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Abstract: In today’s digital era, our lives are deeply intertwined with advancements in digital elec-
tronics and Radio Frequency (RF) communications. From cell phones to laptops, and from Wireless
Fidelity (Wi-Fi) to Radio Frequency IDentification (RFID) technology, we rely on a range of electronic
devices for everyday tasks. As technology continues to evolve, it presents innovative ways to harness
existing resources more efficiently. One remarkable example of this adaptability is the utilization
of Wi-Fi networks for Wi-Fi sensing. With Wi-Fi sensing, we can repurpose existing networking
devices not only for connectivity but also for essential functions like motion detection for security
systems, human motion tracking, fall detection, personal identification, and gesture recognition using
Machine Learning (ML) techniques. Integrating Wi-Fi signals into sensing applications expands
their potential across various domains. At the Gamgee, we are actively researching the utilization of
Wi-Fi signals for Wi-Fi sensing, aiming to provide our clients with more valuable services alongside
connectivity and control. This paper presents an orchestration of baseline experiments, analyzing
a variety of machine learning algorithms to identify the most suitable one for Wi-Fi-based motion
detection. We use a publicly available Wi-Fi dataset based on Channel State Information (CSI) for
benchmarking and conduct a comprehensive comparison of different machine learning techniques
in the classification domain. We evaluate nine distinct ML techniques, encompassing both shallow
learning (SL) and deep learning (DL) methods, to determine the most effective approach for motion
detection using Wi-Fi router CSI data. Our assessment involves six performance metrics to gauge the
effectiveness of each machine learning technique.

Keywords: motion detection; Wi-Fi sensing; machine learning; shallow learning; deep learning;
channel state information

1. Introduction

Though Wi-Fi is not the only means of motion sensing, there are other means of
detecting motion in any premises using Passive Infra-Red (PIR) sensors, vision sensors,
ultrasound sensors, and other RF-based sensors such as RFID-based sensors. Alternatively,
a lot of research has been carried out on improved and efficient solutions using low-energy
communications devices like Bluetooth Low Energy (BLE) devices. The authors in [1]
presented a scalable and non-intrusive method to detect occupancy in building zones,
utilizing BLE technology in smartphones. Signal strength data collected by BLE beacons
were processed through machine learning models to determine occupants’ locations within
zones. Both supervised ensemble and semi-supervised clustering models were assessed,
with the latter showing efficient performance. The Singapore case study showcased up to
86% accuracy in locating occupants. Furthermore, this study identified distinct occupancy
profiles based on movement patterns, offering insights for building management. The
method’s scalability suggested broader practicality. The downside of this approach is
its dependence on the occupants carrying cell phones, plus the BLE technology of the
cell phone needs to be active for the correct operation of this method. Furthermore, in
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circumstances where a person is equipped with more than one BLE-enabled device, such as
a cell phone, smart watch, or earphone, the estimated occupancy of the proposed method
can end up with inaccuracies in the results.

As mentioned above, numerous ways of motion detection with high accuracies using
various dedicated hardware technologies have been presented by researchers globally,
but the goal of the research presented in this paper is to achieve motion detection using
only the pre-existing Wi-Fi devices in the customers’ premises with maximum precision,
with minimum to no dependencies on other hardware like cell phones with BLE, and
without introducing new hardware overhead to customers, keeping the privacy of the
customers intact as there will be no images or video data being recorded or processed
when applying Wi-Fi sensing. Specialized hardware, such as motion detection sensors with
higher sensitivity, can detect motion more precisely, and Bluetooth low-energy devices
can detect premises occupancy more efficiently with lower power consumption. Similarly,
active and passive RFID tags can be used to identify a certain device and or person
with which it has been associated. The actual percentage of precision achieved using
different hardware and software strategies is highlighted in the literature review section.
On a quick note, use of BLE can give a precision of up to 86% [1] in premises occupancy
estimation; passive processing of Wi-Fi CSI data using AI has given 97% precision for
motion detection; and a precision of 95% was achieved using Ultra Wide Band (UWB)
technology for Human Activity Recognition (HAR). The use of these specialized hardware
technologies for different goals will have a higher impact on the overall cost for the service
provider as well as for the consumer. Therefore, the research work presented in this paper
focuses on achieving Wi-Fi sensing using only the pre-existing Wi-Fi router in consumers’
premises with improvements and add-ons on the router firmware and on customers’ mobile
apps to support features using Wi-Fi sensing.

The Wi-Fi routers in our daily lives are mainly used for internet and intranet con-
nectivity, mostly for communications, entertainment, data exchange, etc. The channel
state information (CSI) and Received Signal Strength Indicator (RSSI) statistics are utilized
mainly to analyze Wi-Fi channel conditions and adjust router configuration as necessary.
Because people inside a Wi-Fi router’s range also cause radio waves used for Wi-Fi commu-
nication between devices to be distorted, examination of the distortion parameters allows
one to infer information about nearby activity without actually using the visualization
and PIR sensing devices. The Wi-Fi signal being transferred between Wi-Fi networking
devices in the target premises is the main focus of Wi-Fi sensing. To detect distortions in the
samples produced by movements in the target premises, we use the CSI of the Wi-Fi signal.

An indicator of signal intensity is the RSSI. Although it has been actively used for
active localization based on the Wi-Fi fingerprinting technique or as a metric for passive
tracking of mobile devices, it is in fact quite unstable and varies from vendor to vendor.
Additionally, it cannot accurately capture changes in signal caused by human movements,
especially if a person is not directly between an access point and a Wi-Fi router. The CSI
approach offers more precise information on the state of the channel. At each sub-carrier
frequency, it monitors the amplitude and phase distortions of the wireless signals that are
in motion for each antenna pair of the transmitter and receiver. As a result, CSI variations
in the time domain exhibit various patterns for various people, activities, etc., and this can
be used for Wi-Fi sensing in intruder alarm systems, gesture recognition, and healthcare
applications, particularly fall detection, etc.

Using orthogonal frequency division multiplexing (OFDM) and Multiple-Input
Multiple-Output (MIMO) technology, the CSI saves the wireless signal amplitude and
phase value information for each pair of transmit-receiver antennas in an OFDM subcarrier.
You can imagine a 2.4-GHz band as a narrowband flat-fading channel, similar to wireless
technology 802.11n, and it can be represented using the following straightforward equation:

Y = [H] . [X] + [N] (1)
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Here, X and Y stand in for the transmitter and receiver’s respective vectors, N for
the Gaussian noise vector that is always present in the RF channel, and H for the channel
matrix. Two TP-Link Archer C7 routers have been utilized in the experimental Wi-Fi sensing
configuration, one as a transmitter and the other as a receiver. There are three antennas
on both the CSI transmitter and receiver routers. As a result, our wireless communication
system is 3 × 3 MIMO, and the CSI data are divided into nine streams in accordance with
the nine pairs of transmitter-receiver links. For a device that distributes each stream’s n
subcarriers evenly among the channel’s 56 subcarriers, a 20 MHz device. The size of the
CSI data group matrix becomes nine rows and n columns, respectively, which leads to the
(9 × n) data groups derived from each received CSI packet.

As CSI contains noises produced by indoor environments, the CSI data packets re-
ceived at the receiver are quite noisy. Additionally, internal state transitions in the wireless
signal transmitter and receiver devices are brought on by changes in transmission power,
transmission rate adaptation, and internal reference level changes. Low-pass filters are
used to first denoise the CSI data before the first data processing operations, such as data
fusion employing correlation to reduce redundancy without losing important information,
are implemented. CSI data can be utilized for motion detection by utilizing amplitude and
or phase variance when the data processing is complete. It can also be used to train machine
learning algorithms for motion detection, gesture recognition, and personal identification,
among other things.

In the orchestration process, we have considered several machine learning (ML)
algorithms and applied both shallow learning (SL) and deep learning algorithms to the CSI
data collected. We employed classification-based ML algorithms for operations like motion
detection and clustering-based ML algorithms for unique personal identification. The list
of SL algorithms considered includes SVM, naïve Bayes, decision tree, K-nearest neighbors,
and K-means algorithms, and the list of DL algorithms considered includes recurrent
neural networks (RNN), convolutional neural networks (CN), and deep neural networks
(DNN), respectively. These algorithms were trained and validated using a harmonized set
of samples from publicly available Wi-Fi CSI datasets from CRAWDAD and CSI datasets
from IEEE DataPort. The performance metrics were analyzed from a set of results obtained
using each of the ML algorithms considered to compare the performance and efficiency
of each ML algorithm and select the most suitable for Wi-Fi sensing using the CSI data
captured from TP-Link Archer C7 routers in the target premises.

The novelty and main contributions of this paper, which distinguish this work from
pre-existing research work, are as follows:

Selection of Machine Learning Algorithms: The selection of machine learning algo-
rithms is carried out for the comparison of performance when Wi-Fi sensing data, i.e., CSI
data, is presented to these machine learning algorithms. The selected set of machine learn-
ing algorithms from both shallow learning (SL) and deep learning (DL) are chosen based
on the type of solutions they provide. The presented research work in this paper only
focuses on those machine learning algorithms that address the classification problem, i.e.,
classification of data for deciding whether motion has been detected or not.

Training and Evaluation of ML Models: All nine ML models, i.e., six SL and three
DL models, are trained using the Wi-Fi CSI dataset from the IEEE data port repository,
which contains a labeled dataset for humanoid motion detection. Hence, all the training
carried out on these models was supervised machine learning. As mentioned earlier, the
IEEE dataset for Wi-Fi sensing, i.e., the Widar dataset, was initially used for benchmarking
and comparing the performance of ML models, which was then replaced by a locally
captured CSI-based Wi-Fi dataset. In the locally captured dataset, two classes have been
used, i.e., clean with no motion at all and another with a person walking. The number of
training samples in the Widar dataset used is 35 k, and the number of samples in the testing
data are 9 k. The number of training data samples used in locally captured CSI data are 8 k,
and the number of testing data samples used in locally captured CSI data are 2 k.
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MADM for ranking ML Algorithms: Last but not least, in this research work, after
carrying out performance analysis of each machine learning algorithm, the multi-attribute
decision-making algorithm has been employed to systematically rank each machine learn-
ing algorithm. The MADM is introduced because there are multiple performance metrics
against each ML algorithm, which makes it very hard to select the most appropriate ML
algorithms in this case. Therefore, MADM is utilized here as it best suits the problem
when we have nine different ML algorithms, with each algorithm having six different
performance attributes.

The structure of this paper is drafted in such a way that, followed by the brief intro-
duction presented in this section, Section 2 presents the literature review, Section 3 presents
the proposed work and methods, Section 4 presents the results, which are followed by
discussion in Section 5, and finally the conclusion in Section 6 and references in the last
section of this paper.

2. Literature Review

A vast number of researchers globally have performed research on Wi-Fi sensing using
CSI, RSSI, and other methods, mostly focusing on CSI and RSSI methods. The following set
of paragraphs sheds light on different research projects carried out globally by researchers
to perform Wi-Fi sensing.

Different sensing technologies are used to examine diverse human actions and gestures
to perform human activity recognition efficiently. These technologies include sensors
for motion detection [2], sensors for vision-based detection [3], sensors for sound-based
sensing [4], and pyroelectric infrared light-based sensors [5]. To measure body motions
using motion sensor technology, people typically need to wear specialized devices, which
is not always practical. Approaches using cameras and other devices or sensors based
on the visual data can function effectively in specific lighting conditions, which can be
easily obstructed by smoke, opaque objects, or low illumination conditions. Additionally,
because acoustic signals attenuate quickly, acoustic-based techniques are unstable in the
presence of background noise and outside sound interference, and their sensing range is
constrained. Overall, using traditional approaches requires more work due to complex
hardware installation and a variety of maintenance requirements. A low-cost, non-intrusive
approach to recording human body motions associated with daily activities is desired
to overcome the restrictions discussed in this article. Recently, an increasing amount
of research has focused on radio frequency (RF)-based approaches for human activity
detection, such as Wi-Fi. Nearly every electronic device in homes and offices, including
smart speakers (like the Amazon Echo and Apple HomePod), smart TVs, smart thermostats,
and home security systems, may now be connected wirelessly thanks to the widespread
use of Wi-Fi technology. Indoor spaces typically allow Wi-Fi signals to spread out over tens
of meters, and the wireless connections between these smart gadgets create an exhaustive
combination of the reflected light rays that reaches each corner and narrow place. People’s
presence and associated body motion will have a significant impact on wireless signals,
leading to significant variations in the amplitude and phase of received signals. These
changes can be used to record human body movements associated with daily activities.

The research work presented in [6] aimed to tackle indoor occupancy estimation
challenges using a combination of Bluetooth low energy (BLE) technology and machine
learning. They developed a prototype system that comprises BLE beacons, a mobile appli-
cation, and a remote server. By employing three distinct machine learning methods, they
classified occupancy based on the data collected from these beacons. Their experimentation
demonstrated the effectiveness of this approach in accurately estimating occupancy. The
server handles data processing and training, eliminating the need for complex operations
on the mobile application.

The authors in [7] presented “Plug-Mate”, an IoT-based plug load management system
that optimizes energy use and user comfort via intelligent automation leveraged high-
resolution occupancy data, advanced plug load recognition, and personalized controls. In
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a 5-month university office study, six strategies were evaluated, with the most successful
achieving 51.7% energy savings across plug load types, a 7.5% reduction in building energy
use, and high user satisfaction.

The paper [8] addressed the energy consumption in commercial buildings, focusing
on heating, ventilation, and air conditioning (HVAC) systems. It introduced “Sentinel”, a
system that utilizes existing Wi-Fi infrastructure and occupants’ smartphones for precise
HVAC control based on occupancy. Unlike traditional sensor-based solutions, Sentinel
reduces deployment costs. It achieved 86% accurate occupancy detection within office
spaces, with minimal errors attributed to smartphone power management. In the real-
world test, Sentinel controlled 23% of HVAC zones, resulting in a prominent 17.8% energy
savings compared to static scheduling.

Research in [9] employed diverse sensor data for predicting occupancy in various
room types. A new feature selection algorithm was introduced, surpassing the common
approach by enhancing model performance with fewer sensors. Outcomes revealed that
indoor CO2 levels and Wi-Fi-connected devices are pivotal in predicting occupancy across
offices, libraries, and lecture rooms. Optimal model performance was attained using distinct
deep learning architectures for each room type. The algorithm’s usability was extended
to other datasets, providing insights to curtail sensor needs and deployment expenses in
building management.

In [10], a robust Wi-Fi-based passive sensing technique named CNN-ABLSTM was
introduced, combining CNN and attention-based bi-directional LSTM to address chal-
lenges like low sensing accuracy and high computational complexity. By utilizing CSI
for Wi-Fi passive sensing, it achieves precise human activity recognition. CNN extracts
features, reducing redundancy, while the attention mechanism improves model robustness.
Simulation results show that CNN-ABLSTM improves recognition accuracy by up to 4%,
reduces computation significantly, and maintains 97% accuracy across different scenarios
and objects. Compared to traditional approaches, this DL-based method outperforms them,
making it promising for advanced wireless communication systems.

Also, the increasing elderly population and the strain on healthcare services due
to the COVID-19 pandemic have led to a demand for technological solutions in elderly
homes. Research [11] introduced a real-time, noninvasive sensing system that utilized radio
frequency (RF) sensing and channel state information (CSI) reports to monitor activities
of daily living (ADLs). Machine learning, specifically the random forest algorithm, was
employed to accurately classify ADL categories like “movement”, “empty room”, and
“no activity”, which achieved 100% accuracy on new testing data. The system detected
movement using Wi-Fi signals without the need for wearables, and disruptions in CSI data
indicate the presence of a person. This proposed real-time monitoring system enhances
elderly care.

Another study [12] focused on ambient computing and used Wi-Fi channel state in-
formation (CSI) as a non-contact method for recognizing human activities indoors. LSTM
outperformed CNN, and hybrid models achieved 95.3% accuracy in multi-activity classifi-
cation. The research shows that RF sensing for indoor human activity recognition is feasible
and offers privacy-friendly alternatives to vision-based systems. The study also suggested
further investigation into the system’s resilience in diverse environments and its ability to
recognize activities for multiple users. Overall, LSTM-based RF sensing proves effective for
indoor activity recognition and holds significant potential in various applications.

A research paper [13] presented a sign language recognition system based on deep
learning and Wi-Fi CSI data. The proposed model utilized CNN, LSTM, and ABLSTM
with different optimizers and preprocessing methods. It achieved impressive recognition
accuracy of 99.855%, 99.674%, 99.735, and 93.84% in various environments and multi-user
scenarios. The study demonstrated the effectiveness of using Wi-Fi signals for gesture
recognition, surpassing other deep learning approaches. Additionally, the researchers
suggested considering transfer learning like ResNet for future improvements.
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Another study [14] explored device-free human activity recognition (HAR) using
Wi-Fi CSI signals. Two algorithms, SVM and LSTM, are proposed for classification, with
SVM employing wavelet analysis for preprocessing and feature extraction, while LSTM
processes raw data directly. The research achieved high accuracy in detecting various
human activities, including falls and counting individuals in a room.

A similar survey [15] investigated device-free human gesture recognition using Wi-Fi
channel state information (CSI). It categorized recognition into device-based and device-free
sensing methods and highlighted advancements in Wi-Fi CSI. The study examined model-
based and learning-based approaches, discussing their recognition performance and signal
processing techniques. Deep learning methods showed promise with large datasets, while
model-based approaches performed well with a single participant. Challenges included
handling non-Gaussian signal distributions and capturing fine-grained information.

Another article [16] presented EfficientFi, a new wireless sensing framework for large-
scale Wi-Fi applications in smart homes. By overcoming existing limitations, EfficientFi
used quantized representation learning with joint recognition, enabling efficient compres-
sion of Wi-Fi CSI data at the edge and accurate sensing tasks. It achieved remarkable data
compression and high accuracy in human activity recognition and identification. Compared
to classic methods, EfficientFi outperformed in compressive sensing and deep compression,
demonstrating its potential for IoT-cloud-enabled Wi-Fi sensing applications.

The study in [17] also focused on human activity recognition (HAR) using ultra-
wideband (UWB) technology and Wi-Fi CSI. Through experiments, the UWB CIR data
achieved a remarkable F1-score of 95.53% in activity classification. In comparison, Wi-
Fi CSI data achieved F1-scores of 92.24% and 80.89% with denoised amplitude values
and spectrograms, respectively, for the same activities. The research highlighted UWB’s
superiority over Wi-Fi for HAR and offered advantages like a smaller data dimension
and lower signal processing requirements. UWB technology proved valuable not only for
localization/tracking but also for device-free HAR.

Researchers in [18] focused on a contactless respiration detection system using Wi-
Fi CSI. The ResFi system achieved a remarkable 96.05% accuracy in detecting human
respiration, outperforming traditional machine learning methods. The study emphasized
the potential of learning-based approaches for non-contact vital signal detection.

A similar study [19] concentrated on detecting human presence in rooms without the
need for devices using Wi-Fi CSI data. The proposed approach employed the dynamic
time wrapping (DTW) algorithm to compare empty and filled rooms, achieving accuracy
comparable to existing methods. Experimental results demonstrated a 99.21% accuracy
comparable to a 99.98 accuracy with the RF algorithm.

The RSSI CSI, which is readily available on many commercial network interface cards
with modified driver software, allowed the researchers to measure the physical layer param-
eters of the wireless channel and carry out motion detection using the Wi-Fi signals. Wi-Fi
signals can be modified to transmit wireless signals on a radio platform defined by a univer-
sal software radio peripheral (USRP), such as frequency modulated carrier wave (FMCW),
to determine the frequency shift of the signal brought on by human motion in the target
premises [20]. The following Table 1 presents the overall comparison between different
strategies in the literature, considering three different attributes: methodology considered,
application of the methodology, and key findings of the corresponding strategies.

The research methods reviewed above target different domains, i.e., starting from
premises occupancy estimation, smart energy management, HVAC, HAR, respiration
detection, and motion detection, using a variety of approaches with different hardware
and software assistance. The research work performed so far in the literature has mostly
applied some analytical or artificial intelligence (AI) or machine learning (ML)-based
methods, with some support from theoretical arguments in the literature. The lack of
comparison between different ML methods, particularly a comparison between shallow
learning (SL) and deep learning (DL) models for motion detection using a Wi-Fi-CSI-based
dataset, has been identified and explored in the research work presented in this paper.
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Furthermore, the selection of the most efficient ML algorithm has been carried out using
the systematic approach of a multi-attribute decision-making algorithm, which was not
seen in the literature. The work presented in this paper contributes to the validation of the
process for selecting the best ML techniques in motion detection using Wi-Fi sensing. It
also explores the behavior of various ML algorithms, i.e., SL and DL, when a CSI-based
dataset is presented to these ML algorithms for training and testing.

Table 1. Comparison of approaches in literature.

Research Work Methodology Application Key Findings

Filippoupolitis et al. [6] Bluetooth Low Energy Emergency Management Implementation of BLE-based
occupancy detection.

Tekler et al. [7] IoT-based Plug Load Plug load management IoT-driven system for smart
buildings.

Balaji et al. [8] Wi-Fi Infrastructure HVAC Actuation Utilizing existing Wi-Fi
infrastructure for HVAC control.

Tekler and Chong [9] Deep Learning Occupancy Prediction Minimum sensing strategy using
deep learning.

He et al. [10] CSI-based Wi-Fi Sensing Passive Sensing Robust Wi-Fi passive sensing using
deep learning.

Taylor et al. [11] Real-Time Activity Sensing Activity Sensing Identification of optimal machine
learning techniques.

Khan et al. [12] Flexible SDR Human Activity Detection Contactless human activity
detection using deep learning.

Bastwesy et al. [13] Wi-Fi CSI Sign Language Recognition Deep learning for sign language
recognition.

Damodaran et al. [14] Wi-Fi CSI Activity and Fall Recognition Device-free human activity and fall
detection.

Ahmed et al. [15] Wi-Fi CSI Gesture Recognition Survey of device-free gesture
recognition.

Yang et al. [16] Efficient Wi-Fi Sensing Wi-Fi Sensing Large-scale lightweight Wi-Fi
sensing via CSI compression.

Bocus et al. [17] UWB CIR vs. Wi-Fi CSI Activity Recognition Comparison of UWB CIR and Wi-Fi
CSI for activity recognition.

Hu et al. [18] Wi-Fi-Enabled Respiration
Detection Respiration Detection Wi-Fi-based device-free respiration

detection using deep learning.

Soto et al. [19] Wi-Fi CSI-based Presence
Detection Presence Detection Human presence detection using

Wi-Fi CSI and DTW features.

Adib et al. [20] 3D Tracking via Radio
Reflections 3D Tracking 3D tracking using body radio

reflections.

Proposed work CSI based W-Fi sensing Wi-Fi sending motion
detection

Comparison of ML models for
Wi-Fi sensing using CSI data

All the research work done so far has focused solely on methods, tuning, and utiliza-
tion of machine learning (ML) techniques to achieve the goal of Wi-Fi sensing to detect
humanoid motion in the coverage area of the Wi-Fi network. In this article, a broader aspect
of Wi-Fi sensing has been addressed, which is to analyze a set of machine learning algo-
rithms to find out which ML methods are more suitable for the problem of Wi-Fi sensing
when using the CSI data for training and detecting motion in the Wi-Fi coverage area. For
this purpose, a number of shallow learning (SL) and deep learning (DL) algorithms were
selected based on their characteristics, such as suitability for tabular data and classification
capabilities, to suit our requirements for motion detection using Wi-Fi CSI data.
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2.1. Wi-Fi Sensing Techniques

Various types of techniques have been explored by researchers globally when implying
Wi-Fi sensing for motion detection purposes. Here we have classified these techniques
based on the hardware deployed for Wi-Fi sensing, i.e., using commercial off-the-shelf
(COTS) hardware such as Wi-Fi routers used at home for Wi-Fi access and using customized
hardware such as software-defined radio, e.g., URSP, FPGA boards, etc.

2.1.1. The COTS Hardware-Based Wi-Fi Sensing Techniques

Techniques using COTS routers involve the use of the received signal strength indicator
(RSSI) and channel state information (CSI).

RSSI: data is available in most Wi-Fi devices, which indicates the path loss of wireless
signals with respect to a certain distance and can be derived following the log-normal
distance path loss (LDPL) model.

The CSI: To detect human activity with accuracy and dependability, Wi-Fi signal data
are used. In order to accurately reflect the combined effect of, for instance, scattering, fading,
and power decline with distance, more fine-grained CSI must be captured. Since wireless
signals in an indoor setting could practically travel through any corner, the presence or
movement of a human body would affect wireless signal propagation, leading to minute
variations in numerous reflected rays. The measurable CSI values are created by all of
these multi-path rays, which can also be utilized to identify and monitor human body
movements. In contrast to RSSI, CSI is a set of complex values for several orthogonal
frequency-division multiplexing (OFDM) subcarriers that include both amplitude and
phase information. The effects of multi-path fading vary for every channel using a little
variance in the center frequency, and all the subcarriers collectively represent the wireless
channel in a fine-grained way. With customized drivers, any device with commercial
Wi-Fi interfaces may measure CSI, just like RSSI. Researchers are now using it often to
accomplish tasks including human intrusion detection, walking speed/direction estimation,
and human activity recognition [21,22].

2.1.2. The Customized Hardware-Based Wi-Fi Sensing Techniques

Similar to the COTS device-based Wi-Fi sensing techniques, two main approaches
to the customized hardware-based Wi-Fi sensing techniques are described in this article.
These two techniques are frequency modulated carrier wave (FMCW) and Doppler shift
methods.

FMCW technique: The measurement of human motion based on radio reflection from
the human body, particularly by calculating the amount of time needed for the Wi-Fi signal
to go from the transmitter to the reflecting body and back to the receiver. Given that
wireless transmissions often move at the speed of light, determining the time of flight for
the Wi-Fi signal is not a simple operation. To calculate the radio signal’s time of flight, the
FMCW can map the difference in time to a carrier frequency shift. It is crucial to remember
that FMCW technology relies on specialized equipment (such as USRP) to generate the
signal that sweeps the frequency across time, in contrast to conventional Wi-Fi that employs
OFDM. The writers of the references [23–26] have shown how to estimate motion detection
using FMCW for a variety of uses.

Doppler Shift technique: Another physical layer characteristic of wireless transmis-
sions that can be utilized to detect human activity is Doppler shift effects. It specifically
monitors the frequency shift in the received signal of Wi-Fi as the transmitting and receiving
devices change positions in close proximity to one another. Any movement of the human
body would cause a Doppler shift if the wireless signal received and reflected from it
were regarded as the signal sent out by the wireless transmitter. In particular, moving
towards the receiver causes a positive frequency change (also known as a Doppler shift),
but moving away from the receiver causes a negative frequency change. The authors in
the cited publications [27–31] have suggested their work utilizing the doppler shift effects
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with software-defined radio (SDR) for recognition of human movements such as walking
and running.

3. Proposed Work

We harnessed classification-based ML algorithms for motion detection. Our roster
of SL algorithms encompassed SVM, naïve Bayes, decision tree, K-nearest neighbors,
and K-means. In the realm of DL algorithms, we delved into recurrent neural networks
(RNN), convolutional neural networks (CNN), and deep neural networks (DNN). These
algorithms underwent rigorous training and validation using a harmonized dataset sourced
from publicly available Wi-Fi CSI datasets. To evaluate their effectiveness, we scrutinized
performance metrics derived from each ML algorithm’s results. This comprehensive
analysis allowed us to gauge the efficiency of each ML algorithm and identify the most
suitable candidate for Wi-Fi sensing with CSI data sourced from TP-Link Archer C7 routers
within the designated premises. This paper’s primary contributions and differentiating
factors from existing research are as follows:

• ML algorithm selection: We meticulously selected a diverse set of ML algorithms
tailored to our specific tasks of classification.

• Training and Evaluation of ML Models: Our models underwent rigorous training and
evaluation processes to ensure their reliability and effectiveness.

• Systematic Model Ranking: We introduced a systematic approach for ranking the con-
sidered ML models based on statistical assessments of performance metrics, thereby
enhancing decision-making in selecting the most efficient ML model.

3.1. Experimentation Setup

In this work, an indoor motion detection-based testbed has been configured with two
TP-Link Archer C7 Wi-Fi routers with a CSI-enabled OpenWRT image flashed on both
Wi-Fi routers. The routers are placed in such a way that any movements between the
routers and within the premises within their range can be captured with the help of CSI
data from the received Wi-Fi signals on the receiver router. One router becomes the access
point, and the other becomes the client and CSI receiver, i.e., the recvCSI program runs on
the receiver and the sendData program runs on the sender router. The motion detection is
estimated with the help of the deviation in the CSI data received at the receiver router. The
Figure 1 shown below depicts the general context considered for the experiments in Wi-Fi
sensing. It shows our experiment setup where two TP-Link archer C7 routers are placed in
a room with some furniture, and a person is moving from one point to another. The dataset
constructed for locally generated data samples using no occupancy in the room is labeled
no movement, and when a person is present in the room with continuous movements, it
is labeled movement. This data has been used in the training, testing, and validation of
ML techniques.

3.2. Experimentation Procedure

The motion detection is carried out using the difference in the CSI data whenever the
user moves in the target environment. The difference is analyzed from the perspective of the
signal variance magnitude caused by human movement direction. CSI data are captured
from the target environment for both training and testing the efficiency of machine learning
algorithms. The machine learning models were trained using the benchmarking dataset,
i.e., the Wi-Fi sensing data from IEEE data portal called IEEE DataPort [32] plus the locally
captured dataset, and then validated using data samples from the datasets that were
never used for training. The Wi-Fi CSI dataset from the IEEE data port repository, which
contains a labeled dataset for humanoid motion detection, is used to train machine learning
models. Thus, supervised machine learning was used for all of the training that was done
on these models. As was previously noted, the Widar dataset from the IEEE for Wi-Fi
sensing was initially utilized for benchmarking and comparing the performance of ML
models before being replaced by the locally collected CSI-based Wi-Fi dataset. Two classes
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have been employed in the locally collected dataset: one is clean with no motion at all,
and the other is with a human walking. There are 35 k training samples and 9 k testing
samples in the Widar dataset that was used. Eight thousand samples of training data
and two thousand samples of testing data were used in the locally collected CSI dataset,
which was then used for experimentation. The list of machine learning models selected
for comparison is naive Bayes, support vector machine, decision tree, linear regression,
K-nearest neighbor, ensemble, convolutional neural network, recurrent neural network,
and deep neural network, respectively.

Figure 1. Wi-Fi sensing testbed setup.

3.3. Target Machine Learning Algorithms

A short description of each of the considered ML algorithms is given in the following
subsections.

3.3.1. Naïve Bayes

Naive Bayes [33–38] is a probabilistic classification algorithm that has been adapted
here for Wi-Fi sensing using CSI datasets for motion detection. By treating CSI measure-
ments as features and motion/no-motion as classes, Naive Bayes has been utilized to
estimate the conditional probabilities of motion given CSI values. Despite its “naive”
assumption of feature independence, naive Bayes can perform well for motion detection
as it works effectively with high-dimensional data like CSI. It is particularly suitable for
real-time applications due to its computational efficiency and ability to handle continuous
features.

3.3.2. Support Vector Machine (SVM)

SVM [39–42] is a powerful classification algorithm that has been employed here for
Wi-Fi sensing with the CSI dataset for motion detection. SVM seeks to find a hyperplane
that best separates instances of different classes in the feature space. In this context, SVM
has been trained to classify instances based on the patterns and variations in CSI data that
correspond to motion. By selecting an appropriate kernel function, SVM can effectively
capture complex relationships within the dataset, aiding accurate motion detection from
CSI information.
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3.3.3. Decision Tree

Decision trees [43,44] are versatile machine learning models that can be used to classify
instances based on a sequence of hierarchical decisions. In this context of Wi-Fi sensing,
a decision tree technique has been trained using CSI data to determine the presence or
absence of motion. Each decision node represents a specific feature threshold, such as
changes in signal strength or frequency shifts, and the resulting branches lead to the final
classification. Decision trees are interpretable and can capture non-linear relationships,
making them suitable for motion detection tasks.

3.3.4. Linear Regression

While linear regression [45] is traditionally used for regression tasks, it can also be
applied in a binary classification setup for motion detection, which is our target problem in
motion detection using Wi-Fi sensing. By modeling the relationship between CSI features
and the likelihood of motion, linear regression can provide a continuous output that
represents the degree of motion. By setting a threshold on the predicted values, instances
have been classified as motion or non-motion. However, linear regression might not capture
complex patterns in the CSI data as effectively as other methods mentioned here.

3.3.5. K-Nearest Neighbor (KNN)

KNN [46,47] is a simple yet effective algorithm for classification tasks. It operates by
assigning a class label to an instance based on the majority class of its k-nearest neighbors
in the feature space. For our problem of Wi-Fi sensing with CSI data, KNN determines
whether a new instance corresponds to motion based on the similarity of its CSI values to
those of previously observed instances. KNN can handle non-linear relationships and is
robust to noise, making it a viable option for motion detection tasks.

3.3.6. Ensemble Methods

Ensemble methods [48,49], such as random forest and gradient boosting, combine
the strengths of multiple models to improve overall classification accuracy. For Wi-Fi
sensing, these methods can integrate information from various CSI features to enhance the
motion detection process. Random forest creates multiple decision trees and aggregates
their outputs, while gradient boosting builds trees sequentially, focusing on instances that
were misclassified by previous trees. These techniques can effectively capture complex
patterns and variations in CSI data. However, the complexity of implementation and high
computational requirements make ensemble a less popular option here.

3.3.7. Convolutional Neural Network (CNN)

CNNs [50,51] are a class of deep learning models designed to capture spatial patterns
in data, particularly images. In the context of Wi-Fi sensing, CSI data has been treated
as a “sequence” of signal strength values. By using 1D convolutions, CNNs learned
to extract relevant features from these sequences for motion detection. This approach is
effective when dealing with patterns that evolve over time, allowing the network to identify
motion-related changes in the CSI dataset.

3.3.8. Recurrent Neural Network (RNN)

RNNs [52,53] are specialized for sequences and time-series data. RNN long–short-
term memory (LSTM) has been employed for Wi-Fi sensing by treating the CSI dataset as a
sequence of values collected over time. RNNs can learn to capture temporal dependencies
and patterns in the data, making them well-suited for detecting motion. LSTM and gated
recurrent unit (GRU) variants of RNNs are often used to mitigate the vanishing gradient
problem and capture longer-term dependencies, but in our comparison of ML techniques,
only LSTM has been considered due to the complexity and processing overhead of the
GRU technique.
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3.3.9. Deep Neural Network (DNN)

The fully connected deep neural network (DNN) [54] architecture has been applied
to Wi-Fi sensing by directly processing CSI features to classify instances as motion or non-
motion. DNNs are capable of learning intricate relationships within the data, especially
where a larger amount of labeled data is available for training. The large amount of
training-labeled data prevents overfitting in the case of DNN. Using appropriate activation
functions, regularization techniques, and optimization algorithms, DNNs can effectively
handle motion detection tasks using CSI data.

In summary, each of these machine learning techniques has its strengths and limita-
tions when applied to Wi-Fi sensing with the CSI dataset for motion detection. The choice
of technique depends on the complexity of the patterns present in the CSI data, the amount
of labeled data available, and the desired trade-off between interpretability and predictive
performance. Experimentation and thorough evaluation are crucial to determining the
most suitable approach for a specific motion detection application. This is the central goal
of our research in this article: to train, validate, and compare the selected machine learning
techniques, which are designed primarily to efficiently perform classification operations.
Nine different ML techniques were presented with the Wi-Fi CSI dataset, and six differ-
ent performance metrics, i.e., accuracy, precision, F1-score, true positive rate (TPR), true
negative rate (TNR), and false positive rate (FPR), have been observed. Now this situation
raises another issue of effective comparison and systematic selection of the most suitable
ML techniques, considering six different attributes. The multi-attribute decision-making
(MADM) technique has been employed to solve this problem. Here we have accuracy,
precision, F1-score, true positive rate (TPR), true negative rate (TNR) as positive attributes,
and false positive rate (FPR) as a negative rate. The weight assigned to these performance
parameters is as follows: The accuracy has been assigned the highest weight as it is the
most important performance parameter; FPR is assigned as 2nd most important parameter
as more false positive occurrences can lead the model to higher inaccuracies; precision is
followed by the F1-score; TPR is next; and TNR, which is a positive parameter, is the least
important in the attributes list. The following section analyzes the results obtained using
each of the considered ML techniques when employed on the same Wi-Fi CSI dataset for
motion detection.

4. Results Analysis

This section presents the results obtained for motion detection using Wi-Fi sensing
when a set of different machine learning models were exposed to the dataset. Analyzing
the performance of ML models for Wi-Fi sensing typically involves a combination of some
standard metrics [55,56] and evaluation methods, which include confusion matrix and its
derived metrics, receiver operating characteristics curve (ROC), cross validation, etc. For
performance comparison in this paper, the following set of performance metrics have been
considered, which have been derived from the confusion matrix:

Accuracy, false positive rate, precision, F1-score, true positive rate, and true negative
rate. Each of these performance metrics has been compared when the same set of datasets
is applied to the trained machine learning models.

Figure 2, shown below, presents the accuracy rate values for each of the ML algorithms
when these algorithms were presented with the testing segment of the dataset. It shows
that deep learning algorithms, i.e., DNN, RNN, and CNN, are performing distinctively
well as compared to shallow learning algorithms.

Figure 3, shown below, presents the precision rate results from each ML algorithm
when presented with the sampling dataset segment for motion detection. The precision
values for deep neural network models outperform the precision values of shallow learning,
except for the RNN in deep learning, which shows very low precision values.
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Figure 2. Rate of Accuracies for different ML algorithms.

Figure 3. Precision rate for all ML algorithms.

The true positive rate values for each of the ML algorithms are depicted here in Figure 4
below. It shows that the DNN outperforms not only the other deep learning algorithms but
also all the shallow learning models.

Figure 4. True positive rate for all ML algorithms.
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Once all the performance metrics have been recorded using all the target ML algo-
rithms, then comes another challenge to compare the performance metrics of each ML
algorithm to see which is the most optimal choice amongst the considered ML algorithms
for motion detection using Wi-Fi CSI data. This is a multi-dimensional and multi-criteria
problem that can be best resolved using the multiple-attribute decision-making (MADM)
algorithm. Once all the performance metrics data from all the ML algorithms have been
recorded, a score is added to each ML algorithm using the MADM algorithm to see which
ML algorithm is performing better considering all the performance metrics at once.

The MADM [57,58] has been applied to evaluate and rank different machine learning
algorithms based on their performance across various criteria (attributes). In this case,
the decision matrix consists of rows representing different machine learning algorithms
and columns representing different performance metrics (attributes) such as accuracy, FPR
(false positive rate), precision, F1-score, TPR (true positive rate), and TNR (true negative
rate). The goal of the MADM analysis is to rank these machine learning algorithms based
on their overall performance across these attributes. The result of the MADM analysis is
presented in the “Scores” column, and the algorithms are ranked based on these scores
from low to high. Here are the general steps for applying MADM to the statistics in Table 2:

- Define the Decision Problem: The decision problem is to determine the best-performing
machine learning algorithm among the given options based on multiple perfor-
mance criteria.

- Data Collection: Data for each algorithm’s performance across different criteria is
collected and presented in columns 2 to 7.

- Weight Assignment: The importance or weight of each performance metric (attribute)
is determined. Depending on the specific MADM method used, these weights could
be assigned subjectively based on domain knowledge or obtained through a formal
weighting process.

- Normalization: If needed, data in columns 2 to 7 may be normalized to ensure that
all metrics are on a comparable scale. Normalization is important when metrics have
different units or scales.

- Decision Matrix: Create a decision matrix where each row represents an algorithm
and each column represents a performance metric (attribute). The values in this matrix
are the algorithm’s performance scores for each metric, possibly weighted.

- MADM Method: Choose an appropriate MADM method for ranking the alternatives.
Common methods include the technique for order of preference by similarity to the
ideal solution (TOPSIS), the analytic hierarchy process (AHP), and the weighted sum
model, among others. In our case, we have selected the weighted sum method and
assigned the weights to attributes such as accuracy as the highest and true negative
rate as the lowest.

- Ranking or Scoring: Apply the weighted sum MADM method to the decision matrix
to calculate an overall score or ranking for each algorithm. This score reflects the
algorithm’s performance across all criteria, considering their weights.

- Result in Column 8: The “Scores” column (column 8) contains the results of the
MADM analysis. Each algorithm is assigned a score based on its overall performance.

- Ranking: The algorithms are then ranked based on their scores in descending order.
The algorithm with the highest score is typically considered the best-performing one.
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Table 2. MADM scoring on ML algorithms performance scores.

MDMA Scores

Accuracy FPR Precision F1 (+) TPR TNR (+) Scores Rank

NB 0.9228 0.1103 0.9033 0.9227 0.9428 0.9293 21.3288 9
SVM 0.9302 0.1336 0.9826 0.9521 0.9233 0.8919 23.44 6
DT 0.9273 0.0842 0.9543 0.9487 0.9431 0.8267 24.1331 5
LR 0.9295 0.1269 0.9805 0.9516 0.9241 0.886 23.4146 7

KNN 0.9452 0.2825 0.9946 0.9582 0.9241 0.9503 24.6198 4
Ensemble 0.9005 0.0998 0.9754 0.9338 0.8954 0.8544 21.8578 8

CNN 0.9552 0.2825 0.9949 0.9655 0.9375 0.9503 25.4966 3
DNN 0.9976 0.0134 0.9989 0.9935 0.9915 0.8456 27.7903 1
RNN 0.9832 0.0128 0.9033 0.9555 0.9291 0.8811 26.0445 2

In the Table 2, the algorithms have been ranked based on their scores in the “Scores”
column, from the highest score (rank 1) to the lowest score (rank 9). The Table 2 above
clearly shows that deep learning algorithms have outperformed all the shallow learning
algorithms collectively when the MADM algorithm has been applied to rank the best-
performing ML algorithms.

5. Discussion

The current literature study represents a significant advancement in the field of Wi-
Fi sensing for motion detection, particularly within the context of Gamgee BV in the
Netherlands. The primary objective of this research was to explore the integration of ML
techniques into Wi-Fi sensing technology for improved motion detection. This milestone
was achieved through the careful consideration and evaluation of a diverse set of ML
algorithms, encompassing both SL and DL approaches. The utilization of publicly available
datasets, including CSI datasets from the IEEE data port and locally captured datasets, was
integral to benchmarking the performance of various ML models. These datasets served
as valuable resources for training, validating, and testing the developed ML algorithms.
Our focus was specifically directed towards classification-based ML algorithms tailored
for motion detection. The array of algorithms assessed in the study encompassed a range
of SL and DL models. Among the SL algorithms, SVM, naïve Bayes, decision tree, K-NN,
and K-means algorithms were systematically evaluated. Additionally, we delved into
the realm of DL algorithms, considering RNN, CNN, and DNN. Through meticulous
performance analysis, we compared the efficiency of each algorithm, eventually leading
to the identification of the most suitable ML algorithms for motion detection via Wi-Fi
sensing using CSI data captured from TP-Link Archer C7 routers deployed within the target
premises. Our findings underscored the superiority of DL algorithms, specifically DNN and
RNN, in scenarios where larger datasets were utilized for training and validation. These
DL models exhibited remarkable performance gains when exposed to extensive datasets,
outperforming their SL counterparts by a significant margin. This outcome emphasizes the
potential of DL techniques to enhance the accuracy and efficacy of motion detection via
Wi-Fi sensing.

While this study represents a substantial leap forward in identifying the most suitable
ML technique for motion detection using the Wi-Fi CSI dataset and the integration of ML
with Wi-Fi sensing, certain limitations warrant consideration. First, the effectiveness of the
selected ML algorithms might be influenced by variations in environmental conditions,
potentially impacting the consistency of motion detection results. Additionally, the gener-
alization of the trained models to different premises and contexts remains an aspect that
requires validation. These limitations can, of course, be tackled with countermeasures such
as the deployment of a sufficient number of Wi-Fi devices in the target premises, which
will eventually also improve the performance of Wi-Fi connectivity at the same time. The
dataset selection, although carefully considered, might not encompass the full spectrum of
real-world scenarios, leading to potential biases in the developed models. Furthermore, the
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computational resources required for DL algorithms can be substantial, posing challenges
for real-time implementation in resource-constrained environments. The solution to these
limitations can be a more comprehensive dataset for training the ML model and the use
of networking devices such as routers with higher specifications to handle the higher
computational requirements, particularly in the case of ML models.

To contextualize our findings and highlight their relevance in the broader research
landscape, it is essential to draw parallels with existing studies. Recent research in the field
of Wi-Fi sensing and related domains has showcased a similar trend favoring deep learning
approaches. Prominent works by Yongsen et al. [59] and Atzeni et al. [60] have reported
remarkable success in employing deep neural networks for Wi-Fi-based applications. These
studies have emphasized the ability of deep learning models to extract intricate patterns
and representations from CSI data, leading to enhanced accuracy and reliability in Wi-
Fi sensing tasks. Among the DL algorithms, DNN excelled with a remarkable accuracy
of 0.9976. This performance surpasses recent work in [61] with an accuracy of 99.76%,
establishing DNN as the leading choice for Wi-Fi sensing applications. The results in [61]
show maximum accuracies of 99.38 for DL models such as RNN and CNN in different
versions. Furthermore, with much lower accuracies for SL algorithms such as naive Bayes,
SVM, and KNN, there is a similar trend to the results shown in this paper for SL techniques.
In [62], the authors obtained a maximum accuracy of 98.2% using the DL technique for
crowd estimation on CSI data obtained from Wi-Fi. Though the goal of that work was
crowd estimation, Wi-Fi CSI data was utilized with ML techniques to achieve it. The
accuracy achieved was closer to that presented in our research work, which still surpasses
it with a difference of 1.56%.

In comparison to these contemporary research outcomes, our study corroborates the
growing consensus that DL, particularly DNN and RNN architectures, represents a potent
tool for Wi-Fi sensing applications. The exceptional accuracy and efficiency demonstrated
by these DL algorithms in our experimentation underscore their viability in real-world
scenarios, where robust Wi-Fi sensing is essential for diverse applications such as indoor
localization, occupancy detection, and smart home automation. In conclusion, our study not
only contributes valuable insights into the selection of suitable algorithms for Wi-Fi sensing
using CSI data but also aligns with and reinforces the findings of recent research in the
field. The superior performance of DL algorithms, as highlighted in our results, positions
them as promising candidates for addressing the evolving challenges and opportunities in
Wi-Fi sensing applications.

The future trajectory of this research is marked by several compelling avenues. Ex-
panding our focus on localization holds great promise, as the ability to precisely identify
the location of detected motion could significantly enhance security and monitoring ap-
plications. The automation of model learning within the target premises is a critical step
towards achieving seamless and adaptable motion detection systems. The integration of
Wi-Fi sensing with home automation and healthcare represents a paradigm shift with im-
mense potential. Exploring the feasibility of leveraging Wi-Fi CSI data and AI for enhanced
automation, ambient intelligence, and personalized healthcare interventions is an exciting
direction for future investigation. In conclusion, the current work not only sets a foundation
for ML-driven Wi-Fi sensing but also opens doors to a plethora of innovative applications.
The journey from motion detection to localization, automation, and healthcare integration
underscores the dynamic and transformative nature of this research trajectory.

6. Conclusions

The work performed for this article was the first milestone to introduce ML in Wi-Fi
sensing for motion detection at Gamgee BV in the Netherlands. We have considered several
ML algorithms composed of both shallow learning and deep learning algorithms. The
publicly available datasets, i.e., CSI datasets from the IEEE data port and locally captured
datasets, have been utilized for benchmarking the ML models before applying the testing
segment of the datasets to look for the most suitable ML algorithms for motion detection
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using Wi-Fi sensing. We employed classification-based ML algorithms for operations
like motion detection, which is part of the research work presented in this article, and
clustering-based ML algorithms for unique personal identification in other subsequent
research work being carried out at Gamgee BV. The list of SL algorithms considered includes
SVM, naïve Bayes, decision tree, K-nearest neighbors, and K-means algorithms, and the
list of DL algorithms considered includes recurrent neural network (RNN), convolutional
neural networks (CN), and deep neural networks (DNN), respectively. The performance
metrics were analyzed from a set of results obtained using each of the ML algorithms
considered to compare the performance and efficiency of each ML algorithm and select
the most suitable for Wi-Fi sensing using the CSI data captured from TP-Link Archer C7
routers in the target premises. Our results showed that DL algorithms, i.e., DNN and
RNN, performed much better as compared to the SL algorithms when larger datasets were
exposed to the ML models for training and validation purposes. Our research has already
been extended to further include localization to identify the exact zone where motion was
detected and automation of model learning in target premises. The research work will be
further extended to include home automation and healthcare applications using Wi-Fi CSI
data and artificial intelligence (AI)-augmented Wi-Fi sensing.
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