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Abstract: As a typical load, the constant power load (CPL) has negative impedance characteristics.
The stability of the buck converter system with a mixed load of CPL and resistive load is affected
by the size of the CPL. When the resistive load is larger than the CPL, the buck converter with
the output voltage as an output function is a non-minimum phase nonlinear system, because its
linear approximation has a right-half-plane pole. The non-minimum phase characteristic limits
the application of many control techniques, but the objective holographic feedback linearization
control (OHFLC) method is a good control strategy that can bypass the non-minimum phase system
and make the system stable. However, the traditional OHFLC method, in designing the controller,
generally uses a linear optimal quadratic design method to obtain a linear feedback control law. It
requires a state quantity component with a one-order relative degree to the system. But it is not easy
to find such a suitable state quantity with a one-order relative degree to the system. In this paper, an
improved OHFLC method is proposed for Buck converters with a mixed loads of CPL and resistive
loads, using the sliding mode control (SMC) theory to design the controller, so that the output state
quantity components with different relative degrees to the system can be used in the holographic
feedback linearization method. Finally, the simulation and experimental results also demonstrate
that this method has the same, or even better, dynamic response performance and robustness than
the traditional OHFLC method.

Keywords: constant power load; objective holographic feedback linearization; sliding mode control;
different relative degrees; buck converter

1. Introduction

A DC–DC converter, as a device to convert DC power, has been widely used and can
be seen in DC microgrids, electric vehicles (EVs), portable electronic devices, and other
fields or products. In DC microgrids, in order to manage the power flow between different
parts of the DC microgrids, the DC–DC converter becomes the hub to connect various DC
sources and buses, and buses to different buses, and is responsible for the safe, stable, and
efficient operation of the DC microgrid system while meeting the power demand of each
part [1]. In EVs, DC–DC converters play a pivotal role in EV charging, power steering
systems, and composite power systems as their essential components [2,3]. And, at a
time of rapid development of portable electronic devices, linear regulators and switched
capacitors (also known as charge pumps), which are part of the practical application of
DC–DC converters in portable electronic devices, have likewise been developed rapidly [4].

Power electronic systems using cascaded distributed DC–DC converters are being
used in a wide range of scenarios, including smart microgrids, spacecraft, telecommuni-
cations, automotive power systems, ships, ground-based computer systems, and medical
electronics [5–7]. In a cascaded system of DC–DC converters, the later stage’s DC converter
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with a closed-loop control can be considered as a CPL for the previous stage’s DC converter.
The CPL has a positive transient impedance, but a negative incremental impedance (in
terms of small signals), which tends to produce an instability effect. This instability effect
causes the closed-loop system to enter a positive feedback state, showing oscillations and
becoming unstable at the output. In addition, the CPL affects the power quality and sys-
tem reliability. Therefore, the voltage regulation control method must ensure large signal
stability [7,8].

There are many ways to solve the instability problems caused by CPL. One of the
common approaches is to add passive damping to the circuit. In [9], the system’s instability
is avoided by adding a passive damping circuit to change the system damping, effectively
canceling out the negative impedance characteristics of the CPL. This approach can also
be seen as a design for filters. However, adding passive damping elements increases the
size of the converter, reduces the compatibility of the damping elements with the circuit,
reduces the system efficiency, and increases the total cost.

An alternative approach to solve the CPL problem is through an active damping
technique. In [10], the authors propose an active damping control technique by creating a
virtual resistor at the source-side converter of a DC microgrid. This approach does not de-
grade the performance of the CPL, but it requires a more demanding LC input filter design.
In [11], the authors propose an active Loop-Cancellation technique for compensating any
number of CPLs and adjusting the damping of the system, which can configure the poles
of the system to the right position and suppress the poles of the right half-plane generated
by the system through feedback, solving the instability effect caused by the CPL. In [12], a
controlled DC–DC power converter in parallel with the load is added at the midpoint of
the circuit network to expand the web so that the system can be input–output linearized,
and then a nonlinear control law based on an adaptive observer is proposed to make the
system stable. It can also be considered as an active damping technique.

There are also nonlinear control methods, such as sliding mode control and model
predictive control. SMC, as an inverse control technique, requires stability of the internal
dynamics. In [13], a multi-state process variables-feedback SMC method of a bidirectional
DC/DC converter is proposed, which defines a multivariable weight combination-based
sliding-mode surface, then effectively improve the stability of the DC bus voltage, despite
dynamic power disturbances. In [14], an adaptive backstepping sliding mode control
technique is proposed to design the control law. However, the problems of jitter and
variable switching frequency arising in sliding mode control force us to apply higher
filtering requirements to the converter [15]. An improved version based on direct model
predictive control is implemented in [16], and is able to maintain system stability under
different CPL requirements and system failures.

Feedback linearization is a nonlinear control method, which can also be classified as an
active damping method, used to compensate for CPL effects in a system. We can eliminate
the nonlinearity due to the presence of a CPL by selecting nonlinear feedback. Theoretically,
feedback linearization can compensate for any amount of CPL and stabilize the system
in a large signal sense [17]. Feedback linearization is usually based on finding nonlinear
feedback, and the application can eliminate nonlinear characteristics. Therefore, we can use
linear control tools to design controllers. The main drawback of this approach compared
to techniques that directly deal with nonlinearities, such as sliding mode control and
cooperative control, is the noise sensitivity due to the presence of differentiators and slower
transient response [18,19]. In [20], A multi-objective feedback linearization control method
is proposed, which linearizes a nonlinear system into a combination of linear subsystems
and nonlinear subsystems. The linear part adopts the linear optimal control theory to design
the controller, while the nonlinear part ensures the stability of the original nonlinear system
by adjusting the coefficients of the output function. The exact feedback linearization (EFL)
theory has been exploited in [21] to convert the reduced-order multilevel boost converter
model to Brunovsky’s canonical form, and to develop an adaptive backstepping controller



Electronics 2023, 12, 3976 3 of 17

by using the estimation of nonlinear disturbance observer. It can strictly guarantee the
stability of the microgrid bus voltage under large signals.

The objective holographic feedback linearization method is a nonlinear control method
that bypasses the nonminimum-phase system by selecting the state variables of interest so
that the system is stable and each state quantity can effectively track its reference value.
In [8], the authors use the OHFLC method to design a controller for a non-minimum phase
system, a boost converter with CPL, by incorporating the target state variables into the
linear space and then using the linear optimal quadratic form of the linear control method.
This method does not require complex mathematical analysis, and by changing the control
parameters, the system poles can be adjusted for the purpose of stabilizing the system and
tracking control [22]. However, in the traditional OHFLC method, because an optimal linear
quadratic is used in the design of the controller, a state variable with a one-order degree
relative to the system must exist to solve the original nonlinear control rate when selecting
the output vector to be incorporated into the linear space [23,24]. However, there exist cases
where the original nonlinear control law of the system derived by solving using a state
variable with a one-order relative degree does not make the system stable. For example, in
a boost converter with constant resistance load, its inductor current and capacitor voltage
both have a one-order relative degree to the system, but when using the OHFLC strategy,
only the state variable of the inductor current can be used to design and solve the control
law of the system, because if using the capacitor voltage to design and solve, it cannot
make the one-order linearized approximation of the system stable.

In this paper, we propose an objective holographic feedback control strategy based on
a sliding mode control to design a controller for a buck converter with CPL. By designing
different sliding mode surfaces, state variables with different relative degrees to the sys-
tem can solve the initial nonlinear control law instead of being limited to the traditional
requirement of state variables with one order of relative degree. In addition, the tracking
performance and stability of the states under this method are analytically demonstrated.
The latter part of the article performs simulation experiments and physical experiments to
verify this control method.

2. Modeling of Buck Converter System and Construction of Brunovsky’s Canonical Form

For the convenience of analysis, the values of equivalent series resistance of output
capacitance and equivalent series resistance of filter inductance are ignored. The system
structure of the simplified buck converter is shown in Figure 1. The CPL is connected to
the output of the converter in parallel with the resistive load, the output voltage can be
regarded as the DC bus voltage, and the converter needs to provide a stable voltage output
under load fluctuation. E is the input voltage, Q is the switching device, D is the diode, L is
the filter inductor, C is the filter capacitor, R is the resistive load, P is the constant, uc is the
capacitor voltage, iL is the filter inductor current, io is the instantaneous load current, iR is
the instantaneous current on the resistive load, and iP = P/uc is the instantaneous current
on CPL.
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Figure 1. Main circuit diagram of Buck converter. Figure 1. Main circuit diagram of Buck converter.
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Let the duty cycle d be the input quantity, and use the state space averaging method to
obtain the state equation of Buck converter under continuous conduction mode (CCM):{

L diL
dt = −uc + E·d

C duc
dt = iL − uc

R −
P
uc

(1)

Considering the state vector x =
[
x1 x2

]T
=
[
iL uc

]T , and their reference

xre f =
[
x1re f x2re f

]T
=
[
iLre f ucre f

]T , Equation (1) can be described with the following
affine nonlinear model:

.
x = f (x) + g(x)d, (2)

where f (x) =
[
− x2

L
x1
C −

x2
RC −

P
Cx2

]T
, g(x) =

[ E
L 0

]T .

The system’s output vector is chosen as y =
[
y1 y2

]T
=
[
x1 x2

]T . According to the
definition of the Lie derivative in [25], the relative degree of each output state variable to
the system can be determined by finding the Lie derivative under that state variable in the
following manner:

LgL0
f y1(x) =

∂y1

∂x
g =

E
L
6= 0,

 LgL0
f y2(x) = ∂y2

∂x g = 0

LgL1
f y2(x) =

∂L f y2
∂x g = E

LC 6= 0
.

The relative degree of the output functions y1 and y2 to the system can be found to be
r1 = 1 and r2 = 2.

Let the deviation of the state e = [x1 − x1re f , x2 − x2re f ]
T , and the final control goal is

to make lim
t→∞
|e| = 0. According to the traditional design of OHFLC methods, Brunovsky’s

canonical form needs to be actively constructed using the deviations of the states and mak-
ing the derivative of one of the deviations of the states with a one-order relative degree to
the system equal to the linear control law under the standard type. The method mentioned
in this paper does not require a harsh relative degree. Since there are two relative degrees
of the above two output functions to the system, the following is a theoretical analysis and
comparison of the two different situations by constructing Brunovsky’s canonical form.

Situation 1©: choose the state variable of output voltage with a two-order relative
degree to the system for the design, and let

.
e2 =

.
x2 −

.
x2re f equal to the linear control law v.

The actively constructed Brunovsky’s canonical form is:[ .
e1.
e2

]
=

[
0 1
0 0

][
e1
e2

]
+

[
0
1

]
v. (3)

Situation 2©: choose the state variable of inductance current with a one-order relative
degree to the system for the design, and let

.
e1 =

.
x1 −

.
x1re f equal to the linear control law v,

the actively constructed Brunovsky’s canonical form is:[ .
e2.
e1

]
=

[
0 1
0 0

][
e2
e1

]
+

[
0
1

]
v. (4)

3. Application of Sliding Mode Control

Different measures are needed to solve the control law of the system for the above two
cases. For situation 1©, based on Equation (3), the following can be obtained:

.
e2 =

.
x2 −

.
x2re f = v. (5)

Further derivatives of both sides of Equation (5) are:

..
e2 =

..
x2 −

..
x2re f =

.
v. (6)
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Since x2 (or e2) has a two-order relative degree to the system, the following Equation
holds: ..

x2 = L2
f x2 + LgL f x2·d

= − x1
RC2 + ( 1

R2C2 − 1
LC )x2 +

Px1
C2x2

2
− P2

C2x3
2
+ E

LC d.
(7)

Combined Equation (6) with Equation (7), the control law of the original nonlinear
system can be obtained as:

d = [
.
v +

x1

RC2 − (
1

R2C2 −
1

LC
)x2 −

Px1

C2x2
2
+

P2

C2x3
2
]
LC
E

. (8)

From (8), It is known that to find the original nonlinear control law d, we must first
solve

.
v, and the following is the solution using sliding mode control theory.

Choosing the Lyapunov function:

V =
1
2

s2, (9)

where s is the sliding mode surface function to be found with respect to time t.
If the sliding mode approach law is used, then:

.
s = −εsgn(s)− ks ε > 0, k > 0. (10)

In order to weaken the jitter existing in the sliding mode, replacing the symbolic
function sgn(s) with the saturated continuous function sat(s). By such a continuous process,
using the normal switching control outside the boundary layer can make the system
converge to the sliding mode quickly, and the feedback control is used inside the boundary
layer can reduce the jitter generated by the sliding mode during the fast switching [26].

sat(s) =


1 s > µ

s
µ |s| < µ

−1 s < −µ

µ > 0,

where µ is the thickness of the boundary layer, and the value is related to the control effect
of the controller. Figure 2 shows the sliding process and the graphical representation of the
sliding surface and boundary layer.
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Then, the sliding mode approach law changes to:

.
s = −εsat(s)− ks ε > 0, k > 0. (11)

So
.

V = s
.
s = s(−εsat(s)− ks) ≤ −ε|s| − ks2 ≤ − k

2
V. (12)

The solution is:
V(t) ≤ e−

k
2 (t−t0)V(t0). (13)

It can be seen that the V(t) exponent converges to 0 and the convergence rate is related
to k. Therefore, according to Equation (9), lim

t→∞
s = 0 holds. That is, the system designed

with this convergence rate will eventually stabilize on the sliding mode surface.
The next step is to consider how to construct the sliding mode function s. For the

system to stabilize on the sliding mode surface and the state quantities converge to their
reference values, the following sliding mode surface is used to derive

.
v, such that:

s =
.
e2 + c1e1 + c2e2, (14)

where c1, c2 are parameters. Combining Equations (2), (3), (6) and (14) we obtain the
relationship between

.
s and

.
v as follows:

.
s =

..
e2 + c1

.
e1 + c2

.
e2

=
.
v + c1e2 + c2

.
x2

=
.
v + c1e2 + c2(

x1
C −

x2
RC −

P
Cx2

).
(15)

Reconnecting Equations (11) and (15) the expression for
.
v can be found:

.
v = −εsat(s)− ks− c1e2 − c2(

x1

C
− x2

RC
− P

Cx2
). (16)

Finally, substituting Equation (16) into Equation (8) to obtain the final desired control
law of the initial nonlinear system:

d = [−εsat(s)− ks− c1e2 − c2(
x1
C −

x2
RC −

P
Cx2

)

+ x1
RC2 − ( 1

R2C2 − 1
LC )x2 − Px1

C2x2
2
+ P2

C2x3
2
] LC

E .
(17)

The following is an analysis of the tracking performance of system (3), which is a
controllable system and, under the control law control of Equation (17), if system (3) can be
stabilized, then there is:

.
e1 =

.
e2 = 0. (18)

Thus, according to Equation (3) there is:

.
e1 = e2 = 0. (19)

According to the principle of approaching law-based sliding mode control, the system
will eventually stabilize at the sliding mode surface, i.e.,

s =
.
e2 + c1e1 + c2e2 = 0, (20)

thus, there is e1 = 0.
In summary, there are: {

e1 = e2 = 0
.
e1 =

.
e2 = 0

(21)
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This ensures both static and dynamic performance of system (3), and each state
variable keeps track of its own target value.

For situation 2©, according to Equation (4), we can obtain:

.
e1 =

.
x1 −

.
x1re f =

.
x1 = v. (22)

Since x1 (or e1) has a one-order relative order to the system, the following equation
holds:

.
x1 = − x2

L
+

E
L

d. (23)

Thus

d =
(Lv + x2)

E
. (24)

To find the original nonlinear control law d, we must first solve for v. Similarly to
situation 1©, using sliding mode control design method, let the sliding mode function

s = e1 + c2e2 + c1

∫ t

0
e2dτ. (25)

Combining Equations (4) and (25), we have:

.
s =

.
e1 + c2

.
e2 + c1e2 = v + c2e1 + c1e2. (26)

In this case, if we use the same exponential approximation law with saturation function
as Equation (11), then Equations (11) and (26) are combined to obtain:

v = −εsat(s)− ks− c2e1 − c1e2. (27)

In Equation (25) of the sliding mode surface, the introduction of the traditional integral
term is beneficial to the intuitive analysis of the principle, but it may lead to the deterioration
of the transient performance of the system in the experiment because of the large initial error,
so a nonlinear integral sliding mode surface can also be introduced in the real experiment,
and the traditional integral term in the original sliding mode surface is replaced by the
nonlinear integral term. Using this method can eliminate the steady-state error without
generating large overshoot, and has good spreading performance [27,28], The form of this
sliding mode surface containing nonlinear integral term is as follows:{

s = e1 + c2e2 + c1σ
.
σ = g(e2)

(28)

where g(e2) is a smooth nonlinear saturation function with “small error amplification and
large error saturation”, which is obtained by deriving the potential energy function for e2
as follows:

G(e2) =


2β2

π

(
1− cos

(
π
2β e2

))
, |e2| < β

βe2 − π−2
π β2, e2 ≥ β

−βe2 − π−2
π β2, e2 ≤ −β

(29)

where β > 0 is the design parameter. The derivative of the above equation with respect to
e2 yields a nonlinear function g(e2), as shown below:

g(e2) =


β sin

(
πe2
2β

)
, |e2| < β

β, e2 ≥ β

−β, e2 ≤ −β

(30)

For the functions G(e2) and g(e2) it is not difficult to derive the following properties:



Electronics 2023, 12, 3976 8 of 17

Property (1): G(e2) is continuous quadratic differentiable.
Property (2): If e2 6= 0, then G(e2) > 0; If e2 = 0, then G(e2) = g(e2) = 0.
Combine Equations (4), (11) and (28), then the expression for v obtained by using the

modified integral sliding mode surface is:

v = −εsat(s)− ks− c2e1 − c1g(e2). (31)

According to Equations (24) and (31), the initial nonlinear control rate of the system
is obtained:

d =
L(−εsat(s)− ks− c2e1 − c1g(e2)) + x2

E
(32)

Regarding the tracking performance of the system, in the stable case system (4), we
have e1 =

.
e2 =

.
e1 = 0, since s = e1 + c2e2 + c1σ = 0 and

.
s are consistently continuous

when t→ ∞ , it follows from Barbalat’s lemma that when t→ ∞ , there is:

.
s =

.
e1 + c2

.
e2 + c1g(e2) = 0. (33)

We can obtain lim
t→∞

e2 = 0, and in summary, when t→ ∞ , the system is stabilized on

this nonlinear integral sliding mode surface and also has e1 = e2 =
.
e1 =

.
e2 = 0.

4. Stability Analysis

This section shows how we make the system stable by choosing the values of the
parameters c1 and c2 under the control method proposed in this paper. Only the case where
the equilibrium point of the nonlinear system xe = [x1e, x2e]

T is hyperbolic is discussed
in this article. According to the Hartman–Grobman theorem, the dynamical system orbit
of a nonlinear system near the hyperbolic equilibrium point structure is topologically
equivalent to the orbital structure of a linearized dynamical system, so that the nonlinear
system is also stable if the first-order approximate linear system of the original nonlinear
system is stable in the neighborhood Ω of the eligible equilibrium point. The equation of
the state of the original system is now expanded by the Taylor series at the equilibrium
point xe and, after neglecting the higher-order terms, we have:

.
x1o = − x2o

L + E
L do

.
x2o =

x1o
C +

(
P

Cx2
2e
− 1

RC

)
x2o

(34)

Let Ω be a neighborhood of the equilibrium point xe that satisfies the conditions of the
Hartman–Grobman theorem, and xo = [x1o, x2o]

T be the dynamic trajectory of the system
state variables in this neighborhood. Assuming that xor = [x1or, x2or]

T is the reference
trajectory, its trajectory must also satisfy Equation (34), so that we have:

.
x1or = − x2or

L + E
L dor

.
x2or =

x1or
C +

(
P

Cx2
2e
− 1

RC

)
x2or

(35)

Let es = xo − xor, then the equation of state of the error system is:

.
es =

[
0 − 1

L
1
C

P
Cx2

2e
− 1

RC

]
es +

[ E
L
0

]
(do − dor). (36)

The following will be the ideal case where the system is stabilized at the sliding mode
surface, i.e., s = 0 for situations 1© and 2© is analyzed:

Situation 1©:

.
vo = −εsat(s)− ks− c1e2s − c2

.
e2s = −c1e2s − c2

.
e2s. (37)
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Since x2o has a one-order relative degree to the system,

..
x2o = −

x1o

RC2 +
Px1o

C2x2
2e

+ (
1

R2C2 −
1

LC
)x2o +

3P2x2o

C2x4
2e
− 2Px1ex2o

C2x3
2e

+
E

LC
do. (38)

Then the reference trajectory x2or also satisfies

..
x2or = −

x1or

RC2 +
Px1or

C2x2
2e

+ (
1

R2C2 −
1

LC
)x2or +

3P2x2or

C2x4
2e
− 2Px1ex2or

C2x3
2e

+
E

LC
dor. (39)

According to the principle of linearization of objective holographic feedbacks and lin-
earization based on sliding mode control described earlier, the control law of the system (36)
is designed as follows:

do =
LC
E (

.
vo +

..
x2or +

x1o
RC2 − Px1o

C2x2
2e
− ( 1

R2C2 − 1
LC )x2o − 3P2x2o

C2x4
2e

+ 2Px1ex2o
C2x3

2e
)

= LC
E (−c1e2s − c2

.
e2s +

e1s
RC2 − Pe1s

C2x2
2e
− ( 1

R2C2 − 1
LC )e2s

− 3P2e2s
C2x4

2e
+ 2Px1ee2s

C2x3
2e

+ E
LC dor).

(40)

Bringing Equation (40) into Equation (36) yields:

.
e1s = ( 1

RC −
P

Cx2
2e
)e1s + ( 2Px1e

Cx3
2e
− 3P2

Cx4
2e

− 1
R2C − Cc1)e2s − Cc2

.
e2s

.
e2s =

e1s
C +

(
P

Cx2
2e
− 1

RC

)
e2s

(41)

So 

.
e1s = ( 1

RC −
P

Cx2
2e
− c2)e1s + ( 2Px1e

Cx3
2e

− c2P
x2

2e
− 3P2

Cx4
2e
− 1

R2C − Cc1 +
c2
R )e2s

.
e2s =

e1s
C +

(
P

Cx2
2e
− 1

RC

)
e2s

(42)

The system matrix of this autonomous system is:

A =

 1
RC −

P
Cx2

2e
− c2

2Px1e
Cx3

2e
− c2P

x2
2e
− 3P2

Cx4
2e
− 1

R2C − Cc1 +
c2
R

1
C

P
Cx2

2e
− 1

RC

 (43)

Putting Equation (43) into |λE− A| to obtain the characteristic polynomial gives:

λ2 + c2λ + c1 +
2P

RC2x2
2e

+
3P2

C2x4
2e
− P2

C2x4
2e
− 2Px1e

C2x3
2e

. (44)

From Equation (44), for the two-order system characteristic equation, according to
the Hurwitz criterion, the system (36) can be stabilized only by choosing the values of the
parameters c1, c2, so that c2 > 0

c1 +
2P

RC2x2
2e
+ 3P2

C2x4
2e
− P2

C2x4
2e
− 2Px1e

C2x3
2e
> 0

(45)

Situation 2©, the analysis method is similar to situation 1©; if the conventional integral
sliding mode surface is used, then when s = 0

vo = −εsat(s)− ks− c2e1s − c1e2s = −c2e1s − c1e2s. (46)
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Since x1o has a one-order relative degree to the system,

.
x1o = −

x2o

L
+

E
L

do. (47)

Then the reference trajectory x1or also satisfies,

.
x1or = −

x2or

L
+

E
L

dor. (48)

Let the system (36) of the control law be as follows:

do =
L
E (vo +

.
x1or +

x2o
L )

= L
E (−c2e1s − c1e2s − x2or

L + E
L dor +

x2o
L )

= L
E (−c2e1s − c1e2s +

e2s
L + E

L dor).

(49)

Bringing Equation (49) into Equation (36) yields:{ .
e1s = −c2e1s − c1e2s
.
e2s =

e1s
C + ( P

Cx2
2e
− 1

RC )e2s
(50)

Let

A =

[
−c2 −c1

1
C ( P

Cx2
2e
− 1

RC )

]
. (51)

Putting Equation (51) into |λE− A| to obtain the characteristic polynomial:

λ2 + (c2 +
1

RC
− P

Cx2
2e
)λ +

c2

RC
+

c1

C
− c2P

Cx2
2e

, (52)

also, based on the Hurwitz criterion, choosing the values of the parameters c1 and c2,
so that c2 +

1
RC −

P
Cx2

2e
> 0

c2
RC + c1

C −
c2P
Cx2

2e
> 0

(53)

System (36) can be stable.
If using a modified nonlinear integral sliding mode surface, we can obtain lim

t→∞

.
s = 0

from Equation (33), then combined with the deviated system equation of state (4) with
t→ ∞ , when

.
s =

.
e1 + c2

.
e2 + c1g(e2) =

..
e2 + c2

.
e2 + c1g(e2) = 0. (54)

The alternative Lyapunov function is:

V1 =
1
2

.
e2

2 + c1G(e2). (55)

Notice that G(e2) is a radially unbounded function, and from property 2 of G(e2),
we know that G(0) = 0, e2 6= 0 when G(e2) > 0, so when c1 > 0, Equation (55) is also a
radially unbounded and positive definite function. Calculating the derivative function of
Equation (55) along Equation (54) and letting c2 > 0 yields:

.
V1 =

.
e2

..
e2 + c1g(e2)

.
e2

=
.
e2(−c2

.
e2 − c1g(e2)) + c1g(e2)

.
e2

= −c2
.
e2

2 ≤ 0.

(56)
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Let
.

V1 ≡ 0 then
.
e2 ≡ 0, so

..
e2 = 0; bringing this into Equation (54), we obtain e2 = 0,

and then combined with Equation (4), we have e1 =
.
e2 ≡ 0, and we can obtain

.
e1 = 0. So,

in summary, by solving
.

V1 ≡ 0, we can obtain
.
e1 =

.
e2 = e1 = e2 = 0.

This solution is exactly the steady-state solution of system (4). Therefore, it is known
from LaSalle’s invariance principle that the system with this nonlinear integral sliding
mode surface for sliding mode control is asymptotically stable at c1 > 0, c2 > 0, and the
state quantities converge to the reference value at t→ ∞ .

5. Simulation and Experimental Results

A buck converter with a mixed-load simulation model was implemented on the
MATLAB/Simulink simulation platform to evaluate the performance of the proposed
nonlinear control strategy, as shown in Figure 3.
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Figure 3. Closed-loop control block diagram of Buck converter with OHFL based on SMC.

Compare conventional OHFLC method with the proposed control strategy using the
circuit parameters of the buck converter with L = 0.56 mH, C = 470 µF, and fs = 20 kHz. In
the conventional OHFLC method, the scale factors selected in the simple optimal quadratic
control law are, respectively, k1 = 1.2 × 104 and k2 = 1 × 105. The parameters selected for
the proposed control strategy in situation 1© are c1 = 2 × 103, c2 = 4 × 105, ε = 5 × 103,
k = 4 × 102, µ = 0.1. In situation 2©, c1 = 2 × 104, c2 = 4 × 104, ε = 5 × 103, k = 10, µ = 0.1,
β = 0.2.

In Figure 4, v1, v2, and v12 represent the output voltages in the CPL leap experiment
under the control law of situation 1©, the control law of situation 2©, and the control law
of the conventional OHFLC method, respectively. i1, i2, and i12 represent the inductor
currents at the above three control laws in the CPL leap experiment, respectively. As shown
in Figure 4, the CPL suddenly jumps from 5 W to 15 W at 0.04 s and then drops from 15 W
to 5 W at 0.06 s. It can be observed that both control methods stabilize the output voltage
at a reference value of 12 V. The overshoot of the proposed control strategy at 0.04 s and
0.06 s is 0.13 V and 0.12 V in situation 1©, and 0.07 V and 0.07 V in situation 2©, respectively.
In contrast, the overshoot of the output voltage at 0.04 s and 0.06 s is 0.11 V and 0.14 V
in the conventional OHFLC method. This indicates that, compared to the conventional
OHFLC method, the proposed method can obtain a similar or even smaller overshoot than
the conventional OHFLC method when changing the CPL. In terms of response time, both
methods can complete the dynamic response process in a similar and very short time.
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Figure 4. Simulation waveforms when CPL changes in the two situations and traditional OHFLC:
(a) voltage waveforms, (b) current waveforms.

In Figure 5, v3, v4, and v34 represent the output voltages in load R leap experiment
under the control law of situation 1©, the control law of situation 2©, and the control law of
the conventional OHFLC method, respectively. i3, i4, and i34 represent the inductor currents
at the above three control laws in the load R leap experiment, respectively. As shown
in Figure 5, the load R suddenly drops from 20 Ω to 10 Ω at 0.04 s and then rises from
10 Ω to 20 Ω at 0.06 s. It can be observed that both control methods can stabilize the output
voltage at the reference value of 12 V. The overshoot of the proposed control strategy at
0.04 s and 0.06 s is 0.03 V and 0.02 V in situation 1© and 0.02 V and 0.03 V in situation 2©,
respectively, while the overshoot of the output voltage at 0.04 s and 0.06 s is 0.07 V and
0.05 V, respectively, under the conventional OHFLC method. It indicates that, compared to
the conventional OHFLC method, the proposed method can obtain a smaller overshoot
when changing the resistive load. In terms of response time, both methods can complete
the dynamic response process in a similar and very short time.
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Therefore, it can be seen from the simulation results that the proposed holographic
feedback linearization method based on sliding mode control in this paper is comparable to
or even better than the traditional OHFLC method using linear optimal quadratic control
in terms of response speed and overshoot.
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To further verify the effectiveness of the proposed control strategy, an experimental
platform of a buck converter with a mixed load was constructed (see Figure 6), which
consists of an ITECH IT8812 DC electronic load, an ITECH IT6952A Auto Range DC power
supply as the input, a detection module with two voltage and two current detection circuits
integrated. In addition, there are buck converters, load resistors, a digital signal processor
(TMS320F28335), and a Tektronix TDS 2024C four-channel digital storage oscilloscope.
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The circuit parameters of the buck converter are selected as follows:

• L = 0.56 mH;
• C = 470 µF;
• Power MOSFET (International Rectifier IRF3710);
• The gate drive circuit (International Rectifier IR2109);
• The input voltage E = 24 V;
• The switching frequency fs = 20 kHz.

The detection module used consists of a CHB-25NP Hall current sensor, a CHV-25P
Hall voltage sensor followed by a hold circuit, and a proportional circuit to sample the
inductor current, the load current, and the output voltage, respectively. The voltage and
current collected by the detection circuit and held by a voltage follower, and then the
voltage signal outputs after being stepped down by the proportional circuit. Since the load
current is directly connected to the oscilloscope in the form of a voltage signal after passing
through the detection module, the relationship between the output signal OUT and the
input load current is OUT = 0.591io. To ensure the sampling accuracy, the DSP collects the
voltage and current data several times, filters them in the program, and takes the average
value as the input quantity of the control algorithm.

Figure 7a shows the waveform of experimental prototype with a constant resistance
of 20 Ω in situation 1©, when P jumps from 5 W to 15 W. The observed phenomenon is a
slight drop of about 0.2 V in the output voltage (colored in yellow) at the instant of the CPL
change. However, after about 3 ms of adjustment time, it returns to the reference voltage
of 12 V. For the same CPL change, the waveform observed in situation 2© is shown in
Figure 7b, where there is almost no change in output voltage at the instant of load change,
and the output voltage always stays near 12 V.
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(b) waveform in situation 2©.

Figure 8a and Figure 8b show the waveforms in situation 1© and situation 2©, respec-
tively, when the R is constant at 20 Ω, and P jumps from 15 W to 5 W. This process is opposite
to the previous CPL change, where the output voltage observed in situation 1© rises about
0.2 V at the instant of the CPL jump and returns to the 12 V reference value after about
7 ms. In situation 2©, the output voltage remains without significant change and is always
stable around 12 V. Experiment results have demonstrated the robustness of the proposed
control strategy to CPL variations in mixed loads.
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Figure 8. System dynamic responses when the CPL decreases: (a) waveform in situation 1©,
(b) waveform in situation 2©.

Figure 9a shows the waveform of the experimental prototype with a CPL of 10 W in
situation 1©, when R jumps from 20 Ω to 10 Ω. The observed phenomenon is a slight drop
of about 0.1 V in the output voltage (colored in yellow) at the moment of resistive load R
change. However, it returns to the reference voltage of 12 V after about 5 ms of adjustment
time. For the same R change, the waveform observed in situation 2© is shown in Figure 9b,
where there is almost no change in the output voltage at the instant of load change, and the
output voltage stays at 12 V.
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Figure 9. System dynamic responses when the R decreases: (a) waveform in situation 1©,
(b) waveform in situation 2©.

Figure 10a and Figure 10b show the waveforms in situation 1© and situation 2©,
respectively, when the CPL is constant at 10 W and R jumps from 10 Ω to 20 Ω. The output
voltage observed in situation 1© rises about 0.1 V at the instant of load R jump and returns
to the 12 V reference value after about 3 ms. In situation 2©, the output voltage remains
without significant change and is always stable around 12 V. Experiment results have
demonstrated the robustness of the proposed control strategy to resistive load R variations
in mixed loads.
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(b) waveform in situation 2©.

Since the experimental load currents are converted into voltage quantities using Hall
element measurements and appropriately reduced to 0.591 times the original by a propor-
tional circuit, and then connected to an oscilloscope for observation, the following table
(see Table 1) lists the corresponding current on resistor R iR, current on CPL iP, the actual
load circuit io, and the observed load current 0.591io values for different experiments under
ideal conditions. We can compare the actual conditions of the current in the experiment
with the ideal conditions.
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Table 1. Current in different experiments with the ideal conditions.

R ≡ 20Ω
P(W) iR(A) iP(A) io(A) = iR + iP 0.591 io(A)

5 0.6 0.417 1.017 0.601
15 0.6 1.25 1.85 1.093

P ≡ 10W
R(Ω) iR(A) iP(A) io(A) = iR + iP 0.591 io(A)

10 1.2 0.833 2.033 1.202
20 0.6 0.833 1.433 0.847

In general, the experimental results are similar to the simulation results. The reason
for the error between them can be attributed to the fact that the physical object has various
parasitic parameters and more losses than the ideal simulation components, and the
electronic load also takes some time to change, which may lead to a slight difference
between the experimental and simulation waveforms. Therefore, it can be said that the
experimental results are consistent with the simulation results, which proves the correctness
and effectiveness of the proposed control strategy.

6. Conclusions

In this paper, a nonlinear control technique based on objective holographic feedback
linearization with a sliding mode control is designed for a buck converter by combining
CPL with resistive loads. Also, it demonstrates that the proposed control strategy can
stabilize the system by adjusting the control parameters, and that each state quantity can
track its own reference value. Depending on the relative degree of the state variables
incorporated in the output vector, the described method allows for the design of different
sliding mode surfaces, and different Brunovsky’s canonical form state space equations
formed by error functions for solving the nonlinear control rate of the original system.
Unlike the traditional OHFLC method, it does not impose the use of state variables with
a one-order relative degree to solve the control law. It broadens the applicability of the
OHFLC method. Future work can extend the method to multiple-input multiple-output
systems, or higher-order systems.
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