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Abstract: With the development of the digital and intelligent transformation of the power grid, the
structure and operation and maintenance technology of the power grid are constantly updated, which
leads to problems such as difficulties in information acquisition and screening. Therefore, we propose
a recommendation method for power knowledge retrieval based on a graph neural network (RPKR-
GNN). The method first uses a graph neural network to learn the network structure information of
the power fault knowledge graph and realize the deep semantic embedding of power entities and
relations. After this, it fuses the power knowledge graph paths to mine the potential power entity
relationships and completes the power fault knowledge graph through knowledge inference. At the
same time, we combine the user retrieval behavior features for knowledge aggregation to form a
personal subgraph, and we analyze the user retrieval subgraph by matching the similarity of retrieval
keyword features. Finally, we form a fusion subgraph based on the subgraph topology and reorder
the entities of the subgraph to generate a recommendation list for the target users for the prediction of
user retrieval intention. Through experimental comparison with various classical models, the results
show that the models have a certain generalization ability in knowledge inference. The method
performs well in terms of the MR and Hit@10 indexes on each dataset, and the F1 value can reach
87.3 in the retrieval recommendation effect, which effectively enhances the automated operation and
maintenance capability of the power system.

Keywords: graph neural network; knowledge inference; search intent prediction; recommender
system

1. Introduction

With the rapid development of computational science and information technology,
artificial intelligence is deeply integrated with various industries, which greatly promotes
the digitalization processes of national economic industries [1]. While the continuous
improvement and development of digital technology in power grids has promoted the
efficient operation and automation of power systems, the constant iterative updating of
technical equipment, expert cases, and standard requirements also lead to the rapid growth
of power standard data while information is instantly sensed and highly shared. This
has led to a series of problems while enabling rapid information sharing [2]. Due to the
scattered and excessive number of documented materials of power grid standards and the
explosive growth of data due to real-time information sensing and sharing, this leads to the
poor matching of traditional search results and difficulties in information screening. At the
same time, the complexity of the stored data structure leads to the low real-time efficiency of
retrieval and the existence of low information visualization [3]. Especially in fault retrieval
in the power domain, there are often complex topological connections between grid devices,
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and it is increasingly difficult to correctly obtain the user’s retrieval needs [4]. Therefore,
mitigating the effects of power information overload and accurately helping users to match
results that meet their individual needs are the main research objectives of this study.

Pioneered by Google and applied to search engines, the knowledge graph expresses
knowledge as attribute–value pairs corresponding to entities and represents the relation-
ships between knowledge through connections between entities [5]. Its data sources are
mainly web data, such as encyclopedic pages like Wikipedia and databases in the industry.
It can alleviate problems such as data sparsity because of its ability to mine potential seman-
tic associations through link prediction between entities [6]. Meanwhile, the knowledge
graph embedding method can embed entities and relationships into a low-dimensional
vector space and retain the structural information of the knowledge graph, which can effec-
tively improve the recommendation quality [7,8]. Based on the unique storage structure of
knowledge graphs, graph neural networks are introduced to recommender systems due to
their good graphical representation learning ability [9,10].

Retrieval recommendation systems are used to match and recommend relevant items
that satisfy the user’s intent during a search query. One of the most representative ap-
proaches is collaborative filtering, which uses historical user interactions to make recom-
mendations based on users’ common preferences [11,12]. However, such methods can
hardly avoid the cold-start problem that exists due to the sparse interaction data [13].
Current research on recommendation methods is mainly focused on modeling product
and user representations [14]. Generally, text-based or relationship-based approaches are
mostly used to construct behavioral models for web logs to mine user retrieval intent [15,16].
Meanwhile, the search ranking algorithm is improved based on user intent, using semantic
relevance to analyze the user query intent and reordering matching based on the query
results [17,18].

Although retrieval recommendation systems are now better able to achieve personal-
ized user perceptions and the efficient and accurate ranking of recommendation results,
there are still some problems in the diversification and inference of recommendation effects
when targeting different domains and audiences [19]. In terms of fine-grained inference,
only the characteristics of items are considered, relying on the items’ representational
information judgment, failing to derive their relevant fine-grained features. Meanwhile,
machine learning algorithms require more manual annotation and the framework is often
time-sensitive and needs to take into account the retrieval features in the scenario of cold-
start and regular retrieval [20]. The current system does not fully utilize the topological
information of the knowledge graph, and the mining of aspects such as relational reasoning
is not deep enough. Therefore, it is difficult to achieve the accurate prediction of users’
retrieval interests [21].

In order to solve the problems of cold starts in retrieval methods and the existence of
information overload in the recommended results, we propose a retrieval recommendation
method for electric power knowledge based on the current research of recommendation
technology. Our main contributions are as follows.

• Making full use of the network topology of the knowledge graph, we adopt a graph
neural network to realize the deep semantic embedding and knowledge inference of
electric power knowledge. The completeness of the power knowledge map is improved
by complementing the potential entity relationships of the existing knowledge map.

• We deeply mine the features of users’ retrieval behaviors and analyze users’ personality
subgraphs and retrieval subgraphs through knowledge aggregation and similarity
matching. Based on the path and topology of the subgraph, we reorder the power
entities to achieve the accurate prediction of users’ retrieval intentions and avoid the
problems of cold starts and information overload.

• We design comparison experiments on public datasets to verify the recommenda-
tion effectiveness of the graph-neural-network-based user retrieval recommendation
method, demonstrate the recommendation basis of the model results, and enhance the
interpretability of the algorithm.
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This method enables the faster and more accurate recommendation of knowledge and
cases for grid practitioners with different positions and needs and improves the safety of
the grid and the timeliness of troubleshooting. We introduce the current status of domestic
and international research on recommendation systems in Section 2, the graph-neural-
network-based recommendation method for power knowledge retrieval in Section 3, the
experimental analysis and comparison in Section 4, and the conclusions and remaining
problems of this method in Section 5.

2. Related Work

The research of retrieval recommendation systems has been well developed, especially
in the big data information environment, such as user interest perception and entity feature
representation, which can allow users to obtain more personalized retrieval results. The
following is a description of the existing recommendation methods, which are still in the
development stage in terms of combining data storage features with knowledge graphs.

In recent years, recommendation system research has gradually turned to deep learn-
ing and reinforcement learning in the form of research based on the original keyword
and ranking models [18,19]. The most widely involved in early research was the matrix
decomposition algorithm based on conditional random fields, but the applicability of the
matrix decomposition method was limited by its direct access to prediction scores through
vector inner products [15]. With the gradual development of deep learning, the use of
neural networks to learn the nonlinear interactions between users and items has become
a new hotspot for research [22]. Many recommendation models based on deep learning
techniques have been proposed, such as Wide&Deep [10], DeepFM [23], etc. Among
them, NCF [24] combines linear matrix decomposition and neural networks to characterize
the implicit user–item interaction. Compared with the traditional matrix decomposition
method, although this method achieves a great improvement in recommendation perfor-
mance, it has limitations as it cannot combine item relationships for reasoning. In contrast,
reinforcement learning has the ability to handle large-scale data and extract the underlying
features. The recommendation model based on deep reinforcement learning can more
appropriately adjust and feed back on the recommendation strategy to users through re-
ward and punishment strategies. To address the problems of the non-adaptive propagation
and non-robustness of graph neural networks (GNNs) in recommender systems, Fan [25]
proposed the graph trend filtering networks for recommendations (GTN), which can cap-
ture the adaptive reliability of the interactions. Jiang [26] et al. constructed a retrieval and
ranking model that synthesizes information from mathematical expressions with relevant
text, extracts ontological attributes from the scientific literature, and further ranks the
retrieval results. Gayar [27] et al. proposed an integrated search engine framework that
combines the advantages of keyword-based and semantic-ontology-based search engines
and solves the problems of the retrieval process, such as unclear retrieval features and a
short response time. Kachun et al. [28] proposed a quad-channel graph model (X-2ch) for
knowledge embedding, which distills KG information and embeds it as edge attributes in a
bi-directional manner to model the natural user–item interaction process, to holistically
capture the interconnectivity of users and items while preserving their distinct properties.
Yan [29] significantly improved the recommendation accuracy by using gated recurrent
units and collaborative filtering algorithms to model users’ long- and short-term inter-
ests. Although the recommendation system based on reinforcement learning has largely
improved the recommendation performance, it ignores the impact of state vectors on the
model performance and lacks inter-item correlation analysis.

The approach based on knowledge graphs and deep learning to achieve retrieval
recommendations is to perceive and integrate auxiliary information such as entity rela-
tionships and item representations [17]. In knowledge-graph-oriented models during
training, the designed algorithms mostly implement the intention prediction process in
stages, mainly including models for the extraction of graph features and models for the
prediction of links. Early research on knowledge graphs focused on path-based models
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that used various connectivity patterns of entities for recommendation, such as RKGE [30],
Hete-MF [31], and HeteRec [32]. Later, with the development of deep learning, embedding-
based approaches emerged. By this end-to-end modeling and learning approach, the graph
structure data can be effectively embedded, thus improving the link prediction results.
Especially in the field of electricity, the topology of the grid is important for data retrieval;
thus, Wang [33] et al. used graph neural networks to mine the connections between entities.
In the field of film and television, Yu [34] et al. proposed a graph convolutional network
(OR-GCN) based on object relations; this method analyzes directed graphs by building a
graph convolutional network and achieves better results in film classification. However,
the current embedding-based approach does not consider the connection relationships
between information in the knowledge graph, which leads to the weak interpretability of
the recommendation system and low user trust. The path-based recommendation system
addresses this drawback by making recommendations based on the semantic relationships
expressed by paths in the knowledge graph. Such models mainly rely on manually de-
signed paths, and later studies are mostly based on embedding approaches to achieve
further recommendations via the multi-layer embedding of knowledge graphs, such as
CKE [35], DKN [36], and SHINE [37]. However, an excessive number of paths leads to
complex models and also makes the computation and system overhead too large, which
reduces the training efficiency of the models. Therefore, hybrid recommendation methods
based on the above two types combine word embeddings and path information to achieve
user feature mining, such as RippleNet [38] and lntentGC [39]. In addition, Zoomer [40], a
recommendation method based on GNNs, introduces the concept of the region of interest
(RIO) in the recommendation process, which is also effective in mitigating the problem of
low recommendation quality due to information overload, which causes the recommen-
dation model to deviate from the intention of a particular user. Although it refines item
features and expresses user preferences more richly, it leads to the confusion of relationships
in the knowledge graph and faces the same problems of cold starts and model complexity.

3. Recommendation Method for Power Knowledge Retrieval Based on GNNs

The power knowledge retrieval recommendation method based on graph neural net-
works is mainly composed of two parts: power knowledge reasoning based on a graph
neural network and power knowledge retrieval and recommendation based on a knowl-
edge subgraph. The former mainly realizes the correlation coefficient metric among target
entities through the embedding and aggregation propagation of power entities, and it
achieves knowledge inference for graph complementation through relationship type thresh-
old judgment. The latter seeks to achieve intelligent recommendations via the knowledge
aggregation of user retrieval behavior features, forming a fusion subgraph and reordering
the recommendation list. The principles of the two techniques are described below.

3.1. Power Knowledge Reasoning Based on Graph Neural Network

Compared with traditional deep learning algorithms, graph neural network learning
can handle unstructured data like grid topology information and, at the same time, can
fit well with the mesh structure of the knowledge graph, making full use of the storage
structure of the knowledge graph. Entity feature embedding based on the graph path
relationship can obtain a better entity representation neural network (PKR-GNN) for
entity embedding and relationship complementation regarding power knowledge graph
information. Therefore, this paper proposes a power knowledge reasoning model based on
graph neural networks.

3.1.1. Graph Entity Embedding Based on Graph Neural Network

A graph G = (V, E) is defined for the power knowledge graph, where V denotes
the set of nodes in the graph and E denotes the set of edges in the graph. In the graph
convolutional neural network, the entity embedding phase performs multiple information
transfer processes [37]. For a particular node v, this is shown in Equation (1):
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mt+1
v = ∑

ω∈N(v)
Mt

v
(
ht

v, ht
ω, evω

)
(1)

mt+1
v is the message received by node v at time t+ 1. N(v) is all the neighboring points

of node v. evω is the identity matrix of the edges connecting node v and node w. Mt
v is the

message function of node at time t. Equation (1) indicates that the message received by
node v originates from the state ht

v of node v itself and the state ht
ω of the neighboring nodes

and the edge features connected to it evω. The node needs to be updated after generating
the message, as shown in Equation (2).

ht+1
v = Ut

v

(
ht

v, mt+1
v

)
(2)

Ut
v(·) is the node update function that takes the original node state ht

v and information
mt+1

v as input to obtain the new node state ht+1
v . Based on the above approach to node

modeling, the edges in the graph can be modeled similarly, with the equation shown in (3):

mt+1
evo = Mt

e
(
ht

evo , ht
v, ht

ω

)
(3)

ht+1
evω

= Ut
e

(
ht

evω
, mt+1

evω

)
(4)

Mt
e and Ut

e in Equation (3) are the message transfer function and the state update
function for the edge at time t.

In the read phase, the whole graph-based feature vector is computed using the read
function R(·), which is calculated as shown in Equation (5):

ŷ = R
({

hT
v | v ∈ G

})
(5)

ŷ is the final output vector in the equation. R(·) is the read function that reads the
graph embedding vector from the last layer of hidden states of the entire graph node. T is
the last duration in the message passing phase. The output vector ŷ can be used for the
subsequent task of estimating the system state. The function R(·) is a fully connected layer
with weight parameters derived from network training. The node messaging function in
this paper is shown in Equation (6):

mt+1
v = Wt

nht
v + ∑

ω∈N(v)
ht

ω f t(ht
vω

)
(6)

Wn in Equation (6) is the learnable parameter matrix. f is the activation function of the
fully connected layer. The message transfer function of the edge is shown in Equation (7):

mt+1
evω

= Wt
e ht

evω
+ f t(ht

v, ht
ω

)
(7)

Wt
e in the above equation is the learnable parameter matrix. The state update function

in this paper is implemented using a gated cyclic unit, as shown in Equations (8) and (9):

ht+1
v = GRU

(
ht

v, mt+1
v

)
(8)

ht+1
evω

= GRU
(

ht
evω

, mt+1
evω

)
(9)

In summary, the knowledge embedding process of electric power entities based on
graph neural networks is shown in Figure 1.

3.1.2. Knowledge Reasoning Incorporating Electricity Mapping Paths

In order to realize the potential value of information mining of the power knowl-
edge graph and then improve the completeness of the knowledge graph, we propose a
knowledge inference method based on the power graph paths. The method combines the
power entity embedding vector representation to realize the mining and prediction of entity
relationships. The framework diagram of knowledge inference incorporating mapping
paths is shown in Figure 2.
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Step 1: Obtain the entity relationship embedding matrix of the relationship to be
evaluated. Based on the power entity embedding vector, we extract the entity relationships
to be evaluated in the graph and then obtain the inference entity-related vector represen-
tation (e1, e2) and relationship list rn. By stitching the entity and relationship list to form
the relationship embedding matrix, the path information of the entity to be evaluated
can be effectively used to facilitate the selection of a suitable feature extraction model for
relationship evaluation.

Step 2: Use a CNN for the feature extraction of the relationship graph. The candidate
relations corresponding to head and tail entities are transformed into k-dimensional vectors
and used for path convolutional coding inputs. The filter size and step size have a large
impact on the feature extraction and computational overhead, so a uniform step size and
convolution kernel are used to extract features and avoid extracting meaningless local
features. We extract all the triads on the path one by one as their local patterns, and we
stitch all the features extracted by the convolution kernel to obtain their vector sequence
representation {h1, h2, · · · , hn}.

Step 3: Score the candidate relations via the attention mechanism. The vector rep-
resentation r of the candidate relationship is matched with multiple path codes of the
entity pair, and the semantic relevance score of each path is calculated and then assigned
with independent weights. The state vectors of the candidate relations are weighted and
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the probability scores P(r|e1 , e2 ) of the candidate relations and the corresponding entity
pairs are calculated, which are used to determine whether the triad is valid or not. The
calculation process is shown in Equations (10)–(13):

score(pi, r) = tanh(piWs)r (10)

αi =
exp(score(pi, r))

n
∑

i=1
exp(score(pi, r))

(11)

c =
n

∑
i=1

αi pi (12)

P(r
∣∣es, et) = f (Wp(c + r)) (13)

W in the above equation is the weight parameter and f denotes the sigmoid activation
function. The degree of association of the semantics of candidate relations is measured by
weight assignment, and thus different association paths are distinguished.

3.2. Power Knowledge Retrieval and Recommendation Based on Knowledge Subgraph

Based on the complementary power knowledge graph, this paper designs the power
knowledge retrieval and recommendation method based on a knowledge subgraph (PRR-
KS) by combining the features of user retrieval behavior. Knowledge aggregation is per-
formed for different users to form a personality subgraph, and the user retrieval subgraph is
analyzed by transforming the embedding of retrieval keywords and matching the similarity
of power entity features. Based on the topology structure, the user personality and retrieval
subgraphs are fused, and the power entities are reordered based on the subgraph path
relationship. Finally, a recommendation list for the target user is generated to achieve the
accurate prediction of the user retrieval intention. In the Figure 3, the recommendation
architecture of electricity knowledge retrieval based on a knowledge subgraph is shown.
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Step 1: User behavior feature acquisition and retrieval keyword embedding char-
acterization. For the personalized retrieval features of different users, the entity items
selected in the user’s historical retrieval records and interface interactions are mapped
to the corresponding entities in the electricity knowledge graph. Moreover, the TF-IDF
algorithm is used to assign the power entity weights according to the browsing frequency
of the items, which is calculated as shown in Equation (14):

TF− IDF(x) =
nx,j

∑k nk,j
∗ log(

N
N(x) + 1

) (14)

nx,j denotes the number of occurrences of electricity entity x for the j-th user, and
∑k nk,j denotes the total number of entities for the j-th user. N denotes the total number of
users, and N(x) denotes the total number of users containing the above electricity entity
among all users. The entity sequence HEj{(e1, w1), (e2, w2), . . . (en, wn)} is obtained by
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calculating the power entity weights of each user. en denotes the j-th power entity in
the retrieved entity sequence of user n, and wn denotes its weight. Since the electricity
knowledge graph is processed by entity disambiguation knowledge and other processes
during the construction process, it can successfully avoid problems such as multiple
meanings of words. Therefore, we use the TF-IDF algorithm as it can cover the user’s
retrieval features well.

According to the user’s retrieval content, we use a fuzzy query for matching in
the electric power knowledge graph. Firstly, we segment the user’s retrieval content by
automatic word segmentation, and, after removing the question words and tone words,
we can obtain the sequence of retrieval keywords SEQi(Seq1, Seq2, . . . Seqn). After this, we
adopt the regular matching method to match each keyword in the electric power knowledge
graph, and the matching principle mainly relies on the consistency and synonymy of the
words. Finally, we obtain the corresponding electric power entity REi(re1, re2, . . . , ren) in
the electric power knowledge graph, where ren denotes the electric power entity Seqn
corresponding to the user’s keyword Ren in this retrieval process. The keyword fuzzy
query method can maximize the query to the associated entity triad in the knowledge
graph and expand the mining of the user’s search intent scope.

Step 2: Generation of user personality subgraphs and retrieval subgraphs. The user
personality subgraphs are generated by knowledge aggregation for different users’ en-
tity sequences GWi(ei) = e1, e2, · · · , ej

(
∀ei ∈ HEj and r < k

)
. Firstly, knowledge

aggregation is performed on the target entities ei based on the path relationship r of
the power knowledge graph, and the set of user personality entities with a k-hop con-
nection relationship is obtained. After this, all the GWi in the user entity sequence
are fused according to the topological connection relationship, and the TF-ID weight
value w corresponding to each entity is stored in the user personality retrieval subgraph
GF
{
(e1, e2, w1), (e2, e4, w2), (e3, e5, w3), · · · ,

(
ei, ej, wn

)}
.

Similarly, the power entity sequence Ren obtained by the fuzzy query is
used to obtain the set of retrieval-associated entities SWi(ei) according to the above
knowledge aggregation method. Finally, we generate the user retrieval subgraph
GS
{
(e1, e2, w1), (e2, e4, w2), (e3, e5, w3), · · · ,

(
ei, ej, wn

)}
based on the path connection re-

lationship, which is used to represent the range of user retrieval features. It should be noted
that the TF-ID weights of each entity in the retrieval subgraph differ in the calculation
process. nx,j denotes the number of occurrences of the electric power entity x in the j-th
retrieval subgraph, ∑k nk,j denotes the total number of entities in the j-th subgraph, N
denotes the total number of retrieval subgraphs, and N(x) denotes the total number of
subgraphs containing the electric power entity in all retrieval subgraphs.

Step 3: Subgraph fusion and reordering of the recommendation list. We obtain
the fused entity list Res = e1, e2, e3, · · · , en

(
∀e ∈ GS or GF

)
and the fused subgraph

GM
{
(e1, e2), (e2, e4), (e3, e5), . . . ,

(
ei, ej

)}
by merging the subgraphs based on the connec-

tion relationship between the user’s personality and the retrieved subgraphs. Then, we
solve the weights of each entity in the entity list Res based on the user personality subgraph
GF, user retrieval subgraph GS, and fusion subgraph GM. They are calculated as shown in
Equations (15)–(18):

GF(wi) =

n
∑

j=0
w(ei ,ej)

∑n wn
(ei, ej) ∈ GF

(15)

GS(wi) =

n
∑

j=0
w(ei ,ej)

∑n wn
(ei, ej) ∈ GS

(16)

GM(wi) =
count(ei ,rk)

Max(count(Res,rk))
k ∈ N+ (17)

w(resi) = GM(wi) ∗ (GS(wi) + GF(wi)) (18)

Here, k denotes the hop size between the nearest neighbor entities in the fusion
subgraph, which is used as an influence factor to optimize the relationship weights of
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the retrieval subgraph and the personality subgraph. Finally, the weights of each entity
in the fused entity list are obtained and ranked according to their sizes, and the entity
recommendation list Res′ = {(e2, w2), (e6, w6), (e3, w3), · · · , (enwn)} (∀e ∈ GM) for users
is generated. The process of knowledge subgraph generation and fusion is shown in
Figure 4.
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4. Experimental Analysis
4.1. Experimental Datasets

To evaluate the knowledge inference performance of the PKR-GNN model, we use
three general-purpose datasets, WN18, WN18RR, and FB15K-237, and one self-built dataset
of the power knowledge graph for comparison experiments. The statistical information of
the used datasets as shown in Table 1.

Table 1. Information on the experimental datasets of knowledge inference.

Name Entities Relationships Training Validation Test

FB15K-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5000 5000

WN18RR 40,943 11 86,835 3034 3134
PKG 1550 16 4835 524 506

The WN18 dataset is a subset of data from WordNet, a dictionary database that
associates English nouns, verbs, adjectives, and adverbs with synonyms. The WN18
dataset is enriched with a large number of symmetric, asymmetric, and reversed relations.

The WN18RR dataset was constructed by eliminating the inverse relations from WN18,
in which more symmetric, asymmetric, and combinatorial relations in the original dataset
are retained.

The FB15K-237 dataset is extracted from the FreeBase database. This database was
mainly constructed by hand and later incorporated some data from Wikipedia, IMDB,
Flickr, and other corpora. The relations preserved in this dataset are mainly symmetric,
asymmetric, and combinatorial relations, and the inverse relations are also removed.

The power knowledge graph database (PKG) is a knowledge graph based on fault
log data, power equipment information, power operation and maintenance manuals, and
expert cases in the operation of Southern China’s power grid. The recommended method
of power knowledge retrieval and the related results obtained in this study will be applied
to this knowledge graph.
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To evaluate the retrieval recommendation performance of the PKR-GNN model,
we conduct comparative experiments using Movie Lens-1M, Lastfm-360K, two general-
purpose datasets, and a self-built dataset for power knowledge retrieval.

Movie Lens-1M is the benchmark dataset of the recommender system. Each user in
the dataset has attributes, such as gender, age, and occupation.

Lastfm-360K is a music recommendation dataset with data derived from users’ rating
records from music-on-music websites.

The power knowledge retrieval database (PKR) supplements the power knowledge
graph database with historical records of user queries and retrievals.

Detailed information contained in the two publicly available datasets along with a
self-constructed dataset is shown in Table 2. During the recommendation experiments, we
mainly use these three datasets for comparison.

Table 2. Retrieval of information on the recommended experimental datasets.

Name Users Records Training Validation Test

Movie Lens-1M 6040 1,000,000 272,115 17,535 20,466
Lastfm-360K 360,000 17,000,000 141,442 5000 5000

PKR 210 9600 86,835 3034 3134

4.2. Evaluation Metrics

The evaluation of knowledge inference models usually scores the correctness of the
triad (e1, r, e2) and determines whether the triad should be stored in the knowledge graph
based on the ranking or a high score. Our proposed PKR-GNN model focuses on the link
prediction task, which is to select entities within the set E of candidate entities e′ to replace
the head entity, i.e., (e′, r, e), e′ ∈ E, for each triad (e1, r, e2) in the test set and calculate the
score score(e′, e2). Then, all the entities are sorted according to their scores from highest to
lowest to find the ranking or position at which the correct triad is located. Correspondingly,
the ranking or position of the correct tuple obtained by replacing the tail entity is also
calculated. The average value is then taken as the final ranking of this tuple. According
to this method, the tuples in the test set are computed sequentially to obtain the sequence
of ranking of the test triad positions {pos1, pos2, . . . , posn}. We evaluate all models using
three metrics: the mean rank (MR), mean reciprocated rank (MRR), and items with the first
K hits (Hit@K). Among them, a smaller the value of the MR metric and a larger value for
MRR and Hit@K demonstrate the accuracy of the model’s relationship predictions. They
are calculated as shown in (19)–(22):

MR =
1
n

n

∑
i=1

posi (19)

MRR =
1
n

n

∑
i=1

1
posi

(20)

Hit@K =
1
n

n

∑
i=1

f (posi, K) (21)

f (posi, K) =
{

1 posi ≤ 1
0 posi > K

(22)

Search prediction effectiveness evaluation uses the accuracy rate P (precision, P), recall
rate R (recall, R), and F1 score (F1) as the evaluation criteria of the model. Among them, the
accuracy rate reflects the extent to which the item or entity in the result recommendation
list is selected by the user to check, which is calculated as shown in Equation (23). The
recall rate reflects the extent to which the item entity that the user chooses to consult in the
test set is in the recommendation list provided to the user, which is calculated as shown in
Equation (24).

P =
TP

TP + FP
(23)
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R =
TP

TP + FN
(24)

F1 =
2PR

P + R
(25)

4.3. Experimental Environment and Parameter Settings

In this paper, the word vector dimension of the entity embedding part of the power
knowledge map is 200, and each dataset is divided into 100 copies, the experimental epoch
number is set to 1000 rounds, and the validation is performed every 100 rounds. The output
dimension of the first layer of the convolutional neural network is set to 64, the output
dimension of the second layer is set to 32, the batch size is 128, the epoch number is 200, the
learning rate is set to 0.001, and the dropout is set to 0.5. We choose the Adam optimizer
for training and use the L2 regularization method to prevent overfitting.

The convolutional neural network for the knowledge inference part uses three con-
volutional layers, one fully connected hidden layer, and one output layer. The dropout
value is set to 0.8, the head in the self-attention mechanism is set to 6, and the bias variable
is set to 10. In the experiments that involve fusing knowledge subgraphs for retrieval
recommendation, the model is optimized by comparatively adjusting the values of the
hyperparameters K of the knowledge subgraphs.

The experimental environment is implemented using the deep learning framework
PyTorch with CUDA acceleration, and the relevant information is shown in Table 3.

Table 3. Experimental environment parameters configuration.

Environment Configuration

Operating System Ubuntu 16.04
RAM 32 GB
GPU GeForce RTX 3070ti × 2
CPU Intel Core i7-10700K @ 3.80 GHz

Language Python 3.7
Framework Pytorch 1.12.0

4.4. Analysis of Experimental Results
4.4.1. Evaluation of Power Knowledge Reasoning

To fully demonstrate the superiority of the proposed method in this paper, the experi-
ments use two knowledge inference methods, CompGCN and HOLE, as the comparison
models. Some of the results are obtained from the original paper, and the models are
evaluated according to the evaluation metrics and datasets, respectively.

ConvE [21] is a semantic matching model that extracts semantic information by two-
dimensional convolution through multilayer nonlinear operations with high expressive
power. This method effectively improves the parameter efficiency and model training
speed for multilayer neural networks for knowledge mapping link prediction.

Rotate3D [41] is a knowledge graph embedding model that maps entities into 3D space
and defines relationships as rotations from head entities to tail entities. This method is able
to naturally maintain the order of relationship combinations by using the non-exchange
combination property of rotation in 3D space and performs better in link prediction and
path query answering.

DensE [42] performs embedding learning for knowledge graphs based on the transla-
tional distance, and it uses a distance-based scoring function to measure the reasonableness
of a relational fact as the distance between two entities. The method decomposes complex
multiple logical relations and reduces the complexity of the model while preserving its
geometric interpretation. It has good performance in complex relational reasoning.

As shown in Table 4, with the comparative evaluation results of power knowledge
inference in Figure 5, where the bolded font represents the optimal experimental results
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among several models, it is clear that our proposed PKR-GNN method performs better on
the FB15K-237 and PKG datasets. The method reduces the MR by 12 and 106 compared to
the Rotate3D model, improves the MRR by 0.038 and 0.1, and has the highest score of Hit@1.
The reason for this is that the PKR-GNN method not only uses graph convolutional neural
networks for the feature extraction of the mapping structure, but also combines attention
mechanisms and convolutional neural networks to fully perceive the path and power
equipment topology information of entities. Moreover, the inference effect of PKR-GNN
is similar to that of the Rotate3D model in both the WN18 and WN18RR datasets. This is
due to the fact that the entity relationships within these two types of datasets are more
semantic and lexical associations, reducing the advantage of PKR-GNN in fusing path
relationships. In contrast to the newer model, the DensE model, the PKR-GNN method
has a lower MRR and Hit@1 index and a higher Hit@10 value on the FB15K-237 database.
The reason for this may be the fact that this database has more composite relations and
therefore performs better in terms of the best inference results, but it affects the accuracy of
subsequent relational inference. In summary, our proposed PKR-GNN approach is able to
achieve better knowledge inference and performs best in the domain-oriented knowledge
inference process.

Table 4. Comparative assessment results of power knowledge reasoning.

Dataset Model ConvE Rotate3D DensE PKR-GNN

WN18

MR 374 214 245 231
MRR 94.3 95.1 96.1 96.3
Hit@1 93.5 94.5 94.1 94.4

Hit@10 95.6 96.1 96.3 96.5

WN18RR

MR 4187 3328 3281 3261
MRR 43.0 48.9 47.5 47.6
Hit@1 40.0 44.2 43.2 43.5

Hit@10 44.0 57.9 59.2 59.3

FB15K-237

MR 244 165 155 153
MRR 32.5 34.7 39.1 38.5
Hit@1 23.7 25.0 27.5 27.3

Hit@10 50.1 54.3 53.2 56.3

PKG

MR 671 435 517 329
MRR 83.0 79.0 90.1 89.3
Hit@1 76.2 73.6 78.3 82.7

Hit@10 81.1 85.4 83.1 84.2

4.4.2. Electricity Knowledge Retrieval Recommendation Evaluation

The selection of the hop count K in the knowledge subgraph has a large influence on
the user intention mining in the process of power knowledge retrieval recommendation.
Therefore, in order to select suitable parameter values to achieve the accurate prediction
of user retrieval intention, this experiment compares different K parameter values. The
training effect of the model when K = 1, 2, and 3, respectively, is shown in the figure below.

From Figure 6, it can be seen that our proposed PRR-KS model has a good convergence
effect on the training and test sets, and the fluctuations gradually stabilize with the increase
in the number of iterations. In particular, the loss value is the smallest and most stable
when the number of hops K of the knowledge subgraph is taken as 2. The reason for this
is that when the value of K is too small, the effect of recommendation is better than that
of K = 3, but there is a limitation in the user’s personalized intent perception. This is
because, at K = 3, it focuses too much on the user’s historical state and ignores the retrieval
intent, which increases the interference for the user’s retrieval intent matching.
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In order to fully demonstrate the superiority of the proposed method, the knowledge
subgraph at K = 2 is selected for search intention prediction, and two recommendation meth-
ods, RippleNet and DeepFM, are used as comparison models. The models are evaluated
according to the evaluation metrics and datasets, respectively.

RippleNet [38] is a hybrid recommendation model that propagates user preferences
by introducing knowledge graphs, and the inputs are the original features of users and
items as well as knowledge graphs.

DeepFM [23] is a deep learning recommendation model that performs the extraction
of low-order features and the extraction of high-order features via a neural network module
and a factorizer module, respectively, and uses both parts as feature inputs.

KGIN [43] is a knowledge graph recommendation model incorporating graph neural
networks, and it designs a new GNN information aggregation mechanism that integrates
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sequences of relationships with long-range correlations in a recursive form to enable user
behavioral intent prediction.

As shown in Table 5 and Figure 7, where the bolded font represents the optimal
experimental results among several models. The PRR-KS method proposed in this paper
has the highest F1 value in the comparison experiments of the three datasets, with an
average improvement of approximately 7 compared to KGIN, RippleNet, and DeepFM.
RippleNet obtains user portraits through path association of the knowledge graph to
form a recommendation result ranking, and the accuracy recommendation effect on the
Lastfm-360K dataset is similar to that of the PRR-KS method. The PRR-KS method, on
the other hand, performs entity embedding and knowledge inference on the knowledge
graph through the graph neural network on this basis, and it improves the recall rate by
1.7% compared with the RippleNet model. The recall rate of the PRR-KS method on the
Movie Lens-1M dataset is higher than that of the DeepFM model. This is due to the fact
that its linear model structure cannot fully exploit the implicit information in the data and
ignores the interactions between features, while the PRR-KS method fully takes this into
account in the knowledge inference and path weight reconstruction. Comparing PRR-KS
with the KGIN model, PRR- KS has a better intention prediction effect, and the evaluation
metrics are higher than that of KGIN on both public datasets. However, the R metric in the
PRR-KS dataset is slightly poorer, which is supposed to be due to the fact that there are
fewer long-distance pairs of entities in this database, and thus its information aggregation
is stronger in the process of relevance analysis. In summary, the PRR-KS method proposed
in this paper can effectively mine potential knowledge associations and achieve better
recommendation results.

Table 5. Comparison evaluation results of power knowledge retrieval recommendations.

Dataset Model DeepFM RippleNet KGIN PRR-KS

Movie Lens-1M
P 77.1 73.6 76.8 76.5
R 73.4 71.2 72.9 74.2

F1 75.2 72.4 74.8 75.3

Lastfm-360K
P 72.5 82.4 80.6 81.6
R 68.2 77.9 78.7 79.6
F1 70.3 80.1 79.6 80.5

PKR
P 79.3 82.2 88.1 88.3
R 71.4 80.2 86.5 86.3
F1 75.1 81.2 87.2 87.3
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The above experiments show that the knowledge inference and retrieval recommenda-
tion of PKR-GNN are effective, and it can efficiently and accurately analyze and extract
the user’s search tendency by combining the power knowledge graph with the user’s
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personalized data. It can match them to obtain user retrieval features that are closer to the
user’s search intention.

5. Conclusions

To address the problems of grid knowledge and data screening difficulties, we propose
a retrieval recommendation method for power fault knowledge based on graph neural
networks. Firstly, a graph-neural-network-based power knowledge inference model is
constructed to mine the network structure information of the power fault knowledge graph
to achieve the deep semantic embedding of power entities and relationships. Secondly,
the potential power entity relationships are mined by fusing the power knowledge graph
paths, and the power fault knowledge graph is complemented by knowledge inference.
Through experimental comparison with the classical models of ConvE and Rotate3D, the
experimental results show that the model has a certain generalization ability in knowledge
inference and performs better in terms of MR, Hit@10, and other indexes on four datasets.
Then, we design a recommendation method for electricity knowledge retrieval based on
knowledge subgraphs, which forms a personality subgraph and a user retrieval subgraph
through knowledge aggregation. Based on the fusion subgraphs, we realize the electric
power entities for reordering and generate recommendation lists for target users to predict
the user retrieval intention. By comparison with the classical models of RippleNet and
DeepFM, the F1 value of retrieval recommendation on three datasets reaches 87.3, indi-
cating that our method can effectively assist users to achieve the efficient operation and
maintenance of power systems.

Although the model has good knowledge inference and recommendation capabilities,
due to the domain specialization of the electricity knowledge graph, a large number of
expert dictionaries are required and must be relied upon in processes such as keyword
matching. Therefore, the model has some limitations when it is applied in other domains.
If it needs to be applied to other domains, such as healthcare, the focus should be on
improving the generalization ability of the model. Meanwhile, the network structure of
this method has a relatively large number of parameters and the model relies on a single
training environment. This leads to the problem of slow response times in the inference
process of the model, which affects the user’s retrieval experience.

The next step will be to investigate adaptive matching for multi-domain retrieval,
using either a large model training method or expanding the existing lexicon. On the
model side, we will consider reducing the number of network parameters to improve the
training efficiency or combining parallel training methods to improve the inference speed
of the model and optimizing the parameter settings to improve the convergence speed and
stability of the model.
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