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Abstract: This paper proposes DFFA-Net, a novel differential convolutional neural network designed
for underwater optical image dehazing. DFFA-Net is obtained by deeply analyzing the factors that
affect the quality of underwater images and combining the underwater light propagation charac-
teristics. DFFA-Net introduces a channel differential module that captures the mutual information
between the green and blue channels with respect to the red channel. Additionally, a loss function
sensitive to RGB color channels is introduced. Experimental results demonstrate that DFFA-Net
achieves state-of-the-art performance in terms of quantitative metrics for single-image dehazing
within convolutional neural network-based dehazing models. On the widely-used underwater
Underwater Image Enhancement Benchmark (UIEB) image dehazing dataset, DFFA-Net achieves a
peak signal-to-noise ratio (PSNR) of 24.2631 and a structural similarity index (SSIM) score of 0.9153.
Further, we have deployed DFFA-Net on a self-developed Remotely Operated Vehicle (ROV). In
a swimming pool environment, DFFA-Net can process hazy images in real time, providing better
visual feedback to the operator. The source code has been open sourced.

Keywords: deep learning; image dehazing; underwater image processing; image analysis

1. Introduction

The ocean is one of the largest ecosystems on Earth. Understanding the marine
environment, including its biological and geological aspects, is of significant importance for
environmental conservation, climate research, and resource development [1]. At present,
underwater perception is mainly perceived by sonar at long distances and optical cameras at
short distances [2,3]. However, underwater environments pose complex challenges around
the propagation of light, including scattering, absorption, dispersion, and refraction [4,5].
These factors lead to issues such as blurriness, noise, and color distortion in underwater
images, making underwater observation, photography, and visual perception difficult [6].
Therefore, underwater optical image dehazing is a research field that aims to improve the
quality of underwater images and visual perception.

The field of image dehazing was initially extensively studied in the atmospheric
environment. The atmospheric scattering model [7,8] can be described by Equation (1)

I(x) = t(x) · J(x) + (1− t(x)) · A (1)

where I(x) represents the hazy image, J(x) denotes the desired haze-free image, t(x) repre-
sents a transmission factor that accounts for the light propagation, and A is the atmospheric
light; t(x) can be expressed as t(x) = e−βd(x), where d(x) denotes the propagation distance
and β represents the spectral attenuation coefficient. Building upon the foundation laid
by Equation (1), we can derive the expression for the clear image J(x), as described in
Equation (2). Among the influential algorithms rooted in atmospheric environment models,
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the Dark Channel Prior (DCP) [9] stands out. This algorithm’s underlying observation is
that in the majority of non-sky regions there exists at least one color channel with a low
value. A and t(x) are estimated according to this prior information, thereby obtaining the
clear image J(x).

J(x) =
I(x)− A

t(x)
+ A (2)

The core of traditional dehazing approaches lies in estimating the parameters A and
t(x). Thanks to the powerful fitting capability of neural networks, several end-to-end
methods have been proposed, including AODNet [10], GCANet [11], FFANet [12], and
more. These methods represent remarkable dehazing models for atmospheric environ-
ments, wherein a hazy input image is fed into the neural network to obtain a direct output
of a clear image. The imaging principles of underwater environments share similarities
with those of hazy image formation in atmospheric environments. Therefore, the aforemen-
tioned methods can be applied to underwater scenarios as well. By adapting and extending
these techniques, they can be effectively utilized for underwater optical image dehazing.

One significant reason for the degradation of underwater images is the rapid attenua-
tion of red light, resulting in low luminance values in the red channel of hazy underwater
images. In this paper, we leverage this phenomenon as a prior information for underwater
image dehazing. Building upon the FFA-Net architecture, we introduce two novel dif-
ferential modules, one for B–R and one for G–R. The B–R and G–R modules capture the
mutual information between the blue and red channels and between the green and red
channels, respectively. Considering the statistical distribution of the hazy and clear images
in the RGB channels, we designed a simple color channel-sensitive loss function. This loss
function effectively guides the statistical distribution of the hazy image’s color channels to
better approximate those of the clear image, leading to an advanced underwater dehazing
model. By incorporating these modifications, our proposed approach enhances the FFA-Net
model, enabling it to better handle the specific challenges of underwater optical image
dehazing and achieving superior performance in terms of both color fidelity and image
quality. Furthermore, we have deployed the DFFA-Net on our self-developed ROV with
the aim of enhancing the quality of the optical images available to the ROV operators.

In summary, in this paper we make the following key contributions:

• We propose a novel underwater image dehazing model, DFFA-Net, which utilizes
color channel mutual information. Building on the FFA-Net architecture, we introduce
the proposed color differential modules to facilitate learning of the domain mapping
between hazy images and clear images.

• We introduce a color channel-sensitive loss function that guides the neural network to
better align the color statistical distribution of hazy images with that of clear images.

• Compared to other convolutional neural network-based dehazing models, our pro-
posed model demonstrates superior performance in terms of evaluation metrics.
Additionally, we have made the code publicly available.

• We have successfully deployed the DFFA-Net on an ROV, allowing us to effectively
obtain dehazed images. In a swimming pool environment, DFFA-Net provides real-
time output images that ensure good camera image quality.

2. Related Work

Presently, image dehazing methods fall into two main categories: atmospheric scatter-
ing model-based solutions and data-driven domain style learning. Among the atmospheric
scattering model-based methods, exemplified by the DCP [9], parameter estimation occurs
through a comparison of the disparities between hazy and clear images within the dark
channel. These methods leverage the dark channel prior in conjunction with Equation (1)
to derive a clear image. While this approach generally proves effective, it may exhibit
subpar performance in intricate scenarios, primarily because of its dependence on scene-
specific assumptions and priors. Numerous dehazing techniques rely on prior knowledge,
including methods that utilize the non-correlation between object surface chromaticity and
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the transfer function to estimate transmittance [13]. However, the accuracy of estimation
can be affected when the amount of color in the image is small. The Color Attenuation
Prior (CAP) [14] is a dehazing method that relies on prior knowledge related to color
attenuation. It makes use of the correlations between brightness, saturation, and depth of
field to extract relevant information for the dehazing process. Nevertheless, it is important
to note that this method faces challenges in terms of sample collection and possesses an
incomplete theoretical foundation. The Non-Local Denoising (NLD) [15] method is a global
transmittance estimation technique that relies on non-local color prior information. This
approach can effectively derive depth of field information and dehaze images. However, it
may struggle to accurately detect hazy lines in scenarios with intense illumination. On the
other hand, the Boundary Constraint and Contextual Regularization (BCCR) [16] stands
out as an efficient image dehazing approach. It incorporates boundary constraints and
contextual regularization, resulting in the preservation of finer image details. Radiance–
Reflectance Optimization (RRO) [17] combines both radiation and reflection components.
It adopts a structure-oriented approach, and refines additional norm filters for enhanced
image dehazing. In summary, atmospheric scattering model-based methods are generally
effective in achieving significant results in image dehazing. However, their robustness is
limited because they rely heavily on expert knowledge and specific assumptions about
the scene.

Data-driven domain-style learning approaches offer an alternative method for image
dehazing. They operate through supervised learning, circumventing the need to estimate
parameters such as A and t(x). Instead, these approaches directly acquire the haze-free
image through neural networks. DehazeNet [18] is an end-to-end network for estimating
transmittance in which the maxout network is added to the feature extraction layer of
the Convolutional Neural Network (CNN) deep architecture. DehazeNet represents an
amalgamation of pertinent dehazing theories, including the color attenuation prior, dark
channel prior, hue difference, and maximum contrast. It additionally introduces a novel
nonlinear activation function into its architecture, contributing to the enhancement of
image quality in the dehazing process. AOD-Net [10] is a pioneering model in the field
of dehazing, introducing a groundbreaking approach by substituting a novel parameter
for the transmission matrix and atmospheric light parameters. This innovation allows for
end-to-end computation using a simple neural network. Water-Net [19] introduces a gated
fusion-based CNN designed to adapt to the characteristics of degraded underwater images.
Water-Net consists of feature transformation units composed of white balancing, gamma
correction, and histogram equalization methods, ultimately achieving underwater image
enhancement. Multi-Scale CNN (MSCNN) [20] employs a multi-scale neural network
approach to achieve precise estimation of the transmission map. GCANet [11] introduces
an end-to-end contextual aggregation network that utilizes dilated convolutions to prevent
grid distortion and incorporates gated subnetworks for feature fusion at various levels.
There approaches utilizing adversarial neural networks have been proposed for underwater
dehazing as well [21]; however, these require depth information as input.

3. Method

The task of underwater image dehazing requires taking a hazy underwater image
as input and generating a clear image as output. In this paper, we propose DFFA-Net to
address this task. The network architecture of DFFA-Net is illustrated in Figure 1.

DFFA-Net has three branches: the main branch, the G–R branch, and the B–R branch.
Each branch is composed of a convolution layer and several group structure modules. The
input of the main branch is an RGB three-channel image; the number of output channels
is increased to 64 after the first convolution layer, while the width and height remain
unchanged. The features are further extracted through three group structures, each of
which maintains the same topology and is composed of N block structures, a convolution
layer, and local residual connections. The input of the G–R branch and the B–R branch
consists of the information shared between the green and red channel and the blue and red
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channel, respectively. The G–R branch and B–R branch first increase the number of channels
to three through a convolution layer, then further increase the number of channels to 64
through another convolution layer. The two branches then pass through a group structure
to obtain the output. After the output of the three branches is spliced in the channel
dimension, it is sent to the Feature Attention (FA) module. The FA module is composed
of the channel attention and pixel attention. Finally, the dehazed image is obtained by
postprocessing the two convolution layers and the global residual.

G1 G2 G3

G-R

B-R

+

G4

G5

B1 B2 BN +
+

Conv
Layer

Channel
Attention

Group
Structure

Pixel
Attention

Block
Structure

Element-wise
Sum

Concatenate

main

Figure 1. Network structure diagram of DFFA-Net. After obtaining the input image, DFFA-Net
first extracts the corresponding features through three branches (main, G–R, and B–R), then these
features are spliced and the degree of hazy of pixels at different positions is further estimated by the
FA module. Finally, the clear image is obtained by two convolution layers and the global residual.

3.1. Feature Attention (FA)

In previous dehazing methods, the influence of different channels and pixels was
assumed to be consistent throughout the image. However, in reality the distribution of
haze across an image is uneven due to variations in the depth of field. Therefore, FFA-
Net introduces the FA module to address this issue. The FA module consists of Channel
Attention (CA) and Pixel Attention (PA) components.

CA is responsible for determining the weights of different channels in the overall
performance of the network. The implementation process of CA is as follows:

1 A global adaptive average pooling layer is applied to obtain a B× C× 1× 1 output.
2 Two convolutional layers are used to downsample the number of channels from

C to C//8 and then upsample it back to C. The downsampled output is then further
passed through a ReLU activation function and the upsampled output is passed
through a sigmoid activation function.

3 The original input is multiplied element-wise by the output from Step 2.

PA, on the other hand, determines the weights for different pixel positions correspond-
ing to the dehazing effect. The implementation process of PA is as follows:

1 Two convolutional layers are used to downsample the number of channels to C//8
and 1, respectively. The output of the first convolutional layer is passed through a
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ReLU activation function and the output of the second convolutional layer is passed
through a sigmoid activation function.

2 The original input is multiplied element-wise by the output from Step 1.

By incorporating CA and PA the network is able to selectively treat different channels
and pixel regions, allowing for more flexible and adaptive dehazing performance.

3.2. Group Structure

The group structure in DFFA-Net consists of N block structures, a Conv layer, and a
local residual connection. The block structure is the fundamental module of DFFA-Net,
and is composed of a local residual connection and FA module, as shown in Figure 2. This
block structure has been proven to enhance network performance and training stability.
By employing multiple local residual connections, the network can focus on extracting
more relevant information. The cascaded combination of N basic structures increases the
network’s depth, providing stronger learning capabilities. Additionally, the use of multiple
residuals helps to overcome training difficulties. In the main branch of DFFA-Net, N is set
to 10.

+ +
ReLU

Figure 2. Basic network structure diagram.

3.3. B–R and G–R

The design of the differential modules (B–R and G–R) is a key aspect of DFFA-Net. As
shown in Figure 3, the color distribution of hazy underwater images is distorted due to the
rapid attenuation of red light in water. In clear underwater images, this phenomenon is
resolved. Therefore, underwater image dehazing can be understood as a transformation
performed on the statistical distribution of the RGB channels.

Considering that the green and blue channels exhibit relatively consistent distributions
in both clear and hazy images, we designed two different branches outside the main branch
of the network. The respective inputs to these branches consist of the differences between
the blue channel and the red channel and the differences between the green channel and the
red channel. We believe that these two branches are able to capture the mutual information
between the blue/green channels and the red channel, thereby helping the neural network
to transform the statistical distribution of the RGB channels.

Similar to the main branch, the outputs of the B–R and G–R modules pass through a
Conv layer and a group structure before being merged into the main branch. In this case,
N = 6 for the group structure in the B–R and G–R modules.
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Figure 3. Statistical distribution comparison of underwater hazy images and clear images in
RGB channels.

3.4. Loss

For the purposes of this paper, we designed a combined loss function consisting of two
parts. The first part is designed to be sensitive to the color channel for the color distribution
phenomenon in Figure 3, and can be expressed as follows:

Lchannel = ∑ ωi ∑ |Ci
gt − pred(Ci

haze)|, i = R, G, B (3)

where Ci
haze represents the matrix of the hazy image in the corresponding color channel,

pred represents the output obtained by DFFA-Net, Ci
gt represents the matrix of the label

image in the corresponding color channel, and ω is a hyperparameter, with ωR = 0.6 and
ωG = ωB = 0.2 in the experiments.

The second part is the Learned Perceptual Image Patch Similarity (LPIPS) [22], which
has been proven to be a reliable loss function in the field of image reconstruction. LPIPS
uses a trained VGG19 network [23] to pass two images through the network and calculate
the output value difference in each layer of the network, as shown Equation (4):

d(X1, X2) = ∑
l

1
HlWl

∑
h,w

∥∥∥wl �
(

Ŷl
1hw − Ŷl

2hw

)∥∥∥2

2
(4)

where X1 and X2 represent the two images of the input VGG, d is the distance between X1
and X2, H and W are the feature height and width in the corresponding l layer, � stands
for the inner product, Ŷl

1hw and Ŷl
2hw are the outputs obtained by the l layer of the VGG

location in (h, w), and wl is the scaling factor.
Therefore, the total loss function can be expressed as follows:

Lloss = Lchannel + W · d(X1, X2) (5)

where W = 0.04.

4. Experiment and Analysis
4.1. Dataset

We utilized the popular UIEB as our dataset [19]. UIEB consists of hazy images and
corresponding clear images. The hazy images consist of 890 real-world underwater images
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captured under natural light, artificial light, or a combination of both. The clear images
were obtained by applying twelve image enhancement methods to each hazy image, and
the ground truth (GT) was selected based on subjective judgments from volunteers among
all the enhanced results. The twelve methods specifically refer to: (1) fusion-based [24];
(2) two-step-based [25]; (3) retinex-based [26]; (4) DCP; (5) UDCP [27]; (6) regression-
based [28]; (7) GDCP [29]; (8) red channel-based [30]; (9) histogram prior [31]; (10) blurriness-
based [32]; (11) MSCNN [20]; and (12) dive+ [33]. We split the UIEB dataset into training,
validation, and testing sets in a ratio of 700:90:100, respectively. Selected images are shown
in Figure 4.

Figure 4. Selected images from the UIEB dataset, showing examples taken from rivers, oceans, and
other environments. The photographed objects include marine life and underwater structures.

4.2. Training

Our experiments were conducted on the Ubuntu 20.04 LTS operating system us-
ing CUDA 11.6, Python 3.9, and PyTorch 1.12.1. The hardware setup included four
RTX 3090 GPUs, 256 GB of RAM, and an Intel Xeon Silver 4210R processor. We set the
initial learning rate to 0.0001 and used a cosine annealing strategy to slowly decay the
learning rate to zero as a function of the cosine.

4.3. Evaluation Index of the Model

We used PSNR and SSIM to measure our dehazing performance. PSNR is a measure
of image enhancement performance. With a given clean image X1 of size W × H × C and a
noisy image X2, the mean squared error (MSE) is defined by Equation (6):

MSE =
1

W · H · C
W−1

∑
i=0

H−1

∑
j=0

C−1

∑
k=0

[X1(i, j, k)− X2(i, j, k)]2 (6)

while PSNR (dB) is defined by Equation (7):

PSNR = 10 · log10(
MAX2

X1

MSE
) (7)

where MAXX1 is the maximum pixel value of the image. SSIM [34] measures the similarity
between two images, mainly judged by focusing on the similarity of edges and textures. Its
calculation formula is shown in Equation (8):

SSIM(X1, X2) = L(X1, X2)× C(X1, X2)× S(X1, X2) (8)
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where L represents the brightness similarity, C represents the contrast similarity, S repre-
sents the structure score, and L, C, and S are respectively calculated as in Equation (9).

L(X1, X2) =
2uX1 uX2 + C1

u2
X1

+ u2
X2

+ C1

C(X1, X2) =
2σX1 σX2 + C2

σ2
X1

+ σ2
X2

+ C2

S(X1, X2) =
σX1X2 + C3

σX1 σX2 + C3

(9)

In the above equations, uX1 and uX2 represent the mean of images X1 and X2, σX1 and
σX2 represent the standard deviation, σX1X2 represents the covariance, and C1, C2, and C3
are constants used to avoid divisibility by 0; in these experiments, C1 = 0.01, C2 = 0.03,
and C3 = C2/2.

4.4. Results

We conducted an investigation into the selection of the N parameter within the group
structure. Specifically, we designed experiments for the main branch encompassing six
different parameter selections along with four separate groups of experiments for the G–R
and B–R branches. The results of these parameter choices were meticulously arranged
and analyzed. The evaluation scores based on SSIM are depicted in Figure 5a, while those
based on PSNR are illustrated in Figure 5b. Notably, it is evident that under constant
conditions a larger N value within the main branch leads to higher scores on the evaluation
metrics. However, a critical turning point is observed at N = 10, beyond which the rate
of the score increase diminishes significantly. Consequently, we determined that N = 10
is the optimal choice for the main branch in DFFA-Net. Moreover, when we kept the N
value fixed in the main branch we observed that both the B–R and G–R branches exhibited
varying degrees of score improvement with increasing N values. Notably, N = 6 and N = 10
yielded nearly identical improvements in model performance, indicating that in these cases
N = 6 in can satisfy the model’s requirements. Thus, we selected N = 6 for both the B–R
and G–R branches.

(a) (b)
Figure 5. Effect of different values of of N on the group structure in terms of SSIM and PSNR. The
horizontal axis shows the value of N in the main branch, while the value of N in the B–R and G–R
branches is shown in the legend. The vertical axis shows the respective SSIM or PSNR score. (a) Effect
of different values of N on the main branch, B–R branch, and G–R branch in terms of SSIM. (b) Effect
of different values of N on the main branch, B–R branch, and G–R branch in terms of PSNR.

We conducted qualitative and quantitative experiments to compare our approach
with five mainstream dehazing algorithms, including GCANet, Water-Net, and others. As
shown in Figure 6, the DCP algorithm suffers from color distortion due to the failure of
its underlying assumptions. AOD-Net tends to produce darker images in comparison.
When compared to the aforementioned methods, Water-Net, GCANet, and FFA-Net exhibit
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relatively superior dehazing performance. However, failure to correct the color channels
results in persistent discrepancies with the GT color patterns. From a visual standpoint,
our proposed method demonstrates the closest resemblance to the GT.

 Hazy inputs 

DCP

AOD-Net 

Water-Net 

GCANet

FFA-Net

Our proposal

GT

Figure 6. Comparison of results between our proposed approach and other dehazing algorithms
based on convolutional neural networks.

The quantitative evaluation scores for the experimental results are presented in Table 1,
with our method achieving the highest scores in terms of both SSIM and PSNR. In terms of
model size, because DCP is implemented by conventional methods, its model size cannot
be evaluated. AODNet takes the least time to process a single image. At the same time, it
should be noted that our proposal shows improvements in all indicators compared with
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FFA-Net. The accuracy of the model is improved while ensuring a high inference speed.
These results indicate the effectiveness of our approach in underwater image dehazing, as
it outperforms other methods.

Table 1. Comparison of different dehazing algorithms. ↑ means that higher scores indicate better
performance.

Method SSIM ↑ PSNR ↑ Model Size (MB) Inference Time (ms)

DCP 0.7468 15.2346 - 166.43
AODNet 0.8244 19.2519 0.14 29.13
WaterNet 0.9115 23.4502 4.17 68.86
GCANet 0.9025 23.1840 4.42 76.97
FFANet 0.9118 23.5567 17.74 110.81

Our proposal 0.9153 24.2631 13.20 90.21

5. Application

In this section, in order to further verify the reliability and practicability of our pro-
posed DFFA-Net, we design a specific application experiment involving the application of
our proposed method to a self-developed ROV.

5.1. ROV Design

The exterior of the ROV is shown in Figure 7. It has a streamlined shape and aesthetic
design, taking into account body weight and structural strength. The ROV is equipped with
inertial navigation and depth sensors as well as self-developed motion control algorithms
for leading motion stability and accuracy. It has three motion modes (manual mode, stable
mode, and fixed depth mode), allowing it to adapt to different types of job tasks. In terms of
power, the ROV is equipped with four vertical thrusters and four horizontal thrusters, with
six degrees of freedom characteristics. For observation and operation, the ROV is equipped
with an underwater camera with a head, underwater lights, and a gripper located within
the camera’s field of view. The ROV performance characteristics are shown in Table 2.

Figure 7. Three-dimensional schematic model of the ROV.
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Table 2. Functions and features of the ROV.

Maneuvering ability Forward, backward, transverse, snorkeling,
pitch, roll, yaw

Moving speed Stepless speed regulation

Whether to support multiple maneuvering
operations at the same time Support

Attitude control Pitch Angle holding function ( ±20◦) Roll
Angle holding function ( ±20◦)

Input hold function

One key lock the current control execution
command, so that the robot maintains the
current speed, depth, heading Angle and

attitude of continuous navigation

Control mode Manual mode, stable mode, fixed depth mode

Video recording capability Support

Hand bite force 10 Kg

Design depth 50 m

Endurance time 2 to 3 h

The ROV adopts the open rack layout. All control system components and other
electronic circuit components are enclosed in watertight control compartments. A water-
tight connector is installed on the end cover of the watertight cabin to meet the need to
route cables through the cabin. The lithium battery is packaged in a watertight battery
compartment, and the power transmission cable transmits power to the control compart-
ment through a watertight connector on the end cover. The design is equipped with eight
thrusters (four vertical thrusters and four horizontal thrusters) to meet the needs of the
robot’s six degrees of freedom for movement (forward/backward, transverse, snorkeling,
pitching, rolling and yawing). The robot claw and underwater light are installed in the
front and lower part of the control pod, while the camera and camera head are installed in
the head of the control pod and are observed through an optical acrylic sphere.

5.2. Control System Design

The control system has good hardware and software architecture, as shown in Figure 8.
At the hardware level, the mode of an autonomous pilot and auxiliary computer is adopted.
The autonomous pilot is responsible for all motion-related operations, including convert-
ing control instructions into Pulse Width Modulation (PWM) signals of each propeller,
calculating attitude and depth and feedback, Proportion Integration Differentiation (PID)
closed-loop control, etc. The autonomous pilot itself has built-in inertial navigation, which
provides attitude angle and speed information in combination with depth sensor readings
to provide the required feedback for the entire system. The autopilot is responsible for
controlling the camera head, underwater lights and robot claws. The auxiliary computer is
responsible for encoding, decoding and diverting the control information, ROV feedback
information, video streams, etc. Remote real-time communication and image transmission
between the ROV and the shore system are both realized through the power carrier module.

A modular design is implemented at the software level, as shown in Figure 9. The
whole system includes the underlying drive module of the airborne application layer,
its motion solution, communication, and video streaming modules, the operator client
of the ground station, and the driver module of the handle of the ground station. All
of the self-developed motion control algorithms are encapsulated in the motion solution
module of the airborne application layer. Each module independently develops a shared
interface, which can be called when calculating, ensuring the logical clarity and stability of
the whole system.
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Camera Head

Underwater 
lights

Mechanical 
gripper

Underwater 
camera

Auxiliary 
computer

(Raspberry Pi)

Autopilot
(Pixhawk)

8x
Thrusters

Depth sensor

Power Carrier 
Module A

Power Carrier 
Module B

Ground 
computer

Ground control stationUnderwater robot (ROV)

Contains inertial navigators

Figure 8. Control system hardware architecture.

ROV Hardware
Not conneceted

Pixhawk
Running Ardusub

Raspberry Pi
ArduSub Raspbian 

lmageRunning python script

MyRio
Running seria-reading script

Robot arm
Not connected

PC
Running QGC Joystick

Joustck commands
Flight modes

Monitoring

Figure 9. Control system software architecture.

5.3. Real-Time Underwater Image Dehazing

For a scenario involving the need to ensure good air tightness, we positioned the ROV
within an indoor swimming pool. Various items were strategically placed within the pool
for the ROV’s robotic arm to manipulate. The ROV’s live video feed was continuously
transmitted to the ground computer via cable. However, it is worth noting that the image
quality of the optical camera on the ROV did not meet our expectations due to the presence
of chemicals such as copper sulfate and disinfectants within the pool water. To mitigate
this issue, we employ DFFA-Net to process the video stream received from the ground
computer in real time. The result of this processing, depicting the video stream after the
removal of haze, is illustrated in Figure 10b. The image processed by DFFA-Net shows a
significant improvement in color, contrast, and saturation. Compared with the hazy image
directly received by ROV, the processed image has a longer perception range and better
visual effect. With the help of DFFA-Net, the ROV operator can engage in remote control
operation with greater efficiency.
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(a)

    The ROV camera reception DFFA-Net output

(b)
Figure 10. Views obtained during the ROV experiment in the pool. The operator controlled the ROV
by observing images from the optical camera and using the feed to perform tasks such as grabbing
items. (a) View of the ROV. (b) Left: the original view obtained by the ROV camera; right: the view
after DFFA-Net treatment.

6. Conclusions

In this paper, we introduce an end-to-end solution for underwater optical image de-
hazing named DFFA-Net. To address the issue of imbalanced color channel distribution
that is commonly encountered in underwater images, DFFA-Net innovatively incorporates
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a differential module setup into its architecture. This modular setup plays a crucial role
in effectively mitigating the aforementioned problem, ensuring improved image quality.
Additionally, a novel loss function is devised to guide the network when learning the
respective distributions of the transformations between the color channels. Our experi-
mental results showcase the superiority of DFFA-Net, as it attains the highest scores in
terms of both the PSNR and SSIM metrics when compared against other convolutional
neural network-based dehazing methods. This success opens up possibilities for broader
applications of our approach in related domains, including image reconstruction and
super-resolution. Furthermore, we have successfully deployed DFFA-Net on our ROV.
Through practical experiments, DFFA-Net demonstrates real-time processing capabilities
for underwater images, producing clear and vivid optimized images. This can extend
the operational vision of ROV operators, enhancing their capabilities in challenging un-
derwater environments. Looking ahead, our future work will focus on optimizing the
network architecture of DFFA-Net to achieve a more lightweight model in order to increase
its efficiency and applicability in various underwater imaging scenarios.
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