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Abstract: Many practical systems, such as target tracking, navigation systems, autonomous vehicles,
and other applications, are usually applied in dynamic conditions. Thus, the actual noise statistics
characteristics of these systems are generally time varying and unknown, which will deteriorate
the state estimation accuracy of the Kalman filter (KF) and even cause filter diverging. To address
this issue, this paper proposes an adaptive process noise covariance (Qk)-based variational Bayesian
adaptive Kalman filter (AQ-VBAKF) algorithm. Firstly, the adaptive factor is introduced to self-tune
the process noise covariance; the adaptive factor is obtained based on the innovation sequences,
which can adapt to the input measurement values. Then, the VB solution is applied to approximate
the time variant and unknown measurement noise covariance. Therefore, this proposed algorithm
can adjust the process noise covariance and the measurement noise covariance simultaneously based
on the variable input signals, which can improve the self-adaptive ability of the state estimation
filter in dynamic conditions. According to the dynamic target tracking test results, the proposed
AQ-VBAKF outperforms several other existing filtering methods in estimation accuracy, robustness,
and computational efficiency.

Keywords: state estimation; variational Bayesian; noise covariance matrix; adaptive factors; adaptive
Kalman filter

1. Introduction

In many practical applications, such as target tracking, positioning, autonomous vehi-
cles, and so on, state estimation has been widely deployed [1–4]. The KF (Kalman filter)
can obtain the optimal estimation for the minimum mean square error (MMSE) if the
noise covariances are accurate under the linear Gaussian condition [5]. In the KF iteration,
noise covariances are preselected and kept constant throughout the whole filtering process.
However, when the practical systems work in dynamic environments, the constant noise
covariances cannot reflect the real dynamic circumstances. For example, autonomous vehi-
cle systems [6] inherently work in dynamic environments, where the sensor measurement,
environment conditions, and vehicle dynamics are time varying and difficult to obtain.
In this condition, the accurate noise statistics of practical systems are usually unknown.
The actual noise covariances vary with the changes in environments. Thus, constant noise
covariances for KF may degrade the filtering performance in dynamic conditions. There-
fore, advanced estimation methods are necessary for autonomous vehicle systems, target
tracking systems, and other applications.

Accordingly, to address this issue, several adaptive KF (AKF) methods have been
developed. The AKF algorithms include the multiple mode AKF [7], the Sage-Husa
AKF [8], the fading AKF [9], and the variational Bayesian-based AKF (VBAKF) [10]. The
multiple mode AKF requires a bank of KFs operating simultaneously, resulting in a large
computational burden. The Sage-Husa AKF uses the covariance matching method to
estimate the maximum posterior noise, which cannot ensure that it will converge to the
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accurate noise covariances. The fading AKF introduces the fading factor to decrease the
weight of the current measurement value. However, the fading AKF usually needs multiple
fading factors, which are not easy to calculate [11].

The variational Bayesian-based AKF (VBAKF) has been widely utilized, as it can use a
factorized free-form distribution to approximate the unknown measurement noise covari-
ance matrix (MNCM) and the state vector’s joint posterior distribution [12,13]. However, in
the VBAKF algorithm, the process noise covariance matrix (PNCM) is predefined and kept
constant, which cannot reflect the actual noise environment and, thus, will deteriorate the
filtering performance in time-varying situations. Huang et al. [14] proposed the VBAKF-PR
algorithm to estimate the online MNCM and the predicted state error covariance matrix
together, and more accurate results were obtained. However, the VBAKF-PR approach
needs a predefined PNCM and has a large computational burden. In reference [15], the
predicted state error covariance matrix was estimated, but the PNCM stayed constant. In
reference [16], to overcome the issue that the PNCM’s distribution and the system state
vector’s distribution are non-conjugate, black-box variational inference was used to solve
this problem. In [17], a sliding window variational AKF was proposed, which relies on
approximating the smoothing posterior distribution. However, these algorithms either
have a high computational burden or the PNCM stays constant, which will decrease the
filtering performance in dynamic conditions. Since the inaccurate predefined PNCM is
used for each iteration, this may cause a decline in estimation accuracy.

To enhance the VBAKF’s performance in dynamic systems, an adaptive PNCM (Qk)-
based variational Bayesian adaptive KF (AQ-VBAKF) method is proposed in this paper.
The main contributions of this paper are as follows:

1. To further improve the VBAKF algorithm in dynamic systems and to improve the
adaptability of PNCM, the proposed AQ-VBAKF algorithm can not only estimate
the MNCM online, but can also self-tune the PNCM in real time. Therefore, the
AQ-VBAKF can adapt to the input variable signals in the linear dynamic system.

2. The VBAKF algorithm can only estimate the MNCM, but the PNCM stays constant
during the whole filtering process, which will decrease the filtering performance. In
the proposed algorithm, the adaptive factor is introduced to tune the PNCM in real
time, meaning the fixed PNCM does not cause a decline in the VBAKF estimation
accuracy at each iteration.

3. The proposed algorithm is evaluated using the target tracking simulation. Based on a
series of experiments, the proposed AQ-VBAKF can improve the filtering accuracy
and robustness in comparison with other filtering methods under dynamic conditions.
Moreover, the computational burden is not heavy, thus it can be applied in practical
systems.

The structure of the paper is summarized as follows. The state-space model and
problem statement are described in Section 2. The proposed AQ-VBAKF approach is
illustrated in Section 3. The AQ-VBAKF method is verified by target tracking tests in
Section 4. The conclusions are drawn in Section 5.

2. State-Space Model and Problem Statement

For the linear Gaussian discrete-time system, the state-space model is demonstrated
as follows:

xk = Fkxk−1 +ωk−1 (1)

zk = Hkxk + υk (2)

where Equation (1) denotes the system model, and Equation (2) denotes the measurement
model. k ∈ N represents the sampling time point. xk ∈ Rnx and zk ∈ Rnz denote the state
vector with nx dimensions and the measurement vector with nz dimensions at the k-th
epoch, respectively. Fk and Hk are the system transition matrix and the observation matrix
at the k-th epoch. The dimensions of Fk and Hk are nx × nx and nz × nx, respectively. ωk−1
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is the process noise that obeys N(0, Qk−1). υk represents the measurement noise that
obeys N(0, Rk). The dimensions of Qk−1 and Rk are nx × nx and nz × nz, respectively.

The KF algorithm includes two procedures, which are the prediction process and the
correction process. The prediction procedure is expressed as [18]:

x̂k|k−1 = Fkx̂k−1|k−1 (3)

Pk|k−1 = FkPk−1|k−1FT
k + Qk−1 (4)

Then, the correction process is defined as [18]:

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk−1

)−1
(5)

x̂k|k = x̂k|k−1 + Kk

(
zk −Hkx̂k|k−1

)
(6)

Pk|k = Pk|k−1 −KkHkPk|k−1 (7)

where Kk is the KF gain. The dimension of Kk is nx × nz. x̂k|k−1 and x̂k−1|k−1 represent
the predicted and estimated state values. Pk|k−1 and Pk−1|k−1 represent the predicted and
estimated state error covariance matrices.

In dynamic conditions, such as integration navigation systems, target tracking sys-
tems, and autonomous vehicles, the actual noise covariances vary with the changes in
environments and the accurate noise statistics of practical systems are usually unknown.
The inaccurate and constant noise covariances Qk and Rk in the KF may cause suboptimal
estimations and even divergence. Therefore, an adaptive KF algorithm for the inaccurate
noise covariance matrices is necessary under practical dynamic conditions. Accordingly, a
novel AQ-VBAKF approach is proposed to self-tune the variable and unknown MNCM
and PNCM under dynamic conditions.

3. Proposed AQ-VBAKF Algorithm
3.1. Variational Bayesian Approximation for MNCM (Rk)

According to Equations (1) and (2), the probability form for the state-space model
is [19]:

p(zk|xk, Rk) = N(zk|Hkxk, Rk) (8)

where N(·|µ, Σ) represents the multivariate Gaussian distribution with a mean vector µ
and covariance matrix Σ. Because Rk is unknown, the VB algorithm is applied to acquire
the posterior distribution p(xk, Rk|z1:k) . However, it is usually not analytical to handle [12].
The approximation scheme VB is used to approximate the intractable posterior inference in
the Bayesian model [12].

In linear and Gaussian systems, xk is considered to be independent of the NCM. The
joint distribution at the (k−1)-th epoch p(xk, Rk|z1:k−1) is decomposed as:

p(xk, Rk|z1:k−1) = p(xk|z1:k−1)p(Rk|z1:k−1) (9)

p(xk|z1:k−1) is assumed as the Gaussian distribution, and p(Rk|z1:k−1) can be considered
as an inverse Wishart (IW) distribution, which is expressed as [16]:

p(xk|z1:k−1)= N(xk|x̂k|k−1, Pk|k−1) (10)

p(Rk|z1:k−1) = IW(Rk|v̂k|k−1, V̂k|k−1) (11)

where IW(·|w, W) represents the IW distribution. w denotes the degrees of freedom’s
number. W represents the inverse scale matrix.
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Employing the VB inference, the joint posterior distribution can be approximated as:

p(xk, Rk|z1:k) ≈ q(xk)q(Rk) (12)

where q(·) is the approximation for p(·). q(xk) and q(Rk) are obtained based on the mini-
mization of the Kullback-Leibler (KL) divergence between the real posterior distribution
p(xk, Rk|z1:k) and the approximation q(xk)q(Rk), which is:

q(xk)q(Rk) = arg min{KL(q(xk)q(Rk)||p(xk, Rk|z1:k))}
= arg min

{∫
q(xk)q(Rk) log

(
q(xk)q(Rk)

p(xk ,Rk |z1:k)

)
dxkdRk

} (13)

where KL(m(x) ||n(x)) represents the KL divergence between m(x) and n(x).
The optimal solution of Equation (13) can be obtained as follows [20]:

log q(Rk) = E
xk
[log p(xk, Rk, z1:k)] + CRk (14)

log q(xk) = E
Rk
[log p(xk, Rk, z1:k)] + Cxk (15)

where E[·] represents the expectation operator. CRk and Cxk denote the constants indepen-
dent of Rk and xk, respectively.

Because of the Bayesian rule, it can be given that:

log p(xk, Rk, z1:k) = log p(xk, Rk, zk|z1:k−1) + log p(z1:k−1) (16)

Due to p(z1:k−1) being independent of Rk and xk, then:

log p(xk, Rk, z1:k) ∝ log p(xk, Rk, zk|z1:k−1) (17)

Based on Equations (8), (10), and (11), p(xk, Rk, zk|z1:k−1) is decomposed as [21]:

p(xk, Rk, zk|z1:k−1)
= p(zk|xk, Rk)p(xk|Rk, z1:k−1)p(Rk|z1:k−1)
= N(zk|Hkxk, Rk)N(xk|x̂k|k−1, Pk|k−1)IW(Rk|v̂k|k−1, V̂k|k−1)

(18)

Accordingly, we can have:

log p(xk, Rk, zk|z1:k−1) =

−0.5(zk −Hkxk)
TRk

−1(zk −Hkxk)

−0.5(xk − x̂k|k−1)
TPk|k−1

−1(xk − x̂k|k−1)

−0.5(v̂k|k−1 + nz + 2) log|Rk| − 0.5tr(V̂k|k−1Rk
−1)+C

(19)

where tr[·] denotes the matrix’s trace. nx and nz denote the dimensions of xk and zk,
respectively. C represents a constant independent of xk and Rk.

Substituting Equations (17) and (19) into Equation (14), we can obtain the updated
q(Rk). q(Rk) is approximated as the IW distribution:

q(s)(Rk) = IW(Rk|v̂
(s)
k|k, V̂(s)

k|k) (20)

where
v̂(s)k|k = v̂k|k−1 + 1 (21)

V̂(s)
k|k = N(s−1)

k + V̂k|k−1 (22)

N(s−1)
k = (zk −Hkx̂(s−1)

k|k )(zk −Hkx̂(s−1)
k|k )

T
+ HkP(s−1)

k|k HT
k (23)
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The superscript s denotes the s-th VB iteration. The dimensions of V̂k|k−1 is nz × nz
and v̂k|k−1 is scalar.

Substituting Equations (17) and (19) into Equation (15), q(xk) is updated as:

q(s)(xk)= N(xk|x̂
(s)
k|k, P(s)

k|k) (24)

where

K(s)
k = P̂(s)

k|k−1HT
k

[
HkP̂(s)

k|k−1HT
k +

(
E(s)[R−1

k ]
)−1

]−1
(25)

x̂(s)k|k = x̂k|k−1 + K(s)
k (zk −Hkx̂k|k−1) (26)

P(s)
k|k = P̂(s)

k|k−1 −K(s)
k HkP̂(s)

k|k−1 (27)

3.2. Adaptation of PNCM (Qk)

In the VBAKF, the MNCM (Rk) is adjusted in real time. However, the PNCM (Qk) stays
constant in the filtering process. The constant Qk cannot match the actual noise statistic
characteristic, so the adaptive method of Qk is proposed to enhance the estimation accuracy.
Hence, the adaptive factor λk is introduced to adjust Qk, that is:

Pk|k−1 = FkPk−1|k−1FT
k + λkQk−1 (28)

In the KF estimation, when the state estimations are accurate, the following equation
is held [22]:

E[dk+jd
T
k ] ≈

HkFk(I−Kk+j−1Hk) •Fk(I−Kk+2Hk)•Fk(Pk|k−1HT
k −KkCk)j = 1, 2 · · · (29)

where I represents the identity matrix and dk denotes innovation sequences, that is:

dk = zk −Hkx̂k|k−1 (30)

where Ck is the innovation covariance. The dimensions of dk and Ck are nz × 1 and nz × nz,
respectively. To keep the estimation accurate, E[dk+jd

T
k ] = 0 should be satisfied [22].

Therefore, according to Equation (29), Kk should be selected to establish the following
equation:

Pk|k−1HT
k −KkCk = 0 (31)

By substituting Equation (5) into Equation (31), it can be given that:

Pk|k−1HT
k

{
I−

(
HkPk|k−1HT

k + Rk−1

)−1
Ck

}
= 0 (32)

To satisfy Equation (32), the following equation should be held:

HkPk|k−1HT
k + Rk−1 = Ck (33)

Because of Equation (28), then it can then be determined that:

Ck = HkFkPk−1|k−1FT
k HT

k + Rk−1 + λkHkQk−1HT
k (34)

Therefore, the adaptive factor λk can be obtained as:

λk =
tr(Ck −HkFkPk−1|k−1FT

k HT
k −Rk−1

)
tr(HkQk−1HT

k )
(35)
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To keep the whole filtering process stable, the adaptive factor λk should be larger than
1; that is:

λk = max(1, λk) (36)

When the system experiences sudden changes, and the adaptive factor is larger than 1,
then the corresponding Kalman gain will become larger based on Equation (5). Therefore,
according to Equation (6), more weight will be added to the current measurement data and
less weight will be given to the past state information, and then the state estimation will be
more accurate. Therefore, λk is obtained with:

λk =


tr(Ck−HkFkPk−1|k−1FT

k HT
k−Rk−1

)
tr(HkQk−1HT

k )
λk ≥ 1

1 λk < 1
(37)

The innovation covariance Ck is defined as:

Ck = E[dkdT
k ] (38)

In general, it is difficult to obtain the actual innovation covariance. Thus, we use the
window function method to estimate the innovation covariance [23]:

Ĉk = Ĉk−1 +
1
N

(
dkdT

k − dk−NdT
k−N

)
(39)

where Ĉk denotes the estimated innovation covariance, and N > 1 represents the window
size and is a scalar.

3.3. Proposed Algorithm

To summarize, the structure diagram of the proposed algorithm is shown in Figure 1.
The detailed algorithm is demonstrated in Algorithm 1, where ξ ∈ (0, 1] represents the
forgetting factor and S denotes the VB iteration number.

Algorithm 1: Proposed AQ-VBAKF Algorithm

Input: x̂k−1|k−1, zk, Pk−1|k−1, Rk−1, Qk−1, V̂k−1|k−1, v̂k−1|k−1, Fk, Hk, N, nz, S, ξ

Time update for state values:
1: x̂k|k−1 can be obtained via Equation (3).
The adaptive factor update and the time update for Pk|k−1:
2: The adaptive factor is computed using Equations (30), (37), and (39).
3: Pk|k−1 is obtained with Equation (28).
VB estimation update:

4: Initialization: P̂(0)
k|k−1 = Pk|k−1, x̂(0)k|k−1 = x̂k|k−1

v̂k|k−1 = ξ(v̂k−1|k−1 − nz − 1) + nz + 1, V̂k|k−1 = ξV̂k−1|k−1
For s = 1: S

5: Update q(s)(Rk) using Equations (21)–(23)

6:
(

E(s)[R−1
k ]
)−1

is obtained with
(

E(s)[R−1
k ]
)−1

= (v̂(s)k|k − nz − 1)
−1

(V̂(s)
k )

7: x̂(s)k|k and P̂(s)
k|k are obtained via Equations (25)–(27)

End
Output: Pk|k, x̂k|k, v̂k|k, V̂k|k
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4. Simulation Verification and Analysis

In this section, we adopt a target tracking test to assess the availability and superiority
of the proposed AQ-VBAKF algorithm. The target tracking example’s state equation and
measurement equation are:

xk =

[
I2 ∆σI2
0 I2

]
xk−1 + nk−1 (40)

zk =
[
I2 0

]
xk−1 + vk (41)

where xk =
[
xk yk

.
xk

.
yk
]T is the system state vector. Then, (xk, yk) and (

.
xk,

.
yk) stand

for the unknown positions and velocities. ∆σ is the sampling interval and ∆σ is set to 1 s.
The true covariances of nk−1 and vk are described by:

Qk = [0.5 cos(
πk
T
) + 6.5]

[
∆σ3

3 I2 0.5∆σ2I2
0.5∆σ2I2 ∆σI2

]
q (42)

Rk = [0.05 cos(
πk
T
) + 0.1]

[
1 0.5

0.5 1

]
r (43)

where I2 is a two-dimensional identity matrix. T denotes the simulation time and T = 1000 s.
Additionally, q is set as 1 m2/s3 and r is set as 100 m2. Moreover, the initial values for
PNCM (Q0) and MNCM (R0) are set to Q0 = αI4 and R0 = βI2.

4.1. Estimation Performance Analysis

To verify the filtering accuracy, we compare the proposed AQ-VBAKF with five other
filtering estimation methods:

1. KFTCM algorithm: the KF is iterated with true covariance matrices (KFTCM), which
act as a reference.
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2. KFNCM algorithm: the KF is iterated with nominal covariance matrices (KFNCM),
which are Q0 and R0. Qk and Rk are fixed during the filtering process.

3. AQKF algorithm: the KF is iterated with the adaptive Qk; only Qk is adjusted based
on the previous Section 3.2, and Rk is fixed throughout the whole process.

4. VBKF algorithm: Rk is updated using the VB method and Qk is constant throughout
the whole process.

5. VBAKF-PR algorithm: the VBAKF-PR algorithm was demonstrated in [14].

In the simulation, the initial values are set to P0|0 = diag([100, 100, 100, 100]) and

x0= [100, 100, 10, 10]T. Table 1 shows the different algorithms’ parameter settings. S is
the VB iteration times. The iteration times should be proper to ensure the VB approximate
converges to the optimal results. Generally, VB iteration times should be more than 6 to
make the filter converge, thus S is chosen as 15 [24]. N represents the window size for the
AQKF and AQ-VBAKF algorithms, which is analyzed in the simulation later. α and β are
used for setting Q0 = αI4 and R0 = βI2. In fact, the prior noise information of the system
is usually unknown; thus, the setting of Q0 and R0 are usually not accurate. Moreover, α
and β are both variables to test the robustness of the algorithms with different Q0 and R0
values. ξ is used for VB inference initialization, as shown in Algorithm 1, which should be
ξ ∈ (0, 1] to ensure that the posterior and prior PDFs have the same forms. τ is used for the
VBAKF-PR algorithm.

Table 1. Parameters settings for different algorithms.

Algorithms α β ξ S N τ

KFNCM 1 10 - - - -
AQKF 1 10 - - 5 -

VBAKF 1 10 0.99 15 - -
VBAKF-PR 1 10 0.99 15 - 10

Proposed AQ-VBAKF 1 10 0.99 15 5 -

The RMSE (root mean square error) and ARMSE (average RMSE) are used to validate
the state estimation accuracy based on the following formulas:

RMSEpos(j) ,

√√√√ 1
Mc

Mc

∑
j=1

[
(xl

j − x̂l
j)

2 − (yl
j − ŷl

j)
2
]

(44)

ARMSEpos ,
1
T

T

∑
j=1

RMSEpos(j) (45)

where Mc represents the Monte Carlo (MC) test number, and Mc = 1000. (xl
i , yl

i) and (x̂l
i , ŷl

i)
represent the true and the estimated positions at the l-th MC test, respectively. T is set to
1000 s. For velocity, the definitions of RMSE and ARMSE are similar.

Figure 2 demonstrates the RMSEs for different algorithms, where the KFTCM has the
smallest RMSEs, and acts as a reference. In comparison with the KFNCM, AQKF, VBAKF,
and VBAKF-PR algorithms, the proposed AQ-VBAKF has the smallest RMSEs for position
and velocity. The VBAKF has the worst performance, which indicates that the VBAKF is
even worse than the KFNCM when the initial values are far away from the true values. The
VBAKF cannot guarantee an optimal outcome in any case. Due to the adaptive predicted
state error covariance matrix, the VBAKF-PR shows higher accuracy than the VBAKF, but
is also worse than the KFNCM due to the initial value deviating from the true values. The
AQKF is slighter worse than the proposed AQ-VBAKF since the AQKF lacks the ability to
update the MNCM (Rk).
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Figure 3a shows the mean values of λk in the 1000 Monte Carlo (MC) tests based on
the following formulas:

λmean(k) ,
1

Mc

Mc

∑
j=1

λj(k) (46)

where Mc = 1000, and k denotes the k-th epoch. Figure 3b,c show the 100th and 500th
MC test values of λk, respectively. It can be shown that when the RMSEs of position and
velocity are higher in Figure 2 for k ∈ [0, 500], the values of λk are higher in Figure 3.
This indicates that when the estimations of position and velocity deviate from the true
values, the values of λk will be larger to adjust the PNCM. Instead, when the estimations
of position and velocity are close to the true values, the values of adaptive factor λk will
become smaller. This indicates that the adaptive factor λk can adjust the PNCM according
to the input signals.
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4.2. Robustness Analysis for PNCM and MNCM Initial Value Settings

To assess the proposed AQ-VBAKF’s robustness, the ARMSEs of the AQ-VBAKF
algorithm for different initial PNCM (Q0) and MNCM (R0) values were calculated and
are presented in Figure 4. For comparison, Figure 5 demonstrates the ARMSEs for the
VBAKF-PR. α and β are selected in the range of (α, β) ∈ [0.1, 1000]× [0.1, 1000]. To reduce
the time consumption and keep the results reliable, Mc is set to 20. Moreover, Table 1
demonstrates other parameter settings, including ξ, S, N, and τ.

In Figure 4, as we can see, the ARMSEs for position and velocity stay small and stable in
most cases. However, when the parameters are in the range of (α, β) ∈ [100, 1000]× [0.1, 1],
the ARMSEs for position and velocity increase, which indicates that the filtering estimations
are not so accurate. Figure 5 shows the VBAKF-PR’s results. In the range of (α, β) ∈
[0.1, 1000]× [0.1, 1], as the parameter β decreases, the ARMSEs increase. Therefore, the
AQ-VBAKF is more robust than the VBAKF-PR in the range of (α, β) ∈ [0.1, 100]× [0.1, 1],
in which the initial values of the PNCM (Q0) and MNCM (R0) deviate from the true value.
Therefore, when the initial values of β are smaller than 1, which represents that the initial
MNCM (R0) deviates from the true value, the proposed AQ-VBAKF algorithm is more
robust than the VBAKF-PR.

In many practical systems, the initial state values are usually unknown. In this
condition, when the initial settings of the MNCM and PNCM values differ from the true
values, the proposed AQ-VBAKF performs better in self-adaptability and robustness than
the VBAKF-PR algorithm.



Electronics 2023, 12, 3887 11 of 15Electronics 2023, 12, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 4. ARMSEs of position and velocity for the AQ-VBAKF under ( ,  ) [0.1,  1000] [0.1,  1000]α β ∈ ×
: (a) ARMSEs of position for the proposed AQ-VBAKF; (b) ARMSEs of velocity for the proposed 
AQ-VBAKF. 

 
Figure 5. ARMSEs of position and velocity for the VBAKF-PR algorithm under 
( , ) [0.1, 1000] [0.1, 1000]α β ∈ × : (a) ARMSEs of position for the VBAKF-PR; (b) ARMSEs of velocity 
for the VBAKF-PR. 

Figure 4. ARMSEs of position and velocity for the AQ-VBAKF under (α, β) ∈ [0.1, 1000]× [0.1, 1000]:
(a) ARMSEs of position for the proposed AQ-VBAKF; (b) ARMSEs of velocity for the proposed AQ-
VBAKF.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 4. ARMSEs of position and velocity for the AQ-VBAKF under ( ,  ) [0.1,  1000] [0.1,  1000]α β ∈ ×
: (a) ARMSEs of position for the proposed AQ-VBAKF; (b) ARMSEs of velocity for the proposed 
AQ-VBAKF. 

 
Figure 5. ARMSEs of position and velocity for the VBAKF-PR algorithm under 
( , ) [0.1, 1000] [0.1, 1000]α β ∈ × : (a) ARMSEs of position for the VBAKF-PR; (b) ARMSEs of velocity 
for the VBAKF-PR. 

Figure 5. ARMSEs of position and velocity for the VBAKF-PR algorithm under (α, β) ∈ [0.1, 1000]×
[0.1, 1000]: (a) ARMSEs of position for the VBAKF-PR; (b) ARMSEs of velocity for the VBAKF-PR.
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4.3. Analysis of Window Size Setting

To analyze the effect of the window size on the proposed AQ-VBAKF algorithm,
some further simulations are performed. The window size is set as N = 1:1:25, and other
parameters are the same as those in Table 1. The ARMSEs of different window sizes are
shown in Figure 6. The KFTCM has the smallest ARMSEs of position and velocity, which
acts as a reference.
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In Figure 6a, the ARMSEs of the position for the proposed AQ-VBAKF are smaller
than that for the VBAKF-PR and KFNCM when N = 1:1:25. In Figure 6b, the ARMSEs of the
position for the proposed AQ-VBAKF are smaller than that for the VBAKF-PR and KFNCM
when N ≥ 4. As we can see, the ARMSEs for both position and velocity cannot decrease as
the window size N increases when N = 1:1:25. When the window size N is larger than 10,
the ARMSEs for both the position and velocity estimations tend to be stable.

In dynamic conditions, the window size cannot be too large. A small window size
can help the innovation covariance adapt to the time-varying input signals [25]. On the
other hand, the window size should be large enough to enhance the innovation covariance
estimation stability. Moreover, if the window size is too small, the computational burden
will be heavier. Accordingly, taking into account the innovation covariance estimation
accuracy and computational efficiency simultaneously in the dynamic environment, the
window size N should be set as 4 ≤ N ≤ 10.

4.4. Computational Efficiency Comparison

To verify the computational efficiency, Table 2 shows the total simulation time for the
different algorithms. The parameter settings are shown in Table 1, and Mc = 1000. The
proposed method adds only 9% computational time compared with the VBAKF method
and is only about half of the VBAKF-PR simulation time. Therefore, the proposed method
has almost the same computational burden compared with the VBAKF algorithm and the
computational complexity is not high.
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Table 2. Total computational time for different algorithms.

Algorithms Computational Time (s)

KF 37.7627
AQKF 45.0514

VBAKF 172.4772
VBAKF-PR 356.0744

Proposed AQ-VBAKF 188.0822

To further evaluate the computational complexity, the total floating-point operations
of each step for the proposed AQ-VBAKF were analyzed and are shown in Table 3, where
nx and nz are the dimensions of the state vector and measurement vector, respectively. S is
the VB iteration time.

Table 3. Floating-point operations of proposed AQ-VBAKF algorithms.

Steps Floating-Point Operations

1 2nx
2 − nx

2 6nx
2nz + 4nxnz

2 + 2nz + 5nz
2 − 1

3 2nx
3 + 2nx

2

4, 5, 6 S(2nx
2nz + 2nxnz

2 + nxnz + nz + 3nz
2 + 3)

7 S(2nx
3 + 6nx

2nz − nx
2 + nxnz + 4nxnz

2 + nz
2)

According to Table 3, the total floating-point operations of the proposed AQ-VBAKF
are:

f lAQ-VBAKF = 2nx
3 + 4nx

2 + 6nx
2nz − nx + 4nxnz

2 + 2nz + 5nz
2 − 1

+S(2nx
3 + 8nx

2nz − nx
2 + 6nxnz

2 + 2nxnz + 4nz
2 + nz + 3)

(47)

Based on [14,17], the total floating-point operations of VBAKF-PR are:

f lVBAKF-PR = 2nx
3 + 4nx

2 + nz
2 + 1

+S[nx
3 + O(2nx

3) + 4nx
2nz + 3nxnz

2 + O(3nz
3) + 2nx

2 + 4nxnz + 2nz
2]

(48)

Based on Equations (47) and (48), f lAQ-VBAKF and f lVBAKF-PR are almost proportional
to the VB iteration times S. Substrating Equation (48) to (47), then:

f lVBAKF-PR − f lAQ-VBAKF = −6nx
2nz + nx − 4nxnz

2 − 2nz − 4nz
2 + 1

+S[−nx
3 + O(2nx

3)− 4nx
2nz + 3nx

2 − 3nxnz
2 + 2nxnz + O(3nz

3)− 2nz
2 − nz − 3]

(49)

According to Equation (49), with the increase in the VB iteration time S, the computa-
tional burden of VBAKF-PR is larger than the proposed AQ-VBAKF, which is consistent
with the computational time results.

5. Conclusions

This paper proposes a novel AQ-VBAKF algorithm that can adjust the PNCM and
MNCM simultaneously. This algorithm introduces the adaptive factor to self-tune the
PNCM in real time based on the input signals. Furthermore, the MNCM is estimated online
using the VB approximation. According to the dynamic target tracking test results, the
proposed AQ-VBAKF shows more accurate estimation and better robustness in comparison
with other filtering methods. Moreover, for a general case in practical systems, when the
initial PNCM and MNCM are not appropriately set and deviate from the true values, the
proposed algorithm has better self-adaptability and robustness than other algorithms. The
proposed algorithm’s computational burden is not heavy; thus, it can be applied in practical
engineering applications.

For future prospects, the proposed filtering estimation algorithm can be applied in
dynamic conditions, such as autonomous vehicles, target tracking, positioning, and so on.
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For example, autonomous vehicles inherently work under dynamic environments, and the
environment noise statistics are unknown. The adaptability of the proposed AQ-VBAKF
algorithm can adjust process and measurement noise covariances dynamically, which can
significantly enhance the vehicle’s perception accuracy and response. Our research provides
a theoretical basis in terms of dynamic conditions to enhance the filtering estimation
accuracy. In future work, the proposed algorithm will be employed in positioning systems
to enhance positioning accuracy.
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