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Abstract: To address the limitations of wireless sensing in static gesture recognition and the issues of
Computer Vision’s dependence on lighting conditions, we propose a method that utilizes millimeter-
wave near-field SAR (Synthetic Aperture Radar) imaging for static gesture recognition. First, a
millimeter-wave near-field SAR imaging system is used to scan the defined static gestures to obtain
data. Then, based on the distance plane, the three-dimensional gesture is divided into multiple
two-dimensional planes, constructing an imaging dataset. Finally, an HOG (Histogram of Oriented
Gradients) is used to extract features from the imaging results, PCA (Principal Component Analysis)
is applied for feature dimensionality reduction, and RF (Random Forest) performs classification.
Experimental verification shows that the proposed method achieves an average recognition precision
of 97% in unobstructed situations and 93% in obstructed situations, providing an effective means for
wireless-sensing-based static gesture recognition.

Keywords: millimeter-wave imaging; near field; synthetic aperture radar; static hand gesture recognition

1. Introduction

As an important means of interaction, gestures have been widely applied. Deaf-mute
people use sign language based on gestures to communicate with others. Traffic police
use hand signals to convey traffic instructions to drivers. Animal trainers use specialized
gestures to give commands to animals. In addition to human-to-human and human-to-
animal interactions, gestures are also an important means of HCI (Human–Computer
Interaction). Currently, smart home appliances such as intelligent speakers and smart
lamps have begun to use gesture recognition technology. With the emergence of various
somatosensory games, gesture recognition technology is increasingly being applied in
the field of electronic games. VR (Virtual Reality) and AR (Augmented Reality) also use
gestures as the main means of interaction. The application of gesture recognition in the
field of HCI greatly improves interaction efficiency, freeing hands from the operation of
devices such as keyboard, mice and handles, making interaction more convenient and
faster. Therefore, gesture recognition has high research value and broad research prospects.

Early gesture recognition was achieved utilizing wearable devices. The authors of [1]
embedded three-axis accelerometers and gyroscopes into wearable smart devices, obtaining
a large amount of hand movement data and achieving continuous gesture recognition. The
authors of [2] proposed a gesture recognition method based on three-channel electromyog-
raphy sensors, wrapping an infrared device around the arm and automatically detecting
the start and end points of significant gesture fragments by detecting the intersection points
and their moving average curves of electromyography signals. The authors of [3] proposed
a gesture recognition method based on optical tagging, which installed a small camera
and projector on a hat and placed a ring tag on the finger to form a wearable gesture
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interface, allowing users to interact with projection information using gestures. Wearable-
device-based gesture recognition methods have the drawbacks of inconvenient use and
expensive prices, making them difficult to promote. Therefore, contactless gesture recog-
nition methods have begun to gain attention, among which CV (Computer Vision)-based
gesture recognition methods have gradually become a research hotspot. The authors of [4]
proposed a gesture segmentation and feature extraction method for static gestures under
a simple background using camera-captured gesture images and achieved classification
using SVM (Support Vector Machine). The authors of [5] proposed an attention mechanism
and feature fusion method for improving CNN’s recognition accuracy of static gestures,
using camera-captured static gesture data. The authors of [6] introduced various static
gesture classification methods based on Computer Vision. The authors of [7] developed
a visual recognition system that combined RGB (RGB color mode) and depth descriptors
to classify gestures. The authors of [8] constructed a robust finger-part-based gesture
recognition system using a Kinect sensor. Moreover, many studies mentioned in [9–12]
also achieved considerable recognition accuracy using CV-based gesture recognition. It
can be seen that there has been a great deal of research on contactless gesture recognition
based on Computer Vision, and significant progress has been made. However, Computer
Vision has the drawbacks of lighting condition dependence and privacy invasion, limiting
its usage. To address these issues, contactless gesture recognition based on wireless sensing
has begun to attract researchers’ attention.

There have been many studies on gesture recognition based on wireless sensing, which
have been based on different frequency bands and modulation techniques. The authors
of [13] designed a segmentation algorithm based on wavelet analysis and short-time energy,
utilizing fluctuations in Wi-Fi signal CSI (Channel State Information) caused by hand move-
ments, to achieve gesture recognition. Similarly, the authors of [14] achieved fine-grained
dynamic gesture recognition using CSI. The authors of [15] proposed a gesture recognition
method for IR-UWB (Impulse Radio Ultra-Wideband) radar based on GoogLeNet, achiev-
ing high-precision gesture recognition. The authors of [16] introduced common methods
using millimeter-wave radar for dynamic gesture recognition, including data processing,
feature extraction and classification. The authors of [17] achieved real-time continuous
gesture recognition using 24 GHz FMCW (Frequency Modulated Continuous Wave) radar,
and the authors of [18] achieved dynamic gesture recognition for multiple hands using
77 GHz FMCW radar.

At present, existing research on gesture recognition has encountered various chal-
lenges, such as the inconvenience and high cost of wearable devices. Although Computer
Vision can recognize both dynamic and static gestures, it can be limited by lighting condi-
tions and can easily expose a user’s privacy. Traditional wireless sensing methods mostly
focus on the recognition of dynamic gestures, but they lack effective methods for recogniz-
ing static gestures. This is because traditional wireless sensing methods rely on the Doppler
shift to provide relative velocity information for gestures, and they do not provide the
spatial features required to distinguish static gestures. Therefore, there is still a great deal
of research space and value for wireless-sensing-based static gesture recognition methods.

In recent years, SAR imaging has gradually transitioned from far-field to near-field
applications with the popularization of commercial small FMCW millimeter-wave radars.
Millimeter-wave near-field SAR imaging is not limited by lighting conditions, has the
ability to penetrate and is capable of depicting the contours of objects. These features make
it expand the boundaries of wireless sensing, providing a way to realize “wireless vision”.
The contours obtained from the imaging can be used as features for recognition.

Based on this research status, we propose a static gesture recognition method based
on millimeter-wave near-field FMCW-SAR imaging, and the specific contributions are
as follows.

1. We built a millimeter-wave near-field SAR imaging system. The system was deployed
to perform static gesture imaging, and the resulting images were utilized as features to
accomplish static gesture recognition. In comparison to cameras, the millimeter-wave
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imaging system is not bound by lighting conditions and can effectively scan static
gestures in dark environments.

2. We present a method for constructing a dataset of static gesture images. The dataset
was generated by using different imaging algorithms to process different static ges-
tures at every distance plane. A classification approach based on HOG–PCA–RF
is proposed for this dataset, where HOG was utilized for image feature extraction,
followed by dimensionality reduction using PCA and ultimately classification using
Random Forest.

3. The system built by us captured the data of five common static gestures and pro-
duced images that could approximately reproduce the contours of the gestures. The
classification results demonstrate that the proposed method achieved satisfactory
recognition precision.

This article consists of five sections. Section 2 mainly introduces the related works
on wireless-sensing-based gesture recognition. Section 3 mainly introduces the structure,
workflow and specific methods of the method proposed in this article. Section 4 mainly
introduces the hardware equipment, parameter settings and experimental results of the
proposed method. Section 5 provides a summary of the entire article and gives an outlook
on future work.

2. Related Work

Currently, wireless-sensing-based gesture recognition methods mainly focus on dy-
namic gestures, as dynamic gestures can cause interference in signals and make it easier
to extract related features, such as Doppler. For static gestures, it is difficult to extract
meaningful features due to the ability to affect the magnitude, phase or other properties of
the signal slightly; thus, there is less related work in this area. In this section, we divide
the discussion into two parts: dynamic gesture recognition based on wireless sensing and
static gesture recognition based on wireless sensing, to introduce related research.

2.1. Dynamic Hand Gesture Recognition Based on Wireless Sensing

The authors of [19] designed a deep spatio-temporal gesture recognition method based
on Wi-Fi signals, which segments continuous gestures using a time series differencing
algorithm and achieved the goal of dynamic gesture recognition. The authors of [20]
proposed a two-stage radio frequency algorithm for dynamic gesture classification by
segmenting continuous Wi-Fi packets into gesture instances based on time stamps attached
to CSI values. The authors of [21] collected data using millimeter-wave radar and extracted
three scene-independent gesture features, namely the distance–time spectrum, distance–
Doppler spectrum and distance–angle spectrum. They fused different gesture features
using 3D CNN to achieve cross-domain dynamic gesture recognition. The authors of [22]
designed a driver-assistant dynamic gesture recognition system using micro-Doppler
features obtained using 77 GHz FMCW radar. The authors of [23] proposed a robust
dynamic gesture recognition method based on a self-attention time series neural network,
which maintained high precision under random dynamic disturbances.

2.2. Static Hand Gesture Recognition Based on Wireless Sensing

The authors of [24] constructed a sensor for gesture recognition using ultra-wideband
pulse signals reflected by the hand. They identified static gestures by analyzing singular
points of the user’s hand-reflected waveform. The authors of [25] imaged some static
gestures using acoustic imaging methods, but the resolution was low. The authors of [26]
attempted to image static gestures using millimeter-wave near-field FMCW-SAR imaging.
However, due to the insufficient reflectivity of human hands, the imaging effect was too
poor to restore gesture contours. Therefore, the authors changed the imaging model to
an aluminum-made gesture model and used the results as “sterile” data to improve the
accuracy of static gesture recognition. The above research indicates that there has been
little research on wireless-sensing-based static gesture recognition, and the results have
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been unsatisfactory. However, Refs. [27,28] provide new ideas. The authors of [27] used
millimeter-wave imaging to image apples, and although they could not restore the contours
of the apples, they used the imaging results as features to finally distinguish between
healthy and damaged apples. The authors of [28] imaged faces, and although they could
not restore the contours of the faces, they used the imaging results as features to achieve
the registration of different users’ biometric security information.

Based on what is mentioned above, millimeter-wave imaging can be used for static
gesture imaging. The results obtained can be used as features for classification. This can
effectively compensate for the shortcomings of static gesture recognition in the field of
wireless sensing.

3. System Design

This section is divided into four parts. The first part introduces the overall process of
the system, which includes three stages. The second part specifically describes the data
capturing stage of the process, with a focus on the original data acquisition method of
near-field MIMO-SAR. The third part describes the gesture imaging stage of the process, in
which four imaging algorithms are used to construct the imaging dataset. The fourth part
describes the gesture classification stage of the process.

3.1. System Overview

The system process diagram, as shown in Figure 1, is divided into three stages. First,
in the data capturing stage, the millimeter-wave near-field FMCW-SAR imaging system
is used in MIMO (Multiple Input Multiple Output) mode to scan each static gesture
and complete the original data acquisition. Second, in the gesture imaging stage, the
distance plane is first partitioned, and for each distance plane, four imaging algorithms are
used to process the data and obtain four imaging results. Then, all distance planes data
are integrated to construct the imaging dataset of static gestures. Finally, in the gesture
classification stage, the imaging dataset is used as the input. The HOG is used to obtain
the feature descriptor, followed by dimensionality reduction using PCA and classification
using RF. The classification result is then output.
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3.2. Data Capturing

In order to capture data, we constructed a millimeter-wave near-field FMCW-SAR
imaging system, and the data capturing method of this system is shown in Figure 2. Based
on SAR, this system uses the motion of the millimeter-wave radar to form a virtual array
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that is equivalent to a real array. Signals are transmitted and received at each spatial
sampling point, and the original radar cube data are finally obtained. The system uses a
horizontal-then-vertical motion method. To reduce errors caused by mechanical vibration,
this system adopts discrete sampling, meaning that signals are transmitted and received
when the radar is stationary and stopped when the radar is in motion. In order to simplify
the imaging algorithm, we use the EPC (Equivalent Phase Center) [29] principle to make
each transmitting and receiving pair equivalent to a full-duplex antenna positioned in the
middle of the transmitting and receiving pair.
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Figure 2. SAR data capturing method (red: transmitting antennas; blue: receiving antennas; orange:
virtual antennas).

Furthermore, in order to improve radar utilization and enhance data capturing effi-
ciency, this system adopts MIMO [30] mode instead of simple SISO (Single Input Single
Output) [30] mode. According to the EPC principle, the equivalent virtual array of a
SISO system has only one full-duplex antenna. As shown in Figure 2, based on the EPC
principle, the 2 × 4 linear array in the figure can be equivalent to a virtual linear array
with 8 full-duplex antennas. Therefore, the data capturing efficiency of MIMO is higher
than that of SISO. Prior to equivalence, the 2 × 4 receiving array has a distance of 2λ
between the two transmitting antennas and a distance of λ/2 between the four receiving
antennas. According to the EPC principle, the distance between the full-duplex antennas in
the equivalent virtual array is λ/4, which satisfies the spatial sampling criteria [29] and
does not produce a ghost image.

In Figure 2, the primed coordinate corresponds to the scanning plane, and the un-
primed coordinate corresponds to the target plane, with a distance z0 between the two
planes. For the synthesized virtual array shown in Figure 2, Dx represents the synthesized
horizontal aperture length, Dy represents the synthesized vertical aperture length, dx repre-
sents the spatial sampling interval in the horizontal direction, and dy represents the spatial
sampling interval in the vertical direction. Because the used MIMO array can be equivalent
to a virtual array of eight vertically distributed full-duplex antennas, dy is greater than dx.

The radar we used adopts FMCW modulation, and its transmitted chirp signal is as
follows [31]:

m(t) = A cos
[
2π( f0t + Kt2/2) + ϕ

]
(1)

where K denotes the frequency change rate of the chirp, and f0 denotes the start frequency
of the chirp. The chirp signal is transmitted, then reflected by the target and finally received.
After a time delay τ, the received signal is as follows [31]:

b(t) = A cos
[
2π( f0(t− τ) + K(t− τ)2/2) + ϕ

]
(2)

After the transmitting signal and the receiving signal are mixed, the I-channel IF
(Intermediate Frequency) signal is obtained as follows [31]:

rI(t) = A cos
[
2π( fbt + f0τ − Kτ2/2)

]
, fb = Kτ (3)
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where fb is the beat frequency. The resulting IQ IF signal is as follows [31]:

r(t) = rI(t) + jrQ(t) = Aej2π( fbt+ f0τ) (4)

This signal is the data captured at each spatial sampling point in the raw data of
Figure 2.

For the three-dimensional raw data, first we use range-FFT (Fast Fourier Transform)
to distinguish the data of each distance plane, and we then filter out the two-dimensional
data of the target distance plane through pulse compression as the input of the imaging
algorithm. The process is as follows [31]:

s(x′, y′) =
∫ T

0
r(x′, y′, t)e−j2πKτ0tdt (5)

where Kτ0 represents the IF signal frequency corresponding to the target plane (distance
z0), r(x′, y′, t) represents the three-dimensional raw data, and s(x′, y′) represents the two-
dimensional data corresponding to the target distance plane.

3.3. Static Hand Gesture Imaging

Upon obtaining data for each distance plane, we select several distance planes sur-
rounding the target. For each distance plane, we use the following four imaging algorithms
to obtain four approximate results. Finally, we aggregate the results of all distance planes
to complete the construction of the dataset for one static gesture. For each type of static
gesture, this process is repeated to complete the construction of the entire dataset.

The first imaging algorithm is BP (Back Projection), which is a spatial domain imaging
algorithm with the characteristics of good imaging quality and low execution efficiency. Its
formula is as follows:

f (x, y) =
x

s(x′, y′)e−j2k
√
(x−x′)2+(y−y′)2+z0

2
dx′dy′ (6)

The second imaging algorithm is AFT (Analytic Fourier Transform), which is a
wavenumber domain (spatial frequency domain) imaging algorithm with the characteris-
tics of high imaging quality and high execution efficiency, and it is not affected by ghost
images. Its formula is as follows according to [31]:

f (x, y) = FT−1
2D

[
FT2D[s(x′, y′)]e−jkzz0

]
, k2

x + k2
y + k2

z = (2k)2 (7)

The third imaging algorithm is MF (Matched Filter), which is a wavenumber domain
imaging algorithm. Its characteristics include high imaging quality and high execution
efficiency. The formula for the MF algorithm is as follows [31,32]:

f (x, y) = FT−1
2D
[
FT2D[s(x′, y′)]FT2D[h(x′, y′)]

]
(8)

where the matched filter is [31]

h(x′, y′) = e−j2k
√
(x′)2+(y′)2+z0

2
(9)

In the formula, the relevant parameters are k, which denotes the wavenumber (for
spatial frequency, kx, ky, kz represent the x, y, z direction wavenumbers, respectively);
f (x, y), which represents the reflectivity of the target; and FT2D and FT−1

2D , which denote
the two-dimensional Fourier transform and the two-dimensional inverse Fourier transform,
respectively. The fourth imaging algorithm is mmSight, which is a robust imaging algorithm
based on AFT (Analytic Fourier Transform), and its specific principle is described in [33].



Electronics 2023, 12, 4013 7 of 19

3.4. Gesture Classification

After obtaining the imaging dataset, classification is carried out using HOG, PCA
and Random Forest. First, the feature extraction of the imaging result is conducted by
HOG, followed by the dimensionality reduction processing of the obtained features using
PCA. Finally, Random Forest is utilized to process the reduced results, completing the
classification. The static hand gesture classification algorithm is presented in Algorithm 1.

Algorithm 1: Static Hand Gesture Classification

Input: gesture imaging dataset rawData
Output: gesture predict target preTag
1. f eatureData← HOG(rawData)
2. PCA_Data← PCA( f eatureData, dim) // dim: dimension
3. for i = 1:1:epoch
4. RandomForest.train(PCA_Data_train, tag)
5. end for
6. preTag← RandomForest.predict(PCA_Data_test)
7. function HOG (H)
8. H(x, y)← H(x, y)gamma

9. Gx(x, y)← H(x + 1, y)− H(x− 1, y) // x-direction gradient
10. Gy(x, y)← H(x, y + 1)− H(x, y− 1) // y-direction gradient

11. G(x, y)←
√

Gx(x, y)2 + Gy(x, y)2 // gradient amplitude
12. α(x, y)← tan−1(Gy(x, y)/Gx(x, y)

)
// gradient angle

13. return HOG_descriptor ← G(x, y), α(x, y)
14. end function
15. function PCA (X, m) //X = {x1, x2, . . . , xn}
16. for i = 1:1:n

17. xi ← xi − 1
n

n
∑

i=1
xi // centralization

18. end for
19. C ← XXT // calculate the covariance matrix
20. λ← |C− λE| = 0 // calculate eigenvalue
21. for i = 1:1:m
22. ωi ← λi // obtain feature vector
23. end for
24. W = {ω1, ω2, . . . , ωm} // obtain projection matrix
25. return WX
26. end function

The specific flow of the gesture classification algorithm is shown in Figure 3. The HOG
part shows various intermediate results in Algorithm 1, and the Random Forest part shows
the classification decision mechanism.

The Histogram of Oriented Gradient feature is a type of feature descriptor used
for object detection in Computer Vision and image processing. It constructs features by
calculating and counting the gradient direction histogram of local regions in images. As
shown in the HOG part of Figure 3, the original images are first converted into grayscale
and uniformly compressed to a size of 256× 256. Then, the horizontal and vertical gradients
of the compressed image are computed and converted into gradient magnitude spectra
and gradient angle spectra. Finally, the HOG feature descriptor is extracted from these
spectra, and the corresponding feature vector is computed. Principal Component Analysis
aims to use the idea of dimensionality reduction to transform multiple indicators into a
few comprehensive indicators, avoiding the curse of dimensionality and reducing training
time. Random Forest is an ensemble learning method that integrates multiple decision trees
internally. As shown in Figure 3, Random Forest allows each decision tree to randomly and
repeatedly select data and make decisions independently. Using a voting mechanism for
the results from all decision trees, the most voted decision is chosen as the final result. If
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there are multiple decisions with the same number of votes, a random selection approach
is used to determine the final result.
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24.       1 2{ , ,..., }mW ω ω ω=      // obtain projection matrix 
25.       return WX 
26.   end function 

The specific flow of the gesture classification algorithm is shown in Figure 3. The 
HOG part shows various intermediate results in Algorithm 1, and the Random Forest part 
shows the classification decision mechanism. 
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Figure 3. HOG–PCA–RF method.

4. Experiment and Evaluation

The present section is divided into three parts. The first part introduces the experi-
mental platform used in this article, encompassing the relevant hardware equipment and
software environment. The second part outlines the experimental parameter settings, which
are further subdivided into FMCW parameter settings and scanning platform parameter
settings. The third part presents the experimental results, including static gesture imaging
results, as well as classification precision and other metrics.

4.1. Experimental Platform

The experimental platform in this article consists of three parts: the scanning platform,
radar platform and host computer, as shown in Figure 4a, with details in Figure 4c. The
scanning platform is mainly composed of two sliders, which are used to drive the radar
platform to move to different spatial sampling points. The radar platform mainly consists
of TI’s IWR1642BOOST development board and the DCA1000EVM data capturing card,
which are used for signal transmission and reception at spatial sampling points. The host
computer is a high-performance computer with the following configuration: i7-10875H
CPU, 16 GB RAM and RTX2060 GPU. A corresponding GUI program is written in MATLAB
to set the parameters of the scanning platform and to control the scanning platform and
radar platform. TI’s mmWave Studio is used to set the FMCW parameters of the radar and
receive commands from the MATLAB (R2022a) GUI program. Python (3.6.3) is used to
write and execute the related feature extraction, dimensionality reduction and classification
algorithms. Due to the low data capturing efficiency of millimeter-wave near-field SAR
imaging systems, we refer to the work performed in [34,35] and use a simulated human
hand (shown in Figure 4b) made of silica gel to carry out the experiments.
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4.2. Experimental Setup

FMCW Parameters: The FMCW parameters for the radar platform are shown in
Table 1. The available frequency range for the IWR1642BOOST is 77~81 GHz, so the start
frequency is set at 77 GHz. Among all the parameters, bandwidth is the most important,
as a higher value for bandwidth leads to a higher distance resolution and more accurate
selection of distance planes. The purpose of setting other parameters is to obtain the
maximum possible bandwidth, which is close to 4 GHz.

Table 1. Parameter settings.

FMCW Parameters Value Scanner Parameters Value

Start Frequency (GHz) 77 Dx (mm) 160
Chirp Slope (MHz/µs) 57.115 Dy (mm) 200

Bandwidth (MHz) 3998.05 dx (mm) 2
ADC Samples 384 dy (mm) 8

Sample Rate (ksps) 6250 horizontal sampling points: nx 81
vertical sampling points: ny 26

z0 (mm) 350~410

Scanner Parameters: The parameter settings for the scanning platform are shown in
Table 1. As can be inferred from the virtual array part in Figure 2, these parameters are
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related as follows: Dx = (nx − 1)× dx, Dy =
(
ny − 1

)
× dy, Dx and Dy jointly determine

the size of the virtual array and ensure that it can cover the target. The range of z0 is
determined by the thickness of the hand. In this article, two-dimensional imaging is
adopted. With a distance partition interval of 0.1 mm, the three-dimensional gesture is
divided into multiple distance planes, and then two-dimensional imaging is performed on
each distance plane. These can be set in the software platform (Figure 4d). dx can be set as
“Horizontal Steps Movement”, dy can be set as “Vertical Steps Movement”, nx can be set as
“Horizontal Steps”, and ny can be set as “Vertical Steps”. The calculation formula for the
data capturing time is as follows: tdata_cap = nx × ny × tper_p. tper_p indicates the capturing
time required for each spatial sampling point (including mechanical movement), with a
size of about 0.9 s. Therefore, according to the data in Table 1, the capturing time of a single
gesture is about 31.59 min.

4.3. Experimental Evaluation

We conducted two experiments. The first one is an unobstructed scene, and the second
one is an obstructed scene. Figure 5a shows the relative positions of the scanner and the
simulated human hand during the experiments. Figure 5b shows that the simulated human
hand was entirely obstructed by the cardboard in the obstructed scene.
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4.3.1. Imaging Result

The imaging results for the five static hand gestures defined in this article under
unobstructed scenarios are shown in Figure 6.

As the distance plane ranges from 350 to 410 mm, not all distance planes’ results can
be displayed. Therefore, only the two-dimensional imaging results on the three distance
planes corresponding to 360 mm, 380 mm and 400 mm with significant differences are
shown (only the results obtained from the AFT algorithm are presented, and the results
from other algorithms are similar). From the figure, it can be observed that, although the
millimeter-wave imaging results can roughly describe the outline of static hand gestures
and cannot convey the detailed information carried by optical images, they can serve as
features for classification. Moreover, the imaging results vary with distance, with better
imaging quality closer to the hands (such as at 380 mm) and slightly poorer imaging quality
farther from the hands (such as at 360 mm and 400 mm).
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The imaging results for the five static hand gestures defined in this article under
an obstructed scenario (by placing the five hand gestures behind a cardboard box, the
simulated human hand is entirely obstructed by the cardboard) are shown in Figure 7.

For the same reason as before, only the two-dimensional imaging results on the
three distance planes corresponding to 360 mm, 380 mm and 400 mm are displayed (only
showing the results obtained from the AFT algorithm). From the results, it is evident
that the millimeter-wave can penetrate the cardboard box and image the target. However,
compared with the imaging results in the unobstructed scenario, the imaging quality in the
obstructed scenario is slightly inferior. This is because the obstructing object can block or
weaken some signals; furthermore, the obstructing object also has a certain reflectivity and
can become the most substantial source of noise. As shown in the figure, as the distance to
the obstructing object becomes closer (such as at 360 mm), the imaging results become more
susceptible to the obstruction and exhibit more noise. Conversely, as the distance from
the obstructing object becomes farther (such as at 400 mm), the impact of the obstruction
decreases, and the noise in the imaging results also decreases.



Electronics 2023, 12, 4013 12 of 19Electronics 2023, 12, x FOR PEER REVIEW 13 of 21 
 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

     
(k) (l) (m) (n) (o) 

     
(p) (q) (r) (s) (t) 

Figure 7. Static gesture imaging results in obstructed scene: (a) Gesture five; (b) Gesture yeah; (c) 
Gesture gun; (d) Gesture ok; (e) Gesture fist; (f) Five result at 360 mm; (g) Yeah result at 360 mm; 
(h) Gun result at 360 mm; (i) Ok result at 360 mm; (j) Fist result at 360 mm; (k) Five result at 380 
mm; (l) Yeah result at 380 mm; (m) Gun result at 380 mm; (n) Ok result at 380 mm; (o) Fist result at 
380 mm; (p) Five result at 400 mm; (q) Yeah result at 400 mm; (r) Gun result at 400 mm; (s) Ok result 
at 400 mm; (t) Fist result at 400 mm. 

For the same reason as before, only the two-dimensional imaging results on the three 
distance planes corresponding to 360 mm, 380 mm and 400 mm are displayed (only 
showing the results obtained from the AFT algorithm). From the results, it is evident that 
the millimeter-wave can penetrate the cardboard box and image the target. However, 
compared with the imaging results in the unobstructed scenario, the imaging quality in 
the obstructed scenario is slightly inferior. This is because the obstructing object can block 
or weaken some signals; furthermore, the obstructing object also has a certain reflectivity 
and can become the most substantial source of noise. As shown in the figure, as the 
distance to the obstructing object becomes closer (such as at 360 mm), the imaging results 
become more susceptible to the obstruction and exhibit more noise. Conversely, as the 
distance from the obstructing object becomes farther (such as at 400 mm), the impact of 
the obstruction decreases, and the noise in the imaging results also decreases. 

4.3.2. Classification Result 
In this article, we conducted experimental evaluations using metrics such as 

precision, average precision, a confusion matrix and an ROC (Receiver Operating 
Characteristic) curve. Precision denotes the proportion of true positive samples among 
those predicted as positive. For humans, the result of recognition scenes is deterministic, 
so high precision is required. Precision is defined as follows: 

Figure 7. Static gesture imaging results in obstructed scene: (a) Gesture five; (b) Gesture yeah;
(c) Gesture gun; (d) Gesture ok; (e) Gesture fist; (f) Five result at 360 mm; (g) Yeah result at 360 mm;
(h) Gun result at 360 mm; (i) Ok result at 360 mm; (j) Fist result at 360 mm; (k) Five result at 380 mm;
(l) Yeah result at 380 mm; (m) Gun result at 380 mm; (n) Ok result at 380 mm; (o) Fist result at 380 mm;
(p) Five result at 400 mm; (q) Yeah result at 400 mm; (r) Gun result at 400 mm; (s) Ok result at 400 mm;
(t) Fist result at 400 mm.

4.3.2. Classification Result

In this article, we conducted experimental evaluations using metrics such as precision,
average precision, a confusion matrix and an ROC (Receiver Operating Characteristic)
curve. Precision denotes the proportion of true positive samples among those predicted as
positive. For humans, the result of recognition scenes is deterministic, so high precision is
required. Precision is defined as follows:

Precision =
TP

TP + FP
(10)

TPs (true positives) represent the number of true positive samples, which are correctly
identified as positive through predictions. FPs (false positives) denote the number of false
positive samples, which are incorrectly classified as positive via predictions. The confusion
matrix presents the number of instances classified into different categories based on the
predicted and actual classes. Each column of the matrix represents the predicted class, with
its total count representing the amount of data predicted as belonging to that class. Each
row represents the true class, with its total count indicating the number of instances of
that class. The ROC curve illustrates the false positive probability under different decision
criteria, with better results reflected by a curve that is closer to the upper-left corner. In
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this article, a confusion matrix and ROC curve were used to evaluate the performance
of the classification algorithm. Apart from RF (Random Forest), we also employed SVM
(Support Vector Machine), KNN (K-Nearest Neighbor) and GBDT (Gradient Boosted
Decision Tree) as comparative classification algorithms. The dataset used in this study
contained 9455 images, with 8270 of them allocated to the training set and the remaining
1185 used as the testing set.

The hyperparameter settings for the four classification algorithms are shown in Table 2.
Among them, the SVM and KNN parameters are the default settings of sklearn, and
GBDT and RF, especially RF, optimize some parameters. To prevent underfitting, we
set n_estimators to 100. To avoid overfitting problems caused by large depths, we set
max_depth to 7. To avoid the uneven loading of leaf nodes, resulting in wasted resources,
we set min_samples_leaf to 3. For GBDT, we increase the number of estimators and decrease
the depth, min_samples_leaf. After conducting several experiments, the parameters of RF
are set to the optimal values to obtain optimal results. The main significance of the four
algorithms is to verify the feasibility of the imaging dataset as a feature, and the results
show that the imaging dataset can be used as a feature for static gestures.

Table 2. Hyperparameter of classification algorithm.

Algorithm Hyperparameter

RF n_estimators = 100, max_depth = 7, min_samples_leaf = 3
SVM C = 1.0, kernel = ‘rbf’, gamma = ‘auto’, probability = False, shrinking = True
KNN n_neighbors = 5, weights = ‘uniform’, algorithm = ‘auto’, leaf_size = 30, p = 2
GBDT n_estimators = 200, max_depth = 3, min_samples_leaf = 1

• Unobstructed scene.

In order to verify the basic static gesture recognition function, we conducted routine
experiments in unobstructed scenarios, and the resulting confusion matrix is shown in
Figure 8. The confusion matrix indicates that Random Forest achieved good results, whereas
other methods showed poor detection of certain gestures. SVM had slightly lower precision
in recognizing the ok and yeah gestures, KNN had slightly lower precision in recognizing
the five and yeah gestures, and GBDT had slightly lower precision in recognizing the gun
gesture. The position of the gesture may be a factor affecting misclassification; for example,
the GBDT result misclassified the gun gesture as the ok gesture. In addition, as shown in
Figure 6, the amplitude intensity of the imaging results varies at different distances, and
weak amplitude intensity results are prone to misclassification. For example, the yeah
gesture was misclassified as the fist gesture in the KNN and SVM results. Furthermore, the
GBDT algorithm used here did not limit the depth of the trees, leading to overfitting.

As shown in Figure 9, the ROC curve was plotted. Both the Random Forest and
GBDT methods exhibited good classification performance, whereas SVM had a certain
false positive rate for the yeah gesture, and KNN had a certain false positive rate for the
fist gesture. The micro (Micro-averaging) and macro (Macro-averaging) reflected the false
positive rates of the algorithms for the overall five gestures. It can be seen that the false
positive rates of SVM and KNN were relatively high. The average precision rates are shown
in Table 3. Random Forest and GBDT achieved good results, whereas SVM and KNN
performed relatively poorly.

Table 3. Average precision of unobstructed scene.

Method Average Precision

HOG + PCA + Random Forest 97.55%
HOG + PCA + SVM 85.73%
HOG + PCA + KNN 87.08%
HOG + PCA + GBDT 95.27%
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• Obstructed scene.

In order to verify the penetration capability of millimeter-wave and facilitate its
application in specific scenarios, we conducted experiments by placing a cardboard box
as an obstruction between the scanning platform and the simulated hand. The confusion
matrix obtained from the experiment is shown in Figure 10.

The confusion matrix indicates that, for all methods tested in the obstructed scenario,
there were certain gestures with poor detection. SVM exhibited slightly lower precision
in recognizing the gun and yeah gestures, and KNN exhibited slightly lower precision in
recognizing the gun and ok gestures. GBDT exhibited slightly lower precision in recog-
nizing the yeah and fist gestures, and Random Forest exhibited slightly lower precision
in recognizing the ok gesture. In the obstructed scenario, the position of the gesture can
also affect its recognition, leading to misclassification. For example, in the GBDT results,
the yeah gesture was misclassified as the ok gesture. Furthermore, as shown in Figure 7,
the amplitude intensity of the imaging results varied with different distance planes, which
could have caused misclassification for results with weaker intensity. For instance, in the
KNN results, the ok gesture was misclassified as the gun gesture.

The ROC curve is shown in Figure 11. Random Forest and GBDT performed well in
classification, SVM exhibited a certain false positive rate in recognizing the gun gesture,
and KNN exhibited a certain false positive rate in recognizing the ok and gun gestures. The
micro and macro reflected the overall false positive rates for the algorithms across all five
gestures. The average precision rates are shown in Table 4. Random Forest achieved good
recognition performance, and GBDT, SVM and KNN exhibited slightly poorer recognition
performance.
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Table 4. Average precision of obstructed scene.

Method Average Precision

HOG + PCA + Random Forest 93.41%
HOG + PCA + SVM 89.62%
HOG + PCA + KNN 88.10%
HOG + PCA + GBDT 87.17%

5. Conclusions and Discussion

In this article, a method for recognizing static gestures using millimeter-wave imaging
is proposed, which addresses the shortcomings in static gesture recognition in the field of
wireless sensing. This approach has the advantage of being unaffected by lighting condi-
tions, compared to visual methods such as cameras. The method first utilizes near-field
millimeter-wave MIMO-FMCW-SAR imaging to image static gestures and then constructs
an imaging dataset based on the distance plane. Finally, feature extraction, dimension
reduction and classification are accomplished using the HOG–PCA–RF combination al-
gorithm. Through extensive experimental verification, the proposed method achieved an
average recognition precision of 97% in unobstructed scenarios and 93% in obstructed
scenarios. However, there are still some limitations in this work, which are discussed below.

• The data capturing time is long and meets the real-time requirements with difficulty.
The data capturing time is about 30 min for one gesture with our platform, and it
is hard to keep an experimenter’s hand static from begin to end. This is one of the
reasons why we used a simulated human hand to conduct the imaging experiment
(another reason: in work performed in [34,35], simulated humans have already been
used to conduct imaging experiments). Improvements can be made in two aspects in
the future. Regarding the hardware aspect, a radar with more antenna units can be
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selected, but this increases hardware costs. Regarding the algorithm aspect, techniques
such as Compressive Sensing, Deep Learning and Matrix Compensation can be used to
reduce spatial sampling points, which can restore under-sampled data to full-sampled
data, thereby reducing the capturing time.

• The lack of consideration for the same type of static gesture from different angles
and directions led to low system robustness. In the future, better feature extraction
methods can be considered to extract features that are independent of angles and
directions, followed by robustness-testing experiments.

• Due to limitations in data capturing efficiency, experiments had to be conducted
using simulated hands. Compared with a real human hand, the material used for a
simulated human hand is more ideal, and it has higher reflectivity, thus obtaining
better imaging results. It is possible that simulated hands might work better than real
hands. Therefore, in the future, experiments can be carried out using human hands
when data capturing efficiency improves.

• The cardboard box experiment shows that, compared to Computer Vision, wireless
sensing has the ability to penetrate obstruction and recognize gestures behind it.
However, the cardboard box clearly has an effect on the signal. Different materials
of the obstruction have different effects on the signal. According to the SAR imaging
algorithm, as the reflectivity of the material (such as metal) increases, it becomes
more difficult to penetrate; conversely, as reflectivity decreases, it becomes easier to
penetrate the material (such as a cardboard box). Therefore, the penetration ability
of wireless sensing is limited, which is related to the reflectivity (in other words, the
material) of the obstruction. Therefore, depending on the material, it is important to
determine the penetration range of millimeter-wave imaging in wireless sensing.

• This article focuses on the research of static gesture recognition via wireless sensing
and does not involve research on dynamic gestures via wireless sensing. How to use
wireless sensing to recognize dynamic gestures and static gestures together is a big
challenge in the future.
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