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Abstract: In the context of electrical power systems, modeling the edge-end interaction involves
understanding the dynamic relationship between different components and endpoints of the system.
However, the time series of electrical power obtained by user terminals often suffer from low-quality
issues such as missing values, numerical anomalies, and noisy labels. These issues can easily reduce
the robustness of data mining results for edge-end interaction models. Therefore, this paper proposes
a time–frequency noisy label classification (TF-NLC) model, which improves the robustness of edge-
end interaction models in dealing with low-quality issues. Specifically, we employ two deep neural
networks that are trained concurrently, utilizing both the time and frequency domains. The two
networks mutually guide each other’s classification training by selecting clean labels from batches
within small loss data. To further improve the robustness of the classification of time and frequency
domain feature representations, we introduce a time–frequency domain consistency contrastive
learning module. By classifying the selection of clean labels based on time–frequency representations
for mutually guided training, TF-NLC can effectively mitigate the negative impact of noisy labels
on model training. Extensive experiments on eight electrical power and ten other different realistic
scenario time series datasets show that our proposed TF-NLC achieves advanced classification
performance under different noisy label scenarios. Also, the ablation and visualization experiments
further demonstrate the robustness of our proposed method.

Keywords: electrical power applications; data mining; time series; noisy label

1. Introduction

With the rapid development of communication technology, there is a growing demand
for constructing intelligent power grid systems [1]. Designing data mining models to
handle the increasing volume of electric power time series data and providing valuable
insights for managing power grids has become a hot topic [2]. Existing studies primarily
concentrate on designing cloud–side-end collaboration techniques for new power systems,
aiming to achieve real-time analysis of massive power time series data [3]. However, when
exploring cloud–side-end collaboration technology for power grids, a significant challenge
emerges in utilizing the time series data acquired by the user’s intelligent terminal [4,5],
which evolves over time and requires real-time data mining at the side end.

In real-life scenarios, time series data collected by power grid intelligent terminals
often exhibit noticeable low-quality issues [6,7]. These issues arise due to factors such
as communication failures of smart terminal equipment, sensor malfunctions, human
operational errors, and adverse weather conditions, resulting in problems like missing
values [8] and numerical anomalies [9] within the acquired data. Moreover, the electric
power time series data frequently rely on time sliding window analysis for automatic
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labeling, leading to the generation of many noisy labels (incorrect labels) [10]. Directly
mining and analyzing the automatically labeled power time series data using edge-end
models can undermine the robustness of the models. To address the issues of missing
values and numerical anomalies in power time series data, proper data preprocessing
methods, such as data cleansing and missing value imputation [11,12], are essential to
improve the quality of time series data. Simultaneously, robust classification methods need
to be developed to handle time series noise labels, enhancing the reliability and practicality
of the edge-end model for data mining analysis.

There are significant limitations in using traditional methods for massive electric
power time series data. In recent years, deep-learning-based time series classification
algorithms [13,14] have effectively improved the efficiency and accuracy of time series clas-
sification. However, existing deep-learning-based algorithms rely on large-scale correctly
labeled data [15]. If the model is directly trained using time series containing incorrect la-
bels, it tends to reduce the model’s robustness and produce inaccurate prediction results. To
address these issues, several studies in computer vision [16–18] have effectively enhanced
the robustness of deep learning models by designing robustness loss functions, selecting
clean labeled samples, and employing techniques for correcting incorrect labels in noise
label learning. However, existing studies on noise label learning for time series are still
limited [10], and building a robust time series noise learning model based on existing work
has not been fully explored.

Electric power time series are typical unstructured data with high-dimensional and
nonlinear characteristics. Additionally, time series data exhibit traits such as temporal
trends and seasonal changes [19]. To leverage the time series’ characteristics, such as
temporal dependence and changing trends, related scholars [20,21] have developed various
approaches to enhance the robustness of time series modeling. Dempster et al. [22,23]
integrated a large number of randomly initialized convolutional kernels to learn discrimi-
native features for time series classification. Eldele et al. [20] and Yue et al. [24] explored the
ability of contrastive learning to capture the complex dynamic characteristics of time series.
Woo et al. [25] and Zhang et al. [21] further improved the model’s performance on time
series prediction and classification by incorporating frequency domain characteristics of
time series. However, these methods mainly focus on self-supervised contrastive learning
strategies or supervised learning with correct labels. In contrast, utilizing the intrinsic prop-
erties of time series (e.g., temporal dependence and frequency domain information [26]) for
classification learning in the presence of noisy labels remains a challenge.

To address the aforementioned problems, we propose a robust time–frequency noisy
label classification model (TF-NLC), enhancing smart grid edge-end interaction modeling.
Specifically, we employ Fourier transform [27] to convert the original time series data from
the time domain to frequency domain data. We simultaneously train two deep neural
networks based on the time domain and frequency domain of the original time series.
The time and frequency domain networks guide each other’s classification learning by
leveraging the classification results from each batch of training data. To achieve this, we
utilize the small-loss criterion theory for noisy labels [28] to guide the classification training
of both networks. This guided training process enhances the model’s ability to resist
noisy labels. Additionally, we introduce a time–frequency consistency contrastive learning
module that helps alleviate the negative impact of missing values, outliers, and noisy labels
in the original time series during representation learning.

Overall, the significant contributions of this paper are threefold:

• We propose a time–frequency collaborative classification learning model aimed at tack-
ling issues related to low data quality, including problems like noisy labels and outliers,
in electric power time series data. Specifically, our proposed model, in conjunction
with a small loss criterion, leverages both time and frequency domain information
from each sample to enhance the model’s robustness. Hence, this contributes to the
enhancement of edge-end modeling for electric power time series data.
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• We introduce a time–frequency contrastive learning module to capture the consistency
between the time and frequency domains within each electric power time series. This
helps alleviate the adverse effects of missing, anomalous values and noisy labels
during model classification training. Furthermore, our model can seamlessly integrate
federated learning to support edge-end modeling of electric power time series data,
thereby enhancing the model’s robustness for real-world applications.

• Extensive experiments conducted on eight electric power time series datasets and
ten different realistic scenario time series datasets demonstrate that our proposed
TF-NLC achieves advanced classification performance in various noisy label scenarios.
In addition, ablation, visualization, and edge-end interaction with federated learning
experiments further indicate the robustness of different components of TF-NLC against
noisy labels.

The remainder of the paper is organized into six sections, whereby a brief overview of
related studies based on electrical power edge-end interaction modeling and label noise
learning is given in Section 2. The proposed method is provided in Section 3. In Section 4,
we present the experimental details and analysis results of the model proposed in this study
using eight electric power and ten different realistic scenario time series datasets. Then,
we provide a brief discussion of the main findings in Section 5. Finally, the conclusions are
presented in Section 6.

2. Related Work

The study on power time series classification with noisy labels primarily encompasses
two categories: power edge-end interaction modeling approaches and label noise learning
approaches, both of which will be discussed in this section.

2.1. Electrical Power Edge-End Interaction Modeling

Research on cloud–side-end interaction schemes for power systems has drawn the
attention of relevant scholars and has a solid research foundation [29,30]. For example,
Wang et al. [31] utilized the classical paradigm of federated learning to design an authen-
tication system for users’ power usage characteristics. Taïk et al. [32] applied federated
learning to power load prediction, resulting in cloud–side-end models that can be efficiently
deployed. In real power scenarios, labeling relevant electricity consumption time series
samples can be affected by problems such as sensor failures, data transmission delays,
or signal interruptions, resulting in the inevitable issue of noisy labels (incorrect labels) [33].
However, existing studies [34,35] focus on the efficient collaboration of cloud–side-end
systems, paying less attention to the effective mining of low-quality time series data con-
taining missing values, anomalies, and noisy labels in cloud–side-end interaction scenarios.
Therefore, exploring and analyzing efficient edge-end data mining methods for the large
amount of low-quality time series data generated by existing electric power smart terminals
is a pressing challenge that requires urgent attention [36]. In recent years, deep-learning-
based modeling techniques for time series analysis have garnered significant attention from
many scholars [13,15]. These techniques leverage the powerful representation learning
capabilities of deep learning models to enhance the analytical performance of downstream
tasks. The above studies are primarily based on the assumption of perfectly accurate labels
for the collected grid time series data. However, if these existing studies are directly ap-
plied to model edge-end interactions using grid time series data with noisy labels, they are
likely to reduce the robustness of the model and lead to significant errors in classification
predictions.

2.2. Label Noise Learning

In recent years, label noise learning has been extensively studied in computer vi-
sion [18], while time series label noise learning [10] is still in its early stages of development.
Most of the existing label noise earning methods can be categorized into three groups:
robust loss functions [37], sample selection [38–40], and label correction [16,17]. Among
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them, designing a reasonable loss function and sample selection strategy is a major hotspot
in current research. The goal of loss function design [41] is to reduce the model’s suscep-
tibility to fitting noisy labeled data. Building on this idea, Arazo et al. [42] proposed a
beta-hybrid algorithm to estimate the probability of noisy labeled data, which improves
the robustness of the model against noisy labeled data. Regarding clean sample selection,
reasonable strategies are primarily designed based on the phenomenon that neural net-
work models tend to fit clean labels faster than noise labels in the early stages of training.
For example, Han et al. [43] designed a deep neural network model called co-teaching,
which automatically selects clean labeled image data for classification training. Unlike
image data, time series data consist of numerical data points recorded in chronological
order, encompassing properties such as temporal dependencies and frequency domain
information [25,26]. When existing label noise learning methods are directly applied to
model low-quality electric power time series classification, it often leads to a degradation
in the model’s classification performance.

3. Method

This section presents the specific details of the proposed methodology, divided into
three subsections. Section 3.1 discusses the overall framework. Section 3.2 elaborates on
the implementation process of using the time and frequency domain of time series data
for classification training. Then, Section 3.3 focuses on the time–frequency contrastive
learning module designed to enhance the model’s robustness in handling low-quality time
series data. Lastly, Section 3.4 presents the overall training objective of the proposed model.
Table 1 displays the symbols used in this paper along with their corresponding meanings.

Table 1. Description of related abbreviations.

Symbol Meaning

X Original dataset
N The size of the original dataset
T The sequence length of time series
F The number of variables of time series

X1 Samples selected by the time domain network
Y1 Labels of the samples selected by the time domain network
X2 Samples selected by the frequency domain network
Y2 Labels of the samples selected by the frequency domain network
xi The input of the i-th sample in the time domain network
fi The input of the i-th sample in the frequency domain network
j The imaginary unit

yi The observed label of the i-th sample
pc

i The network’s prediction for the i-th sample
µ The noise rate of the original dataset
ri The time domain feature representation of the i-th sample
qi The frequency domain feature representation of the i-th sample

Lt f−con The time–frequency contrastive learning loss
Ltem

ce The optimization objective of the time domain classifier
L f eq

ce The optimization objective of the frequency domain classifier
Ltotal The overall optimization objective

λ The weight of Lt f−con

3.1. Overall Framework

In power system application scenarios, real-time electricity consumption time series
data obtained from smart terminals of residential and business users suffer from issues like
missing values, outliers, and noisy labels. To address the aforementioned issues, this paper
first preprocesses the time series data containing missing values using the mean-imputation
technique [44]. Next, we adopt a z-score normalization strategy [13] to further process
raw time series. Furthermore, we design a deep learning paradigm based on the time–
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frequency domain of time series to handle the noise labels, thereby enhancing the model’s
performance in the side-end processing and analysis of electricity power time series.

The details of the robust time–frequency noisy label classification model (TF-NLC)
are shown in Figure 1. Specifically, we input the time domain data and frequency domain
data of the same time series sample into two deep neural network encoders with the
same structure to obtain the feature representation of the corresponding sample. Among
them, the time domain data represent the original time series samples, while the frequency
domain data are obtained by transforming the original time series samples via Fourier
transform [27]. In the feature representation space, we introduce self-supervised contrastive
learning to reduce the feature representation differences between the time and frequency
domains of the same time series sample. In particular, TF-NLC aims to obtain robust feature
representations by magnifying the differences in time–frequency feature representations
among different time series samples. In addition, we utilize the observation labels Y1 in
the small loss sample set (X1, Y1) obtained from the time domain feature representation
to guide the classification training of the frequency domain feature representation, and
the label Y2 of the observations in the small loss sample set (X2, Y2) obtained using the
frequency domain data feature representation guides the classification training of the time
domain feature representation. Utilizing the small loss samples obtained from the above
time–frequency feature representations, TF-NLC synergistically cross-directs the training
of each other’s classifiers, thus enhancing the model’s ability to handle noisy labels.

Time-series�
samples

Frequency�
Domain

𝑋1,�Y1
Time�

Domain
Represe
ntations

Represen
tations 𝑋2,�𝑌2

Frequency�
Domain
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Mini-batch�1� Mini-batch�2�

…

…

Time-frequency
consistency�contrastive�

learning

Clean�labeled�
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Noisy�labeled�
samples

（𝑋1, Y1), (𝑋2, Y2) is�small�loss�sample�set

Encoder

ClassificationEncoder

Classification

Figure 1. The framework for the time–frequency noisy label classification model.

3.2. Time–Frequency Collaborative Classification Learning

For data collected by smart terminals, each sample can be represented as a sequence
of data over a period of time. Specifically, we assume that given a set of time series
X = {x1, x2, . . . , xN}N

n=1, each time series xn ∈ RT×F, where T denotes the sequence length
and F denotes the number of variables in the time series. For the problem of time series
classification with noisy labels, each sample xi in the training set contains an observation
label yi. The goal of this paper is to use the proposed TF-NLC to automatically select which
samples in the training set have observation labels that are the correct labels, and use these
correct labels to guide the model in classification training, thus improving the robustness of
the model against noisy labels. Although the existing noise label learning methods based
on image data achieve good performance [43], they do not consider the complex dynamic
change characteristics of time series. Especially when the time series data are affected by
external environmental noise, some correctly labeled time series samples can easily be
identified as mislabeled samples during the training process. Meanwhile, existing time
series studies [21,25] demonstrate that the frequency domain information of time series
is less affected by external environmental noise and can effectively reflect the seasonal
trend change information of the time series samples. Inspired by the above work, this
paper proposes a robust time series noisy label learning paradigm through time–frequency
collaborative classification. Specifically, the fast Fourier transform (FFT) [27] is used to
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convert the original time series data from the time domain to the frequency domain.
The FFT can be implemented using the discrete Fourier transform as follows:

F [i] =
T−1

∑
t=0

x[t]
(

cos
(

2πin
T

)
− j ∗ sin

(
2πin

T

))
, (1)

where x denotes the original time series, j denotes an imaginary unit and satisfies j2 = −1,
and F [i] is the frequency domain data. Using Equation (1), the original time series data can
be converted into a complex form of frequency domain data F [i]. However, the frequency
domain data in the form of complex numbers cannot be directly input into the deep
neural network model for training. For any complex number, this satisfies z = a + b ∗ j,
where a and b are arbitrary real numbers. In this paper, we use the real data fi, which
is a combination of the amplitude

√
a2 + b2 and phase arctan a

b of the original frequency
domain data, as the input frequency domain data of TF-NLC.

As shown in Figure 1, the time domain data xi and frequency domain data fi of
each time series sample are input to the encoder with the same structure to obtain feature
representations of the same dimensional size. Based on the studies [10,13], we use a four-
layer full convolutional neural network and a one-dimensional convolutional kernel as the
encoder to learn the feature representations in the time–frequency domain. We then feed
the acquired feature representations into a classifier consisting of a two-layer nonlinear
network and obtain the classification results from the softmax function. Meanwhile, in this
paper, the cross-entropy is adopted as the loss function for the classification training of the
time domain and frequency domain networks as follows:

Lce = −
1
N

N

∑
i=1

yT
i · log(pc

i ), (2)

where pc
i is equal to softmax (encoder(xi or fi)), and yT

i is the observed label of sample
xi or fi. Specifically, the time domain and frequency domain networks are trained for
collaborative classification based on the proportion of µ noisy labels in the training set.
In each small batch of data, we use the samples with the smallest proportion of 1− µ
loss values as the correctly labeled samples. Utilizing the small-loss samples selected for
time–frequency collaborative classification learning, TF-NLC can leverage the consistency
information between the time and frequency domains of the same time series samples to
resist noisy labels, thus enhancing the robustness of the model.

3.3. Time–Frequency Contrastive Learning

The problem of model fitting with noisy labels can be alleviated by selecting observa-
tion labels with small loss samples in the time and frequency domains for collaborative
classification training. However, the above strategy still does not fully leverage the time–
frequency consistency information of samples from the same time series to mitigate the
negative impact of numerical noise (e.g., missing values and outliers) on classification
training. In recent years, contrastive learning has demonstrated unique advantages in time
series modeling [21,24], which can effectively exploit the temporal dependence and fre-
quency domain properties of time series to obtain robust representations that are beneficial
for downstream tasks. To further exploit the time–frequency consistency information at the
feature representation level of the time series and enhance the model’s robustness, we in-
troduce a contrastive learning module based on the time–frequency feature representation
of time series (the training process shown in Figure 1). The module is optimized with the
following specific objectives:

Lt f−con = − log
exp

(
ri · q′i

)
∑j∈Ω

(
exp

(
ri · q′i

)
+ 1[j 6=i] exp

(
rj · qj

)) , (3)
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where ri denotes the time domain feature representation of sample xi, and q′i denotes the
frequency domain feature representation of sample xi. rj and qj denote the time domain
and frequency domain feature representations of the other samples in the same batch,
and Ω is the set of subscripts of the current batch of input time series data. Through
Equation (3), TF-NLC improves the consistency of time domain and frequency domain
features of samples from the same time series through a self-supervised learning strategy.
The above process is unaffected by noisy labels and can somewhat counteract the negative
impact of poor-quality time series information on model classification training at the feature
representation level.

3.4. Overall Training Objective

Our proposed TF-NLC framework comprises two encoders with the same architecture,
each corresponding to a classifier for classification training. The total training objective loss
for TF-NLC is as follows:

Ltotal = Ltem
ce + L f eq

ce + λLt f−con. (4)

where Ltem
ce and L f eq

ce denote the cross-entropy loss adopted by the time and frequency
domain data classifiers, respectively, and λ is a hyperparameter used to adjust the weights
of the time–frequency contrastive learning loss. By jointly optimizing the cross-entropy loss
in the time and frequency domains as well as the time–frequency contrastive learning loss,
the robustness of the model in dealing with low-quality time series data can be effectively
improved. The algorithmic pseudocode of TF-NLC is shown in Algorithm 1.

Algorithm 1 The proposed TF-NLC framework.

Input: time domain encoder wt and frequency domain encoder w f , time domain classifier
ct and frequency domain classifier c f , epoch Tmax, and iterationmax within each epoch;

1: Preprocess the time series dataset using mean-imputation and normalization strategies;
2: Shuffle raw training set D with noisy labels;
3: for t = 1 to Tmax do
4: for i = 1 to iterationmax do
5: Fetch mini-batch time data dt from D;
6: Obtain mini-batch frequency data d f using dt and Equation (1);
7: Obtain time domain representation r using wt(dt);
8: Obtain frequency domain representation q using w f (d f );
9: Obtain time domain clean labels yt using ct(r) via small loss criterion;

10: Obtain frequency domain clean labels y f using c f (q) via small loss criterion;

11: Update wt and w f using Lt f−con(r, q), Ltem
ce and L f eq

ce via Equation (4);
12: Update time domain classifier ct using Ltem

ce (pt, y f );

13: Update frequency domain classifier c f using L f eq
ce (p f , yt);

14: end for
15: end for
Output: wt, w f , ct and c f .

4. Experiments

In this section, we compare the proposed method with other label noise learning
methods. Section 4.1 describes the experimental settings. Section 4.2 presents the com-
parison results of all methods conducted on a single device. Section 4.3 demonstrates the
results of ablation experiments conducted on a single device. In Section 4.4, we conduct a
loss analysis. Finally, in Section 4.5, we integrate our proposed method in the scenario of
electrical power edge-end interaction leveraging federated learning algorithms and show
the classification results.
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4.1. Experiment Settings
4.1.1. Datasets

We conduct experiments on 10 public datasets, including 8 UCR datasets [45] and
2 UEA datasets [46]. Table 2 gives detailed feature information of these datasets. The UCR
dataset and the UEA dataset are widely used to verify the performance of the model in time
series classification tasks. The 10 datasets used in this paper remain the same as SREA [10],
among which the FaceFour dataset has the smallest sample size, containing 112 samples;
the MelbournePedestrian dataset has the largest sample size, including 3650 samples.

C1P{}, C2{}, and C3{} are the active electrical load data of a semiconductor materials
company, an electrical appliance manufacturing company, and a technology company,
respectively. In these datasets, P{i} represents the data collected at the i-th measurement
point. The time series of each dataset is obtained by sampling at a frequency of 15 min per
day, resulting in 96 data points for each time series. When these sequences are automatically
labeled by the machine, there may be a large number of noisy labels. Therefore, we had
professionals carefully correct them. Each dataset was categorized into two classes: regular
electricity consumption behavior and abnormal electricity consumption behavior. The latter
includes instances where customers deviate from conventional electricity usage patterns
due to changing demands or sensor malfunctions. In Figure 2, the left plot shows the blue
curve representing a time series in C1P1 that is labeled as normal electricity consumption
behavior. On the right plot, the red curve represents a series in C1P1 that is labeled as
abnormal electricity consumption behavior (notably around 9 o’clock, where there is an
abnormal fluctuation in the sensor readings).
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Figure 2. The left plot shows the bluecurve representing a time series in C1P1 that is labeled as
normal electricity consumption behavior. On the right plot, the red curve represents a series in C1P1
that is labeled as abnormal electricity consumption behavior (notably around 9 o’clock, where there
is an abnormal fluctuation in the sensor readings).

We consider three kinds of noise labels in the dataset: symmetric noise (Sym), asym-
metric noise (Asym), and instance-dependent noise (IDN), and we note the noise rate as
η. For symmetric noise, the probability of each sample in the dataset being mislabeled as
another class is η

c−1 (where c is the number of labels). The asymmetric noise considered
in this paper is paired noise: class A −→ class B, class B −→ class C, class C −→ class
A, where the probability of labels flipping to incorrect ones is η. For instance-dependent
noise (IDN), we corrupt labels as [47] do. The probability of each sample being mislabeled
depends on the instance itself. The more similar instances from two categories are, the more
likely it is that the labels of these two instances will be confused. In order to avoid unstable
training as much as possible and unfair comparison of different methods, we will report
the average results of all methods on these 10 datasets.
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Table 2. In order, the following are eight UCR datasets, two UEA datasets, and eight electric load
datasets that we collected.

Dataset #Class #Instances #Dimensions #Length Type

ArrowHead 3 211 1 251 IMAGE
CBF 3 930 1 128 SIMULATED

FaceFour 4 112 1 350 IMAGE
MelbournePedestrian 10 3650 1 24 Traffic

OSULeaf 6 442 1 427 IMAGE
Plane 7 210 1 144 SENSOR

Symbols 6 1020 1 398 IMAGE
Trace 4 200 1 275 SENSOR

Epilepsy 4 275 3 207 HAR
NATOPS 6 360 24 51 HAR

C1P1 2 63 1 96 SENSOR
C1P2 2 97 1 96 SENSOR
C1P3 2 139 1 96 SENSOR
C2P1 2 220 1 96 SENSOR
C2P2 2 98 1 96 SENSOR
C3P1 2 412 1 96 SENSOR
C3P2 2 42 1 96 SENSOR
C3P3 2 420 1 96 SENSOR

4.1.2. Evaluation Metrics

Since the number of samples of different categories in each dataset is usually uneven,
using the traditional classification accuracy as an evaluation index is often disturbed by
the class imbalance problem, resulting in the model evaluation not reflecting the true level.
This paper adopts a more reasonable evaluation index, the weighted F1 score, as shown
in Equation (5):

weighted_F1 =
C

∑
i=1

τi ·
2 · precisioni · recalli

precisioni + recalli
, (5)

where C represents the total number of categories in the dataset, and τi represents the
proportion of Class i.

The weighted F1 score can effectively avoid the unreasonable evaluation caused by the
class imbalance problem. As the test results of the model in the last few training rounds are
not always stable, we report the test results of the last 10 training rounds as the final results
in order to avoid unstable fluctuation. We use Equation (6) to evaluate the classification
performance of the model in the dataset containing noisy labels:

Avw_F1 =
Tmax

∑
i=epochs−9

weighted_F1i/10. (6)

where Tmax represents the number of training rounds, and weighted_F1i represents the
weighted F1 score obtained by evaluating the model on the test set after training i rounds.

4.1.3. Architecture

We use a four-layer full convolutional neural network with four convolution blocks
and a one-dimensional convolution kernel as the encoder. Each convolution block is
composed of a convolution layer, batch normalization and ReLU activation function, and
dropout. Dropout at the back of the block is applied to improve the representation ability
of the neural network. The dropout rate is set to 0.2, and the number of convolution
kernels in the four convolution blocks is consistent with the setting of SREA [10] for a fair
comparison. The dimensionality of the embedding features output from the 1D convolution
kernel is 32. Then, the features are input into a nonlinear classifier, where the classifier has
128 hidden neurons.
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It should be noted that the method proposed in this paper needs to encode the time
series data in the time domain and the frequency domain separately, so two separate
encoders with the above structure are adopted. It is different from co-teaching, which uses
two differently initialized encoders that both encode the time series in the time domain.

4.1.4. Baselines

Different from the data types that this paper focuses on, current label noise learning
methods primarily concentrate on image data, and many of these methods employ diverse
architectures. To ensure fair comparisons, all the methods adopt the same framework
mentioned in Section 4.1.3. The baselines we compared are as follows:

• Vanilla: Only the basic network framework is adopted, without using any label noise
learning techniques.

• Co-teaching [43]: This method trains two differently initialized networks at the same
time, and each network selects small-loss samples to guide the other network to
update parameters.

• Mixup-BMM [42]: Mixup-BMM uses the beta mixture model to fit the loss distribution
of the data, and combines bootstrapping and mixup for loss correction.

• SIGUA [40]: SIGUA selects clean samples and noisy samples from the training set
through the small-loss criterion, uses the loss of clean samples to perform gradient de-
scent updates, and uses the loss of noisy samples to perform gradient ascent updates.

• DivideMix [17]: DivideMix selects clean samples to form a labeled sample set, selects
noisy samples to form an unlabeled sample set, and then uses these two sets combined
with semisupervised learning techniques to train the network.

• SREA [10]: SREA mainly proposes an effective self-supervised learning paradigm to
correct labels for mislabeled samples and uses autoencoders to help the model obtain
robust representations of time series.

• Sel-CL [39]: Sel-CL selects trusted samples from the training set to construct trusted
sample pairs for supervised contrastive learning, improves the accuracy of sample
selection, and forms a positive cycle with the construction of trusted sample pairs.

Like co-teaching and SIGUA, TF-NLC also assumes that the noise rate is known.

4.1.5. Implementation Details

The max epochs (Tmax) for all methods is set to 200. We use the Adam optimizer, the
weight decay rate is set to 10−4, and the initial learning rate is set to 10−3 and halved every
60 epochs. We combine the original training set and test set, and then perform fivefold
cross-validation in which four folds of data are used for training and the remaining is used
for testing. We set the batch size as min(dataset_size/10, 128) (where dataset_size represents
the total number of samples in the training set). As mentioned above, the average value
of the test results in the last 10 epochs is reported. Furthermore, due to the adoption of
fivefold cross-validation, each method requires five evaluations, and the final test result is
based on the average of these five evaluations. Additionally, due to the adoption of fivefold
cross-validation, each method requires evaluation five times, and the final test result is
obtained by averaging these five evaluations. Moreover, as mentioned earlier, deep neural
networks exhibit memory effects, causing the model to focus on learning patterns from
clean data in the early phase. It often requires some time to warm up. Therefore, we set the
starting epoch for contrastive learning at the 30th epoch to avoid prematurely interfering
with the model’s adaptation to clean data patterns in both the time and frequency domains.

4.2. Experiment Results

Table 3 compares our method with others on eight UCR and two UEA datasets in
Avw_F1. It indicates that our method achieves suboptimal results on clean datasets and
datasets with 15% and 60% symmetric noise but outperforms other methods in all other
noise. Particularly, our method exhibits a significant advantage under 45% symmetric
noise, surpassing the suboptimal result by 0.046 in Avw_F1. Additionally, our method
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and co-teaching jointly achieve the best results on datasets with 40% asymmetric noise.
However, when datasets contain higher (60%) symmetric noise, our method performs
poorly, obtaining a value inferior to that of the Sel-CL method by 0.52. Overall, our method
achieves state-of-the-art (SOTA) results. Table 4 presents the average rank compared with
other methods. Our method outperforms the suboptimal method (SREA) on average by
0.355 and achieves suboptimal results on clean datasets (3) as well as datasets containing
15% symmetric noise (2.6). It achieves optimal results in scenarios except for 10% asym-
metric noise. The highest performance reached is 2.3. Furthermore, our method maintains
an average rank between 2 and 3 across all noise levels, indicating the stability of our
approach in consistently delivering optimal performance. This result aligns with the find-
ings presented in Table 3. We also note that although SREA displayed suboptimal results
in Table 4, it did not consistently demonstrate suboptimal performance in Table 3. This
can be attributed to the lack of stability in SREA’s performance and its relatively weaker
classification abilities on some datasets. Additionally, it is worth noting that in Table 3, our
method is inferior to Sel-CL on datasets with 60% symmetric noise, but Table 4 shows that
our method is superior to Sel-CL in the average rank. The reason for this discrepancy is
that, among the selected 10 datasets, Sel-CL excels at classifying a few datasets with higher
levels of noise, while our method demonstrates stronger overall adaptability to noisy labels.

Table 3. Comparison with baseline methods in Avw_F1 on eight UCR datasets and two UEA datasets.
The best results are in bold. The second-best results are underlined.

Vanilla SIGUA Co-Teaching BMM Dividemix Sel-CL SREA TF-NLC

Clean 0 0.947 0.942 0.954 0.872 0.462 0.832 0.961 0.956

Sym

15% 0.863 0.868 0.906 0.879 0.591 0.793 0.924 0.921
30% 0.748 0.777 0.847 0.822 0.605 0.768 0.858 0.882
45% 0.579 0.655 0.699 0.716 0.53 0.722 0.706 0.768
60% 0.397 0.5 0.509 0.559 0.41 0.637 0.546 0.585

Asym

10% 0.897 0.899 0.931 0.882 0.572 0.804 0.93 0.932
20% 0.821 0.838 0.892 0.848 0.572 0.795 0.881 0.898
30% 0.734 0.776 0.812 0.8 0.568 0.763 0.806 0.841
40% 0.594 0.648 0.723 0.696 0.541 0.679 0.688 0.723

IDN
30% 0.69 0.743 0.781 0.78 0.577 0.765 0.802 0.828
40% 0.609 0.658 0.71 0.703 0.546 0.735 0.72 0.759

Table 4. Comparison with baseline methods in the average rank on eight UCR datasets and two UEA
datasets. The best results are in bold. The second-best results are underlined.

Vanilla SIGUA Co-Teaching BMM Dividemix Sel-CL SREA TF-NLC

Clean 0 3.4 4.8 3 6 8 5.8 2.1 3

Sym

15% 5.8 5.6 3.2 3.9 7.3 5.3 2.4 2.6
30% 6 5.8 3.7 4 6.8 4.5 2.8 2.4
45% 7 5.2 4.1 3.5 6.3 4.1 3.5 2.3
60% 7.1 4.9 5.1 3.2 6.3 3 3.5 2.9

Asym

10% 5.2 4.9 2.6 4.8 7.4 5.2 2.9 3
20% 5.9 5.4 3 4.6 7.1 4.3 3 2.7
30% 5.8 5.3 3.6 4.2 6.7 4.5 3.2 2.7
40% 6.5 5.6 2.8 4.1 6.2 4.4 3.8 2.6

IDN
30% 6.7 5.4 4 3.8 6.3 3.8 3.2 2.9
40% 6.6 6.2 3.6 3.9 5.9 3.6 3.4 2.8

We compared the classification results of TF-NLC with other methods on the electricity
datasets we collected. Since all electricity datasets contain two categories, we only consider
symmetric noise and instance-dependent noise types in this analysis. The results are shown
in Table 5 and the evaluation metric used is Avw_F1. We observed that many methods
performed even worse than Vanilla, such as SIGUA, BMM, and Dividemix. Our method,
on the other hand, only performed worse than Sel-CL in the case of high noise levels (40%)
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while outperforming other methods significantly in all other scenarios (with an average
improvement of 0.013 over suboptimal results and 0.018 over Vanilla). This suggests that
our method’s utilization of both temporal and frequency information plays a significant role
in filtering out noisy samples in the collected electricity dataset. It further demonstrates that
when addressing noisy label issues in time series, incorporating the frequency information
can enhance the identification of noisy samples.

Table 5. Comparison with baseline methods in Avw_F1 on our electricity datasets. The best results
are in bold. The second-best results are underlined.

Vanilla SIGUA Co-Teaching BMM Dividemix Sel-CL SREA TF-NLC

Clean 0 0.870 0.863 0.871 0.786 0.527 0.869 0.839 0.876

Sym

10% 0.830 0.825 0.832 0.763 0.569 0.828 0.809 0.846
20% 0.780 0.800 0.806 0.748 0.541 0.762 0.772 0.813
30% 0.744 0.721 0.734 0.682 0.600 0.720 0.718 0.756
40% 0.629 0.621 0.609 0.611 0.591 0.679 0.620 0.647

IDN
30% 0.726 0.734 0.727 0.718 0.586 0.719 0.701 0.759
40% 0.653 0.595 0.621 0.661 0.498 0.707 0.632 0.662

4.3. Ablation Analysis

In order to further verify the effectiveness of each component of the method pro-
posed in this paper, we conducted the following ablation experiments under the setting of
30% symmetric noise: w/o Sel. indicates TF-NLC without the process of sample selection;
w/o Lt f−con denotes TF-NLC without contrastive learning. FF represents the encoders of
the dual network encoding time series in the frequency domain, while TT signifies the
encoders of the dual network encoding time series in the time domain.

Table 6 shows the results of the ablation experiments. In the presence of 30% symmetric
noise, w/o Sel. outperforms Vanilla by an average of 0.84 across all datasets, indicating that
the model that learns time series in the frequency domain also has the ability to fight against
noisy labels even without using sample selection. In addition, in order to illustrate that the
model plays a key role in the mutual guidance of the time domain and frequency domain of
the time series to combat noisy labels, we compare the following three methods: FF, TT, and
TF. Both TT and FF have lower average results (0.792 and 0.866, respectively) than TF-NLC
(0.886). It demonstrates that networks that solely consider the time domain or frequency
domain information of time series have significant biases in learning the data distribution.
However, by working in the time and frequency domains, respectively, and guiding each
other, these networks can reduce the accumulation of such biases. Additionally, we observe
that the average performance of FF is lower than that of TT by 0.74, which indicates that
networks learning only from the frequency domain of time series exhibit significantly
weaker classification capabilities in combating noisy labels compared to networks learning
from the time domain. We believe this is because using fast Fourier transform to extract
frequency information from the original data results in the loss of crucial details, such as
the inherent time dependencies, variation rates, peak values, and other characteristics of
the time series. These features are often vital for neural networks to effectively perform
time series classification tasks.

Figure 3 is a t-SNE visualization of the data features learned by the encoder of FF, TT,
and TF-NLC on the Epilepsy dataset containing 30% symmetric noise. It can be found
that, compared to the dual network working in the separate time domain or frequency
domain, TF-NLC can learn a more robust representation (the feature representation in
Figure 3c/Figure 3d is more compact than that in Figure 3a/Figure 3b). Although some
noisy samples are not accurately classified, it still illustrates the effectiveness of combining
time domain and frequency domain networks in combating time series noisy labels.
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(a) TT (b) FF

(c) T in TF-NLC (ours) (d) F in TF-NLC (ours)

Figure 3. The t-SNE visualization depicts the performance of three methods on the Epilepsy dataset
under 30% symmetric noise. Four classes are shown in different colors. Among these visualizations:
(a) illustrates the data feature representation learned by one of the encoders after training, where the
dual network (TT) works in the time domain; (b) shows the data feature representation obtained by
one of the encoders after training, with the dual network (FF) working in the frequency domain; (c)
demonstrates the data feature representation learned by the encoder (T) working in the time domain
for TF-NLC; (d) indicates the data feature representation learned by the encoder (F) working in the
frequency domain for TF-NLC. Upon comparing (a) with (c) and (b) with (d), it can be found that the
feature representation learned by TF-NLC in both the time and frequency domains exhibits greater
robustness as the feature representation is more compact.
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Table 6. The ablation experiment under the 30% symmetric noise setting in Avw_F1. w/o Sel. indicates
TF-NLC without the process of sample selection; w/o Lt f−con denotes TF-NLC without contrastive
learning. FF represents the encoders of the dual network encoding time series in the frequency
domain, while TT signifies the encoders of the dual network encoding time series in the time domain.
Bold indicates the best results, and underline represents the second-best results.

Vanilla w/o Sel. w/o Lt f−con FF TT TF-NLC

ArrowHead 0.773 0.826 0.893 0.853 0.843 0.902
CBF 0.774 0.794 0.779 0.545 0.869 0.803

FaceFour 0.785 0.877 0.877 0.840 0.875 0.898
MelbournePedestrian 0.768 0.796 0.847 0.720 0.875 0.851

OSULeaf 0.670 0.754 0.773 0.652 0.806 0.807
Plane 0.771 0.829 0.947 0.958 0.944 0.956

Symbols 0.768 0.884 0.966 0.920 0.971 0.970
Trace 0.720 0.906 0.966 0.954 0.928 0.968

Epilepsy 0.760 0.904 0.895 0.837 0.838 0.902
NATOPS 0.672 0.731 0.737 0.640 0.713 0.767

Average 0.746 0.830 0.868 0.792 0.866 0.882

4.4. Loss Analysis

Figure 4a,b show the average loss of clean samples and noise samples in the training
process of Vanilla and TF-NLC, respectively. It can be found that in the early stage of
training, the average loss of clean samples and noise samples of both methods maintains a
gap, which is in line with the widely recognized memory effect of deep neural networks [48].
Since Vanilla does not take the means against noisy labels, the loss of noisy samples
gradually converges with training, resulting in a smaller difference from the average loss
of clean samples. The proposed method in this paper mitigates the impact of noisy labels
by employing sample selection. Furthermore, through the collaboration of two networks
working in the time domain and frequency domain, it reduces the bias accumulation of
sample selection. As a result, the average loss of noisy samples diverges further during
training, which facilitates the selection of clean samples based on the small-loss criterion
during the phase of sample selection.

(a) Vanilla (b) TF-NLC (Ours)

Figure 4. The training loss curves of the two methods on the ArrowHead dataset under the 30%
symmetric noise setting are displayed. Specifically, (a) represents the loss curve for Vanilla, and (b) il-
lustrates the loss curve for TF-NLC. The red curve corresponds to the average training loss of the
noisy samples, while the blue curve represents the average training loss of the clean samples.

4.5. Edge-End Interaction

Given the ability of federated learning to be deployed within edge-end systems for
model training, this section explores the integration of the proposed method with the
classical federated learning algorithm, FedAVG [49], to simulate real-world applications in
electrical power edge-end systems. To be more convincing, we conducted experiments not
only on the collected set of 8 electric load datasets but also on an additional 10 UCR and
UEA datasets, uniformly introducing 30% symmetric label noise. The experimental settings
are outlined below: considering the relatively small dataset size, we set the number of edge
devices as two, each employing an independently and identically distributed training set.
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The local training epochs for edge devices are set to 10. The global training rounds is 20,
and the batch size is either 6 or one-tenth of the training set size. Other hyperparameters
are the same as Section 4.1.5.

To assess the practicality of deploying our approach within edge-end systems, we
compare the following two models: TF-NLC-FedAVG (the proposed method combined
with classical federated learning FedAVG) and Vanilla-FedAVG (Vanilla combined with
FedAVG). Tables 7 and 8 present the experimental results. Table 7 presents the experimental
results on 10 UCR and UEA datasets. TF-NLC-FedAVG outperforms Vanilla-FedAVG with
an average accuracy improvement of 0.112. The largest gap between the two methods is
observed on the Symbols dataset, where the difference reaches 0.242. In terms of Avw_F1,
TF-NLC-FedAVG surpasses Vanilla-FedAVG by an average of 0.122, and, once again,
the largest gap is observed on the Symbols dataset, with a difference of 0.262. Table 8
displays the results on eight electricity datasets. TF-NLC-FedAVG achieves a higher
average accuracy of 0.58 compared to Vanilla-FedAVG. Regarding the average Avw_F1,
there is a difference of 0.56 between the two methods. It can be observed that TF-NLC-
FedAVG consistently performs better across all datasets. It further illustrates that the
deployment of our proposed method within edge-end systems effectively mitigates the
degradation of model generalization caused by noisy labels.

Table 7. Comparison of Vanilla-FedAVG and TF-NLC on 10 UCR and UEA datasets with 30% sym-
metric noise. The best results are in bold.

Accuracy Avw_F1

Vanilla-FedAVG TF-NLC-FedAVG Vanilla-FedAVG TF-NLC-FedAVG

ArrowHead 0.399 0.573 0.312 0.535
CBF 0.807 0.838 0.789 0.822

FaceFour 0.535 0.642 0.503 0.619
MelbournePedestrian 0.285 0.485 0.233 0.456

OSULeaf 0.285 0.468 0.202 0.426
Plane 0.791 0.891 0.784 0.863

Symbols 0.463 0.705 0.395 0.657
Trace 0.765 0.795 0.729 0.746

Epilepsy 0.749 0.782 0.748 0.774
NATOPS 0.739 0.764 0.735 0.752

Average 0.582 0.694 0.543 0.665

Table 8. Comparison of Vanilla-FedAVG and TF-NLC on eight electric load datasets with 30%
symmetric noise. The best results are in bold.

Accuracy Avw_F1

Vanilla-FedAVG TF-NLC-FedAVG Vanilla-FedAVG TF-NLC-FedAVG

C1P1 0.633 0.685 0.606 0.652
C1P2 0.630 0.715 0.607 0.676
C1P3 0.684 0.749 0.685 0.747
C2P1 0.832 0.906 0.830 0.900
C2P2 0.763 0.814 0.758 0.812
C3P1 0.757 0.803 0.769 0.801
C3P2 0.861 0.950 0.834 0.950
C3P3 0.850 0.855 0.845 0.849

Average 0.751 0.809 0.742 0.798

Additionally, we observed that the performance of both models on the 10 UCR and
UEA datasets with 30% symmetric noise does not surpass the results shown in Table 3
(experiments were conducted on one single device). The reason is that datasets in Table 3
are multiclass. For instance, MelbournePedestrian comprises 10 classes with relatively
short sequences. Dividing the dataset into two subsets for training on separate edge devices
significantly increases the difficulty, coupled with the impact of a considerable amount
of noisy labels. As a result, the model’s generalization performance is compromised.
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Conversely, in the case of the eight electric load datasets with 30% symmetric noise, TF-
NLC-FedAVG outperforms TF-NLC in Table 3. This can be attributed to the longer sequence
lengths and fewer categories within these electrical load datasets, making it easier for the
model to capture data patterns. Furthermore, TF-NLC-FedAVG demonstrates improved
performance in the presence of noise, leveraging TF-NLC to combat noisy labels.

5. Discussion

Noisy labels of time series exist in various domains, including healthcare, transporta-
tion, and power systems [33]. Data in these domains often possess real-time characteristics,
complexity, and high dimensionality, making them susceptible to noisy labels due to en-
vironment, equipment, or human factors. While current label noise learning methods
predominantly focus on computer vision, there has been limited attention paid to address-
ing noisy labels in the domain of time series data.

To address it, this paper proposes a novel label noise learning method that utilizes
dual networks trained on temporal and frequency domains, mutually guiding each other.
This method effectively handles noisy labels, thereby enhancing the accuracy and stability
of model training and application. In the context of power edge-end systems, automatic
data labeling is prone to noisy labels. By applying the TF-NLC method to the client side of
power edge-end systems and integrating it with federated learning, a robust classification
algorithm is provided for power companies. By classifying power data into normal and ab-
normal power consumption behaviors, the timely detection of potential issues is facilitated,
allowing for the optimization of energy consumption and equipment operation. In terms
of load balancing and resource allocation, our method offers targeted decision support for
power companies, facilitating efficient and stable operation of power systems.

As well as providing a robust classification algorithm for the client side in cloud–edge
systems, it is worth noting that our method offers an effective solution to address time
series noisy labels and contribute to the development of related domains. Yet, there is
still room for improvement. Future research can explore the integration of temporal and
spectral information technologies and label correction methods to improve the accuracy and
robustness of label noise learning methods for time series. We will also consider integrating
more efficient federated learning methods to improve the reliability of cloud–edge systems.

6. Conclusions

To address the low-quality problem of missing values, outliers, and noisy labels in
electric power time series data mining analysis, this paper proposes a robust time–frequency
noisy label classification model (TF-NLC) that is capable of incorporating federated learning
for power edge-end interaction modeling. Specifically, our proposed TF-NLC integrates the
small loss criterion theory to exploit the category consistency between time and frequency
domain information for each sample, addressing the low-quality aspects of power time
series. Additionally, TF-NLC introduces a time–frequency self-supervised contrastive
learning module to mitigate the adverse effects of missing values, outliers, and noisy labels
on the classification of time–frequency feature representations. Across eight electric power
time series datasets and ten UCR/UEA time series datasets, encompassing scenarios with
missing and outlier values in various real-world settings, TF-NLC significantly outperforms
comparison methods, such as co-teaching [43] and SREA [10], in classification accuracy
under symmetric, asymmetric, and instance noise labeling settings. Furthermore, TF-NLC,
when combined with federated learning, achieves an average classification accuracy at
least 4% higher than the benchmark method across eight energy datasets in side-end
interaction modeling experiments. This further demonstrates TF-NLC’s robustness in
handling low-quality energy time series data. In the future, we plan to explore time series
pretraining modeling techniques to further enhance the robustness of electrical power
side-end modeling.
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