel sizes for the
dilated convolution with kernel size 3 and dilation rate [1, 2, 5] are 3, 5, and 11, respectively.
By using dilated convolution, a larger perceptual field can be obtained without requiring
higher network parameters, allowing the image reconstruction network to improve the
mapping between compressed signal features and optimally reconstructed images without
increasing feature extraction computations. Additionally, the dilation convolution with
different dilation rates can capture multi-scale information in the feature map, allowing the
network to recognize the significance of each part of the sampled signal for the purpose of
optimal image reconstruction. The output of MBAM is calculated as follows:

Y = X + MBAM(MDC(X)) (5)

where X denotes the input feature map, Y denotes the output feature map, MBAM denotes the
Multi-scale Balanced Attention Module, and MDC denotes Multi-scale Dilated Convolution.

3.4. Degradation Module

Signal compression is a degradation unique to SPI systems. The more the signal
is compressed, the less information is available for 2D image reconstruction, which re-
sults in poorer-quality reconstructed images. In the reconstruction network where PMT
measurement values are mapped to 2D images, obtaining more and more realistic PMT
simulated measurement values for network training can significantly improve the quality
of reconstructed images.

Each 2D image in the original dataset had been resized to 64 × 64, converted to
greyscale, and histogram equalized to create a single-channel 2D image. The single-channel
image is then normalized by inner-producing it with the Hadamard observation matrix to
give the equivalent of a fully sampled photometric value. In other words, the 4096 pixels
of each image in the dataset itself are linearly transformed into Hadamard coding space.
Since the high-frequency image information in Hadamard’s coding space is concentrated
in a small fixed area, it is possible to simulate compressive sampling of the SPI more easily.
In the end, the compressed sampling of the image signal is simulated by thresholding
the photometric values. As the Hadamard mode contains positive and negative values, a
differentiation method is used to obtain the simulated sampled signal. It is assumed that
mα+ denotes a positive measurement of Hadamard mode and mα- denotes a negative
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measurement of Hadamard mode. The noise is a composition of Poisson and Gaussian
distributions. Gaussian noise in the SPI system is generated by fluctuations in the circuit
and is uncorrelated with the channel, generating all noise and errors consisting of {0, 1} [51].
The Poisson noise in the SPI system is generated by the discrete nature of the charge,
is signal-dependent, and satisfies the Poisson distribution. The Hadamard simulated
sampling values are assumed to be:

m̂α
+,− = KP(αH+,−

1 f ) + N(µdark, σ2
dark) (6)

where P and N are Poisson and Gaussian distributions, K is a constant representing the
overall system gain, α is the intensity of the image in photon photons (proportional to the
integration time, which is proportional to the integration time), µdark is the dark current
(counts), and σdark is the dark noise (counts). Further, we assume that the magnitude
of µdark and σdark does not depend on the intensity of the image, which results in the
following normalized measure:

mα = (mα
+ −mα

−)/(αK) (7)

3.5. Loss Function

In this paper, we propose to optimize the proposed network based on a combination
of L1 Loss (L1) and Hadamard Frequency Loss (LH). L1 and LH are defined as, respectively:

L1 =
1

w · h∑
x,y
|IHR(x, y)− I(x, y)| (8)

LH =
1
2
‖H(IHR)− H(I)‖2

2 (9)

where w and h denote the width and height of the image, respectively, IHR is the output
image of the generator, I is the original image, and H() corresponds to the Hadamard
frequency domain transform. The combined loss of L1 and LH is:

L = a · L1 + b · LH (10)

Following the calculation of the loss functions separately, we set a and b to 1 and 0.1,
respectively, depending on the magnitude of the results. The strategy orders (IHR

1, IHR
2,

. . ., IHR
t) according to the difficulty of reconstructing the images and the loss calculation is

completed by t iterations. The loss function in the network can be expressed as:

L(p) =
1
T

T

∑
t=1

Wt‖L‖1 (11)

where p denotes the parameters of the network, and Wt is a constant factor indicating
the value of the output at the t-th iteration. In this paper, each reconstructed image is
considered to contribute equally to the optimization network, and therefore, Wt is set to 1.

4. Results
4.1. Training and Validation
4.1.1. Dataset

In this paper, the STL-10 [52] dataset is selected as the training dataset, which contains
images of 96 × 96 size. This dataset consists of ten classes: monkeys, cats, dogs, deer, cars,
trucks, planes, birds, horses, and boats. The SPIFAN network was trained on compressed
signals using sampling rates of 2%, 5%, and 8%. A total of 10,000 unlabelled standard
images were used for the training process. As part of the training process, a test set of
1000 images was used to validate the performance of the network, and a validation set
(Set5 [53], Set14 [54], and Urban100 [55]) was used to evaluate the final model’s performance.
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During model training, these datasets are not visible. The proposed model is compared
with conventional HSPI using the validation dataset at different sampling rates.

4.1.2. Implementation Details

In the training stage, the standard image is randomly cropped to 64 × 64 and fed
into the degraded model to obtain a one-dimensional analog signal. Both the proposed
method and the other methods use the Adam optimizer to optimize the model with β1 = 0.9,
β2 = 0.999, and ε = 1 × 10−8. L2 regularisation is used to reduce overfitting. We set the
model weight decay to 1 × 10−8. In the training phase, Monte Carlo cross-validation
was used to find the optimal hyperparameters (i.e., initial learning rate and number of
iterations). The initial learning rate was set to 1 × 10−4 and halved every 50 iterations.
The proposed model was implemented using the PyTorch framework and trained on an
NVIDIA GTX3090 GPU. Figure 4 shows a schematic of SPIFAN training and validation loss
variation. It can be seen from Figure 4 that the training L1 Loss and LH Loss decrease as the
number of iterations increases. At around 200 iterations, the loss values stabilized. This
indicates that the learning rate and the coefficients of the loss function are set appropriately.
The trend of verifying the loss values with the number of iterations indicates that the
SPIFAN network learns normally and no overfitting occurs.
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4.1.3. Evaluation Metrics 
Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index (SSIM) are com-

monly used metrics for evaluating the quality of reference images. The PSNR is used to 
reconstruct images from contrast scenes, and it indicates the degree of distortion by com-
paring the pixel gaps between the reconstructed and reference images. The SSIM is used 
to measure the degree to which the reconstructed image is similar to the original image. 
These metrics are calculated from a combination of Luminance, Contrast, and Structure, 
respectively. 
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4.1.3. Evaluation Metrics

Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index (SSIM) are com-
monly used metrics for evaluating the quality of reference images. The PSNR is used
to reconstruct images from contrast scenes, and it indicates the degree of distortion by
comparing the pixel gaps between the reconstructed and reference images. The SSIM is
used to measure the degree to which the reconstructed image is similar to the original
image. These metrics are calculated from a combination of Luminance, Contrast, and
Structure, respectively.

4.2. Image Reconstruction Results

The proposed method was tested on different types of salient targets, including a bird,
butterfly, zebra, pepper, baboon, and face, in order to verify its effectiveness. In order to
observe the degradation of the undersampled reconstructed image, a test image (Bird)
was selected to simulate the HSPI compression reconstruction, and the sampling rate was
chosen as 1–50%. Figure 5 illustrates the reconstruction results.
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It can be seen in Figure 5 that the reconstructions with S between 1% and 10% are less
clear and show a significant block blur in the noiseless condition. In comparison with other
reconstructions, the reconstruction at S = 25% is clearer. Nevertheless, in some application
scenarios involving real-time imaging, the reconstruction time of an HSPI image with a
sampling rate of 25% is too long, and a lower sampling rate (S < 10%) is usually used.
However, low-sampling images are too blurry, have significant noise, and are extremely
poorly visualized. Therefore, it is necessary to apply the proposed method to generate
high-quality reconstructed images from undersampled signals.

To verify whether the proposed method can help conventional HSPI to improve
the quality and visual effect of the reconstructed images, the undersampled signals after
the degradation model reconstruction were fed into SPIFAN for optimal reconstruction.
Ground truth, HSPI reconstruction, and SPIFAN reconstruction were compared qualita-
tively and quantitatively with sampling rates S of 2%, 5%, and 8%, respectively, and peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) were chosen as evaluation
metrics for the images [56]. The Ground truth and reconstruction results are shown in
Figure 6.

The proposed SPIFANs are all capable of obtaining clearer images of higher quality
from undersampled signals compared to the corresponding sample rate HSPI reconstruc-
tions. Furthermore, there is a link between the sampling rate and the quality of the SPIFAN
reconstruction. As the 2% undersampled signal contains too little feature information to
be used for reconstruction, the network model is only able to capture coarse information
about the target scene, resulting in limited visual enhancement. Therefore, the quality of
the reconstructed image is further impacted by lower sampling rates. In contrast, as the
sampling rate is increased, the network model is able to capture more accurate information
about the target scene, and the reconstruction quality of the image is enhanced. In compari-
son to SPIFAN 2%, SPIFAN 5% shows a more pronounced improvement in terms of visual
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results. Due to the highest sampling rate, the reconstruction result for SPIFAN 8% is also
the best of all results. The mean values of the quality metrics for the reconstructed images
at each sampling rate in Figure 5 are shown in Table 1.
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Table 1. Mean values of PSNRs and SSIMs for HSPI reconstructed images and SPIFAN reconstructed
images at different sampling rates.

Sample Rate HSPI
PSNR

HSPI
SSIM

SPIFAN
PSNR

SPIFAN
SSIM

2% 12.6 0.39 17.9 0.59
5% 15.9 0.45 23.9 0.76
8% 17.8 0.64 24.4 0.83

As shown in Table 1, the reconstructed images from SPIFAN are significantly better
than those from HSPI at the same sampling rate. It is worth noting that the PSNR (17.9)
and SSIM (0.59) for the 2% HSPI reconstruction are higher than the PSNR (15.9) and SSIM
(0.45) for the 5% HSPI reconstruction. The results of the qualitative and quantitative
analyses show that the quality metrics of the high sampling rate SPIFAN reconstruction
are superior to those of the low sampling rate SPIFAN reconstruction as the high sampling
rate signal contains more precise target scene characteristics. The proposed SPIFAN is
capable of reconstructing high-quality images from undersampled signals after training on
undersampled signals with varying degrees of degradation.

In order to verify the superiority of the proposed method in image reconstruction
performance, the reconstruction of the proposed method is compared cross-sectionally with
the reconstruction of other superior algorithms. After considering the problem of balancing
the sampling rate with the image quality, we chose HSPI-5% as the reconfiguration target
to verify the network performance. The networks were trained using the same dataset, and
Figure 7 illustrates some of the results from the experiments.

We compared the performance differences of the proposed SPIFAN method with a
variety of advanced algorithms for reconstructed images at the same sampling rate. As
shown in Figure 7, DCAN reconstruction resulted in a smoother reconstructed image but
few visual improvements. The reconstruction results of DeepGhost and SPI-CGAN were
significantly improved. It is observed that DeepGhost’s reconstructed images contain
significant artifacts and that the visual effect is poor. There are no artifacts in the SPI-



Electronics 2023, 12, 3838 12 of 18

CGAN reconstructed image, but the reconstruction is too smooth, which affects the detailed
performance of the image. The proposed SPIFAN reconstructed the best quality image,
with both the subject and background of the image recovered fully, and no artifacts were
generated during the reconstruction process. The mean values of the quality metrics of the
reconstructed images for each algorithm for different datasets are shown in Table 2.
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Table 2. Mean values of PSNRs and SSIMs of reconstruction results for the different methods when
reconstructing the Set5 and Set14 datasets.

Dataset HSPI 5% DCAN DeepGhost SPI-CGAN SPIFAN

Set5
PSNR 15.3 18.6 19.2 20.5 23.4
SSIM 0.44 0.60 0.65 0.78 0.82

Set14
PSNR 14.5 18.1 17.2 20.3 23.9
SSIM 0.41 0.58 0.61 0.77 0.80

In Table 2, it can be seen that DCAN and SPI-CGAN have some denoising power
in terms of HSPI 5% image reconstruction. DeepGhost and SPI-CGAN perform better
than HSPI 5% image reconstruction. The proposed SPIFAN reconstructed images have
some improvement in PSNR and SSIM compared to the results of the other reconstruction
methods. It is noteworthy that SPIFAN has the least fluctuation in quality metrics when
faced with image reconstruction tasks from different datasets. Therefore, it can be concluded
that the reconstruction performance of SPIFAN is somewhat superior. In addition, it can
be tentatively concluded that the generalization capability of SPIFAN is superior to that
of other algorithms. The numerical performance of SPI-CGAN is better than that of
DeepGhost reconstruction, mainly because of the negative impact of artifacts in DeepGhost
reconstruction. The quality parameters of SPIFAN reconstruction are better than those of
other state-of-the-art algorithms, which can prove the superiority of the proposed method
in terms of reconstruction results. It is worth noting that the average quality metric of
SPIFAN fluctuates the least when faced with the image reconstruction task for both datasets.

To evaluate the generalization of the proposed method, the Urban100 dataset was
selected for reconstruction testing. The images in the Urban dataset are mainly architecture
and landscape, which are quite different from the subjects and styles in the STL-10, Set5,
and Set14 datasets, and can be used as reconstruction scenes to verify the generalization
of the model. We selected the under-sampled signal with S = 5% as the reconstruction
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target in order to verify the network performance. Figure 8 illustrates the results of the
partial reconfiguration.
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Figure 8 shows the reconstruction results of each algorithm for the target scene with
S = 5%, and the magnified portion allows a clearer view of the background and underlying
details in the image. Clearly, only the SPIFAN reconstruction is capable of capturing the
details of the image efficiently. The DCAN reconstruction is too smooth and loses image
detail. The artifacts in the DeepGhost reconstruction severely damage the underlying
features of the image. However, the DeepGhost reconstruction showed a significant
reduction in image brightness, while the SPI-CGAN reconstruction produced a large
number of artifacts. The mean values of the quality metrics of the reconstructed images for
the Urban100 dataset for each algorithm are shown in Table 3.

Table 3. Mean values of PSNR and SSIM for the reconstruction of the Urban100 dataset by different methods.

Dataset HSPI 5% DCAN DeepGhost SPI-CGAN SPIFAN

Urban100
PSNR 14.4 18.8 19.8 21.1 23.2
SSIM 0.45 0.59 0.63 0.69 0.72

In Table 3, it can be seen that SPIFAN reconstruction is the most efficient on both quality
metrics, indicating that it is also the most efficient on other types of reconstruction tasks.
SPIFAN reconstruction has the smallest fluctuations (PSNR± 0.5, SSIM± 0.05) for different
types of targets, which indicates the excellent generalization of the SPIFAN network.

4.3. Ablation Experiment
4.3.1. Reconstruction Results

To verify the superiority of the feedback mechanism over the feedforward mechanism,
we disconnected all iterations except the last, i.e., removing the high-level feature FH

t

and passing it to the next iteration. Therefore, the network is unlikely to define output as
the extraction of low-level features guided by high-level ones. The network is redefined
as a feature-feedforward network (still retaining the recursive nature of deep learning
networks), denoted SPIFAN-F (SPIFAN-Feedforward). We compared the PSNR and SSIM
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values of all reconstructed images from the SPIFAN and SPIFAN-F networks following the
same network training as shown in Table 4.

Table 4. Quality indicators for SPIFAN-F and SPIFAN reconstruction of undersampled images.

Dataset SPIFAN-F SPIFAN

Set5
PSNR 22.5 23.4
SSIM 0.78 0.82

Set14
PSNR 23.7 23.9
SSIM 0.75 0.80

In Table 4, the mean PSNR and SSIM values demonstrate that SPIFAN is superior to
SPIFAN-F. Therefore, it can be concluded that the feedback network is capable of producing
high-quality reconstructed image predictions. Our experimental results also indicate
that our proposed SPIFAN does benefit from the feedback mechanism and is not solely
dependent on the recursive structure for its power.

4.3.2. Multi-Scale Attention Module

We verified the superiority of multi-scale attention modules over single-scale attention
in single-pixel optimized imaging tasks. Comparative image reconstruction tests were
performed using 3 × 3, 5 × 5, and 7 × 7 single-scale dual-attention modules, designated
SPIFAN-3, SPIFAN-5, and SPIFAN-7, respectively. Combined with the data in Table 5, it can
be seen that the addition of MBAM to the single-pixel imaging network has an optimizing
effect on single-pixel image reconstruction, which can improve the performance of the
network model and thus obtain better-reconstructed images.

Table 5. Quality indicators for image reconstruction using attention modules of different scales
and MBAM.

Dataset SPIFAN-3 SPIFAN-5 SPIFAN-7 SPIFAN

Set5
PSNR 22.4 22.9 22.0 23.4
SSIM 0.78 0.79 0.70 0.82

Set14
PSNR 23.7 23.6 22.4 23.9
SSIM 0.74 0.76 0.71 0.80

4.4. Physical Experiment

This paper is based on the SPIFAN imaging system shown in Figure 1. A 450 nm
(30 W) light-emitting diode is used to illuminate a Digital Micromirror Device (DMD)
(VIALUX V7000), which modulates the illumination using a pre-set Hadamard matrix.
The modulation size is set to 256 × 256. A single-pixel photomultiplier (Hamamatsu
H10493-012) converts the weak optical signal into an electrical signal to realize intensity
measurement and inputs the measurement results into SPIFAN to complete the high-quality
reconstruction of the undersampled image.

In physical experiments, a kettle is used as the target scene, which has a clear ex-
ternal outline and a complex surface pattern. This target scene can be used to test the
performance of the algorithm by reconstructing it. We measured the target scene by setting
S = 5% Hadamard mode and then reconstructed it using the proposed SPIFAN with other
algorithms, as shown in Figure 9.

The reconstruction results in Figure 9 are similar to the results of the simulation
experiments. In the DeepGhost reconstruction, there are still artifacts; the reconstructed
images of DCAN and SPI-CGAN are too smooth, and their detailed features are poorly
represented. Among the four optimized reconstruction algorithms, only the method
proposed in this paper is able to reconstruct the external structure of the kettle and the
details of the bumps on the surface excellently. In addition, the reconstructed images of
each algorithm were quantitatively compared with the standard images, and the quality
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metrics and imaging times of the reconstructed images of each algorithm are shown in
Table 6.
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In physical experiments, a kettle is used as the target scene, which has a clear external 
outline and a complex surface pattern. This target scene can be used to test the perfor-
mance of the algorithm by reconstructing it. We measured the target scene by setting S = 
5% Hadamard mode and then reconstructed it using the proposed SPIFAN with other 
algorithms, as shown in Figure 9. 
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Figure 9. Reconstructed image of a kettle in a physical SPI system using different methods with a 
sampling rate of S = 5%. 

The reconstruction results in Figure 9 are similar to the results of the simulation ex-
periments. In the DeepGhost reconstruction, there are still artifacts; the reconstructed im-
ages of DCAN and SPI-CGAN are too smooth, and their detailed features are poorly rep-
resented. Among the four optimized reconstruction algorithms, only the method pro-
posed in this paper is able to reconstruct the external structure of the kettle and the details 
of the bumps on the surface excellently. In addition, the reconstructed images of each al-
gorithm were quantitatively compared with the standard images, and the quality metrics 
and imaging times of the reconstructed images of each algorithm are shown in Table 6. 

Table 6. Quality metrics and imaging times of the kettle undersampled images reconstructed by 
different methods. 

Method PSNR SSIM Reconstruction 
Time 

Frame per Second 
(FPS) 

HSPI 5% 13.9 0.37 54 ms 18 
DCAN 18.1 0.61 75 ms 13 

Figure 9. Reconstructed image of a kettle in a physical SPI system using different methods with a
sampling rate of S = 5%.

Table 6. Quality metrics and imaging times of the kettle undersampled images reconstructed by
different methods.

Method PSNR SSIM Reconstruction
Time

Frame per Second
(FPS)

HSPI 5% 13.9 0.37 54 ms 18
DCAN 18.1 0.61 75 ms 13

DeepGhost 18.6 0.66 102 ms 9
SPI-CGAN 20.7 0.69 119 ms 8

SPIFAN 22.7 0.79 88 ms 11

As shown in Table 6, all four deep learning algorithms are capable of performing the
reconstruction task at S = 5% in practice. In terms of quantitative performance, SPIFAN
reconstruction outperforms the other advanced algorithms. The comparison of physical
versus simulated experiments also reveals that the quality metrics of SPIFAN’s actual
reconstruction remain close to the same level, whereas other methods display significant
degradation in their actual reconstruction performance. This suggests that the degradation
model designed in this paper is optimized for the imaging of physical single-pixel imaging
systems. As for imaging speed, SPIFAN is not the fastest but is still capable of performing
real-time imaging tasks.

5. Conclusions

In this paper, we address the problem of compressive reconstruction of subsampled
images in single-pixel imaging systems, analyze each type of degradation, and propose
an attentional feedback network (SPIFAN) for single-pixel image reconstruction. The
proposed network is capable of reconstructing high-quality images from undersampled
signals, which is more advanced than the current state-of-the-art algorithms. We analyze
the degradation patterns of single-pixel imaging systems and cover the real degradation
of single-pixel imaging by assuming uniform values for the parameters of undersam-
pling compression, Gaussian noise due to circuit variations, and Poisson noise due to
the discrete nature of the charge. Using the data generated by the degradation model,
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SPIFAN is trained to reconstruct undersampled images. Feedback blocks in the network
use high-level representations of features to guide the extraction of low-level features
under undersampling conditions, optimizing single-pixel image reconstruction by feeding
back information on attentional features. In addition, Hadamard frequency domain loss
is added to the course learning method, which is combined with mean loss to help the
network with the single-pixel image reconstruction task. Based on experimental results,
the proposed SPIFAN method shows superior results in terms of image quality metrics
and visual effects as compared to traditional methods and other excellent deep learning
methods. The method proposed in this paper has the potential to be improved in terms of
image reconstruction rate.
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