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Abstract: Multiple object tracking (MOT) constitutes a critical research area within the field of com-
puter vision. The creation of robust and efficient systems, which can approximate the mechanisms of
human vision, is essential to enhance the efficacy of multiple object-tracking techniques. However, ob-
stacles such as repetitive target appearances and frequent occlusions cause considerable inaccuracies
or omissions in detection. Following the updating of these inaccurate observations into the tracklet,
the effectiveness of the tracking model, employing appearance features, declines significantly. This
paper introduces a novel method of multiple object tracking, employing graph attention networks
and track management (GATM). Utilizing a graph attention network, an attention mechanism is
employed to capture the relationships of nodes within the graph as well as node-to-node correlations
across graphs. This mechanism allows selective focus on the features of advantageous nodes and
enhances discriminability between node features, subsequently improving the performance and
robustness of multiple object tracking. Simultaneously, we categorize distinct tracklet states and
introduce an efficient track management method, which employs varying processing techniques for
tracklets in diverse states. This method can manage occluded tracks in crowded scenes and improves
tracking accuracy. Experiments conducted on three challenging public datasets (MOT16, MOT17,
and MOT20) demonstrate that our method could deliver competitive performance.

Keywords: multiple object tracking; tracking-by-detection; graph attention networks; track
management

1. Introduction

Over recent years, multiple object tracking (MOT) has garnered significant interest
within the field of computer vision. Mainstream trackers typically employ the tracking-
by-detection paradigm, correlating detected targets throughout a video sequence over
multiple frames. The tracking process within this paradigm generally involves two stages.
Initially, the target is detected and identified, which is followed by the performance of data
association on the detected target, enabling the tracking of the target’s movement within
the frame. Challenges associated with the detection phase encompass issues such as target
deformation, background clutter, and variations in light. The advent of deep learning
has led to substantial performance enhancements in some target detectors [1,2]. However,
the data association phase remains complex due to obstacles such as occlusion and target
interaction. Pedestrians, being among the most common objects tracked in MOT, present
unique challenges such as extensive pose variations, resemblant appearances, and frequent
occlusions, resulting in considerable errors or omitted detection areas. Following the
updating of these inaccurate observations into the tracklet, the effectiveness of the data
association, utilizing appearance features, becomes considerably reduced. In recent years,
models employed attention mechanisms to capture relationships among different words or
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between various image parts and have gained widespread attention due to their superior
performance over traditional convolutional neural network models. Inspired by this, we
construct a detection graph and a tracklet graph using detection and tracklet as vertices.
We then employ graph attention networks to capture the relationships within the graph
nodes and the node-to-node relationships between the graphs. Selectively focusing on the
features of beneficial nodes allows ignoring irrelevant nodes, as they contribute minimally
to the data association and may even introduce noise that affects the data association.
This selective attention mechanism enhances the discriminability between node features,
thereby improving the performance and robustness of MOT.

Additionally, within the framework of online multi-target tracking, targets randomly
entering or exiting the scene present a significant challenge. Therefore, efficient creation
and termination strategies for tracklets are of utmost importance. Inaccurate track man-
agement algorithms may result in target identity switching, thereby undermining tracking
effectiveness. In response to this, we propose an effective track management methodology
in this paper. This methodology entails the establishment of four distinct tracklet states:
temporary, confirmed, occluded, and deleted. These states facilitate various processes such
as tracklet creation, confirmation, occluded tracklet processing, and tracklet deletion.

The work presented in this paper contributes to the field in the following ways:

• We utilize graph attention networks with attention mechanisms to capture and model
the inherent graph structure and cross-graph information. By focusing on the more
relevant node features, the discriminative power of the model is enhanced, thereby
improving the distinguishability of node features.

• We propose a track management method that systematically manages tracklet states
and performs tasks such as tracklet creation, confirmation, occluded tracklet process-
ing, and tracklet deletion. This method can handle occlusions in crowded scenes and
improve tracking accuracy.

• We combine graph attention networks and track management to design simple and
versatile online trackers that exhibit advanced performance on the MOT16, MOT17,
and MOT20 datasets.

The remainder of the paper is structured as follows: Section 2 presents the related work
on multi-target tracking and attention modeling. Section 3 provides a detailed description
of the proposed methodology. Section 4 conducts an in-depth study of the proposed
method and compares it with other tracking methodologies. Finally, Section 5 summarizes
the characteristics of the proposed tracker and provides directions for further exploration.

2. Related Work
2.1. Multiple Object Tracking

In recent years, MOT has emerged as a research hotspot with wide-ranging appli-
cations in fields such as intelligent surveillance, autonomous driving, and behavioral
analysis [3]. To associate targets with stability and efficiency, certain studies [4,5] attempted
to calculate the distance of the spatial position as a cost matrix by estimating the target’s
position in the subsequent frame and subsequently applying the Hungarian algorithm for
association [6]. OC-SORT [4] predicts the target’s state in the next frame using the Kalman
filter [7] and calculates the Intersection over Union (IoU) for bipartite graph matching.
While this tracking method is apt for short-term tracking, its effectiveness diminishes in
scenes involving moving cameras or requiring long-term associations. Contrarily, some
works represent detections or tracklets as single vertices, formulating the data association
problem as a combinatorial optimization problem. For instance, GMTracker [8] constructs
a detection graph and a tracklet graph, considers the matching between the detection
graph and the tracklet graph as a convex optimization problem, and achieves end-to-end
multi-target tracking through relaxation. Several studies have also utilized a convolutional
neural network approach that fuses features through an aggregation mechanism to en-
hance the distinctiveness of appearance features [9–11]. GCT [9], for example, designed a
context graph convolutional network to learn the adaptive features of a target using the
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context of the current frame and integrated the spatio-temporal structure of historical target
samples to model the structured representation of these samples. Brasó et al. [10] used a
message-passing network with a time-aware update step to integrate deep features with
higher-order information, accounting for global interactions between detections. Tracking
methods using combinatorial optimization are generally more complex. Tracking methods
using graph convolutional networks usually assign equal importance to neighbors during
message passing. Unlike them, this paper pursues real-time tracking, and we use graph
attention networks to assign different weights to neighboring nodes according to their
characteristics. Later, we solve the problem by linear assignment to improve the tracking
performance of the algorithm as a whole.

2.2. Attention Model

Originally proposed within the realm of natural language processing, attention mech-
anisms have since been introduced to the computer vision field. Recent studies have
demonstrated the impressive performance of attention networks in computer vision, which
is achieved by introducing trainable attention weights to aggregate neighborhood infor-
mation. Several works leverage attention networks to focus on the most relevant regions
of an image or video sequence in order to extract more discriminative features [12–16].
For example, STAM [15] employed a spatio-temporal attention mechanism for online
multi-target tracking, mitigating the occlusion problem by learning the target’s visibility
map, which is then used to infer the spatial attention map. DMAN [16] introduced a dual
matching attentional network with spatial and temporal attention mechanisms to handle
noise detection and frequent target interactions. The spatial attention module centers
on the matching patterns of the input image pairs, while the temporal attention module
adaptively assigns varied attention levels to different samples in the tracklet. Certain
models establish context dependencies through attention, attaching context information to
different objects to effectively distinguish their identities. For instance, GCA-LSTM [17]
applied global context-aware attention to capture the relevant locations of motion features,
selectively focusing on informative joints in the action sequence. DSGA [18] proposed a
distractor-suppressing graph attention network to effectively suppress the distractors of
target localization, reducing their influence on learning attentional weighting features.

3. Methodology

In this section, we present an MOT methodology that utilizes graph attention networks
and track management, as illustrated in Figure 1. Initially, features are extracted from the
detection and subsequently enhanced using a graph attention network. Concurrently,
the affinity between nodes is computed, as is the affinity of features that have not been
enhanced. The affinities obtained from these two processes are then accumulated, and the
Hungarian algorithm is employed to correlate the detections and tracklets. Subsequently,
the detection and tracklet of previous unsuccessful matches are combined with motion and
appearance cues to compute a cost matrix for secondary data association. Finally, the status
of the tracklet is updated using the track management module.
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Figure 1. Overview of the proposed tracking method.

3.1. Graph Attention Networks

In this context, we leverage graph attention networks [19] to capture the intricate
relationships of nodes within a graph as well as the relationships between nodes across
different graphs. This approach enhances the distinctiveness of node features, thereby
improving their discriminability.

Constructing detection and tracklet graphs. Let us define the set of detections at
frame t as D = {D1, D2, . . . , Dnd} and the set of tracklets as T = {T1, T2, . . . , Tnt}. Each
tracklet comprises a series of detections sharing the same tracklet id, implying that a
detection from a successful data association is added to the tracklets’ collection. We
construct the detection graph and the tracklet graph by using the detection and tracklet
of frame t as vertices, respectively. We denote the detection graph as GD = (VD, ED) and
the tracklet graph as GT = (VT , ET). Both GD and GT are complete graphs, with VD and
VT representing sets of vertices, and ED and ET representing sets of edges. Vertex i ∈ VD
represents detection Di, and vertex j ∈ VT represents tracklet Tj.

Graph attention network enhanced node features. The graph attention network com-
prises a cross-attention layer and a self-attention layer. The information aggregation process
of the detection graph within the cross-attention layer is given by:

Fca

(
h(k)

i , {h(k)
j }j∈VT

)
= h(k)

i

∥∥∥∥∥ ∑
j∈VT

Aca
i,j

(
h(k)

i , h(k)
j

)
, (1)

where h(k)
i denotes the vertex feature of the k-th aggregation in the detection graph, with the

initial vertex feature being the appearance feature ai obtained from the feature extraction
network, i.e., h(0)

i = ai. Similarly, h(k)
j denotes the vertex feature of the k-th aggregation

in the tracklet graph. Its initial vertex feature is calculated as the mean of the appearance
features of the detections sharing the same tracklet ID that appeared in the previous frames
of the tracklet, i.e., h(0)

j = Fmean({a(j)}).
The symbol || represents concatenation. The attention coefficient Aca

i,j is calculated
as follows:

Aca
i,j =

exp
(〈

ffh � h(k)
i , ffh � h(k)

j

〉)
∑

ĵ∈VT

exp
(〈

ffh � h(k)
i , ffh � h(k)

ĵ

〉) , (2)
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where 〈·, ·〉 represents the inner product. The channel attention weight vector, ffh, as de-
scribed in [20], is calculated as:

ffh = σ
(
Wca ∗Havg + Wca ∗Hmax

)
, (3)

where Havg and Hmax represent the average-pooled and max-pooled features, respectively.
Wca is a trainable weight matrix, and σ(·) denotes the hyperbolic tangent function.

For the self-attention layer, graph convolutional networks (GCNs) [21] typically assign
equal importance to neighbors during the message passing from neighborhoods to the
central node. Contrarily, we employ the attention mechanism to learn the relationship
between neighborhood features. The message aggregation process for the self-attention
layer is given by:

Fsa

(
hca

i , {hca
i′ }i′∈Ni

)
=

K
||

k=1
∑

i′∈Ni

Ak
i,i′ ∗ hca

i′ ∗Wsa, (4)

where hca
i and hca

i′ are the node features after the cross-attention layer. Ni denotes the neigh-
borhood of node i in the detection graph. Wsa is a trainable weight matrix. The attention
coefficient Ak

i,i′ is computed as:

Ak
i,i′ =

exp
(〈

hca
i ∗Wsa, hca

i′ ∗Wsa
〉)

∑
î∈Ni

exp
(〈

hca
i ∗Wsa, hca

î
∗Wsa

〉) , (5)

As shown in Figure 2, beneficial information is selected from the relationship be-
tween the detection graph and tracklet graph and the relationship between nodes in the
graph through cross-attention and self-attention, and more attention is focused on relevant
node features to enhance the distinguishability of node features. In the cross-attention
layer, the features of objects are enhanced between detections and tracklets, while the en-
hancement in the self-attention layer is operated in detections and tracklets independently.

Figure 2. The diagram of feature enhancement based on graph attention network. For simplicity,
we only draw the orientation relations for specific objects. Different objects are differentiated by
bounding boxes of varying colors.

Data association: The affinity between the detection and the tracklet after feature
augmentation by the graph attention network is calculated as:

Si,j = Sinkhorn(Aca
i,j) + DS

(
cos(hi, hj) + IoU(gi, gj)

)
. (6)
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Sinkhorn [22] consists of linear assignments given a predefined assignment cost and
has been shown to be efficient for network-based permutation prediction. Sinkhorn(·)
signifies the use of the Sinkhorn network, alternately normalizing in rows and columns
until convergence. DS(·) denotes a softmax operation performed on the row and column
dimensions, respectively. cos(·, ·) signifies the cosine similarity between the computed
features, IoU(·, ·) denotes the intersection over union between two bounding boxes, gi is
the bounding box of detection Di, and gj is the bounding box in the current frame estimated
by the Kalman filter for tracklet Tj. Kalman filtering is used to estimate the future states of
a specific target based on a series of its past variables and uncertain measurements. It is one
of the most important and common estimation algorithms. The Kalman filter algorithm is
used to predict the possible position of each tracklet in the new frame, which can be used
to judge the correlation between detections and tracklets in the frame.

Subsequently, the matching matrix M is obtained by assignment using the Hungarian
algorithm:

M = Hungarian(S). (7)

Apply the Hungarian algorithm on the affinity matrix S, then discretize it into a
(0, 1)-matrix, and use this matrix as the matching matrix in the phase of target association.
A value of 1 in the matching matrix indicates a success match between the detection and
the tracklet with corresponding index, while 0 signifies no match.

3.2. Matching of Motion and Appearance Cues

Generally, superior detection and tracking accuracy can be achieved by leveraging
motion cues, while longer association can be derived from appearance cues. For those
detections and tracklets not successfully associated in the previous stage, we combine
motion and appearance cues to compute the cost matrix for secondary data association.
The cost matrix calculation process is as follows:

C = λdm + (1− λ)da, (8)

where λ represents the weight coefficient, and dm and da denote the motion distance
and appearance distance between the detection and tracklet, respectively. The motion
distance implies the generalized Intersection over Union [23] between the bounding box of
the detection and the predicted bounding box of the tracklet. The positional relationship
between the detection and the tracklet is determined by introducing the smallest enclosing
box encapsulating the two bounding boxes. dm is computed as follows:

dm(i, j) = 1−
(
| fi ∩ f j|
| fi ∪ f j|

−
| fc\ fi ∪ f j|
| fc|

+ 1

)/
2, (9)

where fi represents the area of the bounding box of the detection, and f j denotes the area
of the predicted bounding box of the tracklet. fc is the area of the smallest box that can
encapsulate the bounding box of the detection and the predicted bounding box of the
tracklet. The procedure for computing the appearance distance is:

da(i, j) =

{ ai ·aj
||ai ||·||aj ||

dm(i, j) < δ,

2(dm(i, j) + 1) otherwise,
(10)

where ai and aj are the appearance characteristics of the detection and tracklet, respec-
tively. Finally, the matching matrix is derived based on the cost matrix C using the
Hungarian algorithm.

As shown in Figure 3, the object in the yellow rectangle at frame 115 is gradually
occluded by others. The extracted appearance features are disturbed and inaccurate when
this pedestrian is occluded. When the object reappears (frame 156), the matching results
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become less reliable if only these inaccurate appearance features are used. To deal with this
issue, motion cues are used to compensate for the reduced discriminability of appearance
cues, enabling a stronger correlation between detections and tracklets.

Figure 3. The process of being obscured and reappearing for the specific object in yellow rectangle.
The dashed yellow box indicates the location of the occluded object, which the object detector failed
to recognize. The solid yellow box indicates the bounding box of the object obtained using the
object detector.

This straightforward yet effective method of combining motion and appearance cues
enables a stronger correlation between the detection and tracklet by assigning suitable
weights to motion and appearance distances in different scenarios. For instance, if the
tracked target’s appearance features are distinctly unique, a higher weight can be assigned
to the appearance distance. Conversely, in crowded scenes with cluttered backgrounds,
a higher weight can be assigned to the motion distance. Hence, even under circumstances
where the discriminability of appearance features is degraded, this method can still correlate
through motion cues, thereby preserving robust tracking performance.

3.3. Track Management

Online multi-target tracking frameworks face several challenges, including the creation
and termination of tracklets based on distinguishing true detection results from false
positives as well as handling occluded tracklets in crowded scenarios. Consequently, we
propose an effective track management method, as illustrated in Figure 4. This method
establishes four tracklet states: temporary, confirmed, occluded, and deleted, to facilitate
tracklet creation, confirmation, processing of occluded tracklets, and tracklet deletion.

Figure 4. Update the status of the tracklet after data association.

Temporary State : In data association, detections that are not successfully matched are
initialized as tracklets. However, the detector might misidentify a cluttered background as
the target to be tracked, and initializing an incorrect detection as a new tracking target can
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influence the subsequent tracking results. To distinguish true detections from false positive
results, we assign the initialized tracklet to a temporary state.

Confirmed State: A tracklet initialized in a temporary state is considered a real target,
and its state is switched from temporary to confirmed if it is successfully associated for
three consecutive frames.

Occluded State: The Intersection over Union (IoU) is computed between tracklets.
If the IoU exceeds 0.4, the tracklets are assigned an occluded state. When targets occlude
each other, especially during complete occlusions, even the best detector cannot detect
the target without context information. Thus, for a tracklet in an occluded state, if it was
successfully associated with the previous frame but did not match successfully in the
current frame, the Kalman filtered motion model is used to estimate the position of the
missing target in the current frame.

Deleted State: A track is terminated if consecutive associations are missed. The num-
ber of frames since the track’s most recent successful match is recorded, and if it exceeds a
predefined threshold of 100 frames, the target is considered to have exited the scene and
is removed from the tracking set. In certain cases, an object about to leave the scene may
have its tracklet stop at the image boundary. Such a tracklet may later be inaccurately
re-matched by a new object entering the scene. To effectively avoid such false matches,
when the center of the object’s bounding box exceeds the image boundary and the object’s
moving speed points toward the image boundary, the tracklet is no longer updated and is
subsequently deleted from the tracking set.

As shown in Figure 5, a new target in the yellow dashed rectangle appears at the
left boundary in frame 15, and it has been initialized to be a temporary tracklet. In frame
17, the status of the tracklet is changed to be the confirmed state after three consecutive
frames with successful association. In frame 117, this target is partially occluded by a
pedestrian wearing green clothes, and this tracklet has been set with an occluded state.
Highly truncated objects appeared when they are just entering or leaving the camera’s field
of view. At this time, the extracted appearance features are limited, and it is impossible to
distinguish different instances effectively. The second line shows the process of the tracked
object gradually leaving the camera’s field of view. In frame 77, the object pointed to by the
yellow arrow is about to leave the scene, at which time the object’s appearance features
are incomplete, and the position of its bounding box stays at the image boundary after the
object has completely left the scene (dashed box in frame 85). The tracklet for such cases is
set to be the deleted state, and it is removed from the tracking collection in time to prevent
false associations with newly entering objects.

Figure 5. Changes in the tracklets’ tracking states in different scenarios. Different objects are
differentiated by bounding boxes of varying colors.
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3.4. Loss Function

The proposed model is trained and supervised by leveraging the matching relationship
between detection and tracklet. Due to the sparse correspondence between detection and
tracklet, the final loss used to optimize the negative samples, accumulated from a high
number of negative sample losses, is far greater than the loss used to optimize the positive
samples. This discrepancy results in predictions that are more inclined toward the negative
class. Although the application of focal loss [24] can address this imbalance through
weight introduction, the weight is user-defined and highly reliant on practical experience.
To overcome this issue, we utilize the Hungarian attention loss [25] to train the network to
concentrate on “important” numbers. The loss is computed as follows:

L = −
Nd

∑
i=1

Nt

∑
j=1

max{Mi,j, MG
i,j}(M

G
i,j log Si,j + (1−MG

i,j) log(1− Si,j)), (11)

where S represents the affinity matrix between the detection and the tracklet. M is the
matching matrix derived from the Hungarian algorithm, and MG denotes whether the
object belongs to the ground truth of the tracklet.

4. Experiments
4.1. Implementation Details

The experiments were executed using the PyTorch [26] deep learning framework and
a two-layer graph attention network to achieve optimal performance. All experiments were
conducted on a PC equipped with an NVIDIA GeForce MX450, 2GB RAM GPU, and an
Intel(R) Core(TM) i7-11370H CPU. Following the approach in [8], appearance features were
extracted utilizing the ReID network [27], with ResNet50 [28] serving as the backbone
network. The model was trained on the MOT17 training set with an initial learning rate of
10−2, and Adam [29] was employed as the optimizer. The value of λ was set to 0.7 for the
MOT17 dataset and 0.3 for the MOT20 dataset. The value of δ was set to 0.5.

4.2. Datasets and Evaluation Metrics
4.2.1. Datasets

Our method has been evaluated on three widely used multi-target tracking datasets:
MOT16 [30], MOT17 [30], and MOT20 [31]. These datasets provide public detection, but the
annotations for the test sequences are not openly accessible. Thus, tracking results on the
test sets need to be submitted to the official evaluation server (motchallenge.net), thereby
facilitating a fair comparison between different tracking methods.

The MOT16 and MOT17 datasets contain identical video sequences but differ in their
public detections. The DPM detector provides detection results for the MOT16 dataset,
while the MOT17 dataset also includes detections from Faster R-CNN [32] and SDP [33].
The MOT20 dataset is a complex and dense dataset with crowded scenes, peaking at
an average of 246 pedestrians per frame in extremely crowded scenes, which demands
higher robustness for target association. The MOT20 dataset comprises eight videos,
with public detection provided by the Faster R-CNN detector. In line with [34–38], we
refine the bounding box using Tracktor [37] and CenterTrack [38] for the MOT16 and
MOT17 datasets. For the MOT20 dataset, Tracktor is used for bounding box refinement.

4.2.2. Evaluation Metrics

To assess tracking performance, we utilize TrackEval [39] to compute various met-
rics, including Multiple Object Tracking Accuracy (MOTA) [40], Higher-Order Tracking
Accuracy (HOTA) [41], IDF1 Score (IDF1) [42], Number of Identity Switches (IDSW) [43],
Mostly Tracked Targets (MT), and Mostly Lost Targets (ML). MOTA, considered the most
critical metric, combines false positives, missed targets, and identity switches to calculate
the accuracy of multi-target tracking. MT and ML denote the ratio of Ground Truth (GT)
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trajectories covered by a track hypothesis for at least 80% and at most 20% of their respective
life span, respectively.

4.3. Ablation Study

To gain a more comprehensive understanding of our approach, we performed an
ablation study on different components, including a matching module that employs graph
attention networks for feature enhancement (GM), a matching module that incorporates
motion and appearance cues (MA), and a track management module (TM). The impact
of these components on MOT is illustrated in Table 1. Trackers that incorporate the GM
module outperform trackers without the GM module by a large margin in HOTA and
IDF1, even though they have the same MOTA. This is because using a graph attention
network focuses more attention on relevant node features, and the affinity scores obtained
through graph representation and matching are more reliable. This confirms that the tracker
incorporating the GM module is more robust in target association than the tracker without
the GM module, allowing the tracker to maintain the identity of the tracklet over a longer
period of time. Another critical component is the track management module, which can
effectively distinguish between true detections and false positives. Tracklets that manage
occluded states can compensate for missed detections due to target occlusion, thereby
enhancing MOTA and MT while reducing ML.

Table 1. Ablation study of the proposed GATM with different components, including a matching
module that employs graph attention networks for feature enhancement (GM), a matching module
that incorporates motion and appearance cues (MA), and a track management module (TM). ↑
indicates that a larger value is better and ↓ indicates that a smaller value is better.

GM MA TM MOTA↑ HOTA↑ IDF1↑ MT↑ ML↓ IDSW↓
√

62.3 59.7 68.4 548 373 949√
62.4 61.0 70.5 547 374 514√ √
62.4 61.6 71.6 562 368 493√ √
63.4 61.5 71.0 602 352 512√ √ √
63.4 62.2 72.4 605 352 517

When an object becomes progressively occluded, the appearance features of the targets
can easily be conflated. Graph attention networks, however, allow for a selective focus
on the most pertinent features, thereby enhancing target discriminability. As shown in
Figure 6, within the yellow dashed box at frame 693, the target indicated by the arrow
(referred to as the “new object”) progressively eclipses the target behind it (referred to as
the “17th object”). This results in an increasing similarity in appearance features between
the two targets. By frame 701, the 17th target is completely obscured by the new object.
Methods without the graph attention network incorrectly associate the new object with the
17th target. However, the graph attention network successfully differentiates between the
17th and new targets.

Addressing occluded targets using the track management module enhances the
tracker’s resistance to disruptions in crowded situations. This is illustrated in Figure 7,
where there are two targets (identified as the “12th target” and the “25th target”) enclosed
in the yellow dashed box in frame 208. By frame 209, the 25th target gets occluded by
the 12th target, leading to a missed detection. Without track management, the method
fails to successfully associate with the 25th target. However, the method employing track
management is capable of estimating the obscured target’s location.
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Figure 6. Qualitative analysis of tracking results on the MOT17-11 dataset using SDP detection.
The top row presents tracking results achieved in the absence of the GM model. Conversely, the bot-
tom row shows the tracking results obtained using the GM model. In these visuals, different objects
are differentiated by bounding boxes of varying colors, and their respective IDs are indicated in the
top-left corner of each box.

Figure 7. Qualitative analysis of tracking results on the MOT17-02 dataset using DPM detection.
The top row illustrates tracking results obtained without the implementation of the TM model.
In contrast, the bottom row demonstrates tracking results acquired using the TM model. In these
representations, individual objects are differentiated by bounding boxes of diverse colors, with their
corresponding IDs denoted at the top-left corner.
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4.4. Tracking Efficiency

The experimental code has been executed using PyTorch version 1.9.1 on an 11th
Gen Intel® Core™ i7-11370H CPU without the utilization of a GPU. To provide a visual
representation of our approach’s efficacy, the time consumed in the tracking process is
computed. The tracker operates at a speed of 11 Hz on 21 video sequences extracted from
the MOT17 training set.

4.5. MOT Challenge Evaluation Results

The proposed GATM tracker is bench-marked and contrasted with other tracking
methodologies on the MOT16, MOT17, and MOT20 standards. In this section, we evaluate
the GATM in two distinct settings. GATM_T and GATM_C amend the bounding box of
public detection utilizing Tracktor and CenterTrack, respectively. The proposed method
outperforms most existing methods, showing superior results across the majority of the
evaluation metrics.

MOT16 dataset: Table 2 presents the results of the MOT16 test set. The proposed
GATM_C yields superior outcomes concerning MOTA, IDF1, HOTA, MT, and ML, and it
ranks second in IDSW. The highest MT obtained by the GATM_C method indicates that our
method can produce stable and long-lasting tracklets, which is attributed to the proposed
track management mechanism. In comparison to ArTIST-C [34], MOTA and IDF1 have
improved by 1.2 and 6.9, respectively. When compared with trackers that employ Tracktor
to refine public detection, GATM_T conspicuously outperforms them. For instance, when
juxtaposed with GSM_Tracktor [36], MOTA is enhanced by 0.4 and IDF1 is enhanced by 4.6.
Compared to Tracktor++v2, GATM_T has a higher IDF1 and a much lower IDSW, which
shows that the proposed method can track one object with the same ID more robustly.

Table 2. Comparison with other trackers on the MOT16 test set. ↑ indicates that a larger value is
better and ↓ indicates that a smaller value is better.

Methods Refined Det MOTA↑ IDF1↑ HOTA↑ MT↑ ML↓ IDSW↓
HISP_DAL [44] - 37.4 30.5 25.7 7.6 50.9 2101
GMPHD_ReId [45] - 40.4 50.1 36.0 11.5 43.1 789
BLSTM_MTP_O [35] - 48.3 53.5 39.7 17.0 38.7 735
Tracktor++ [37] Tracktor 54.4 52.5 42.3 19.0 36.9 682
Tracktor++v2 [37] Tracktor 56.2 54.9 44.6 20.7 35.8 617
ArTIST-T [34] Tracktor 56.6 57.8 - 22.4 37.5 519
GSM_Tracktor [36] Tracktor 57.0 58.2 45.9 22.0 34.5 475
ArTIST-C [34] CenterTrack 63.0 61.9 - 29.1 33.2 635

GATM _T (Ours) Tracktor 57.4 62.8 48.7 23.2 33.1 347
GATM _C (Ours) CenterTrack 64.2 68.8 53.4 32.0 28.7 458

The red represents the best results, blue represents the second best, and green represents the third best.

MOT17 dataset: Experimental results of the proposed GATM are reported and com-
pared to other methods in Table 3. Despite the addition of more detectors in the MOT17
dataset compared to the MOT16 dataset, our method GATM_C continues to set the bench-
mark in most metrics among all competing works. Specifically, our proposed tracker,
GATM_T, attains an MOTA of 57.6 and an IDF1 of 63.6 on the MOT17 dataset. In compari-
son with ArTIST-C, which uses similar detector enhancements, GATM_C improves MOTA
and IDF1 by 0.9 and 7.9, respectively.

MOT20 dataset: As summarized in Table 4, the results of the proposed method, when
applied to the challenging MOT20 dataset, demonstrate the method’s efficacy. When
compared with Tracktor++ v2, our method enhances MOTA and IDF1 by 0.1 and 2.0,
respectively. Significant improvements are also observed in MT and ML, with MT increasing
by 4.6 and ML decreasing by 2.1. In highly congested scenarios with frequent occlusions,
GATM_T’s improvement on several MOT metrics proves that using a graph attention
network and performing track management yields better performance.
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Table 3. Comparison with other trackers on the MOT17 test set. ↑ indicates that a larger value is
better and ↓ indicates that a smaller value is better.

Methods Refined Det MOTA↑ IDF1↑ HOTA↑ MT↑ ML↓ IDSW↓
GMPHD_Re17 [45] - 46.8 54.1 41.5 19.7 33.3 3865
DEEP_TAMA [46] - 50.3 53.5 42.0 19.2 37.5 2192
TADN [47] - 54.6 49.0 39.7 22.4 30.2 4869
Tracktor++ [37] Tracktor 53.5 52.3 42.1 19.5 36.6 2072
BLSTM-MTP-T [35] Tracktor 55.9 60.5 - 20.5 36.7 1188
Tracktor++v2 [37] Tracktor 56.3 55.1 44.8 21.1 35.3 1987
GSM_Tracktor [36] Tracktor 56.4 57.8 45.7 22.2 34.5 1485
ArTIST-T [34] Tracktor 56.7 57.5 - 22.7 37.2 1756
CTTrackPub [38] CenterTrack 61.5 59.6 48.2 26.4 31.9 2583
ArTIST-C [34] CenterTrack 62.3 59.7 - 29.1 34.0 2062

GATM _T (Ours) Tracktor 57.6 63.6 49.3 24.5 32.8 1163
GATM _C (Ours) CenterTrack 63.2 67.6 52.7 31.4 29.8 1413

The red represents the best results, blue represents the second best, and green represents the third best.

Table 4. Comparison with other trackers on the MOT20 test set. ↑ indicates that a larger value is
better and ↓ indicates that a smaller value is better.

Methods Refined Det MOTA↑ IDF1↑ HOTA↑ MT↑ ML↓ IDSW↓
SORT20 [7] - 42.7 45.1 36.1 16.7 26.2 4470
GMPHD Rd20 [45] - 44.7 43.5 35.6 23.6 22.1 7492
CT_v0 [48] - 45.1 35.6 33.0 32.9 18.9 6492
IOU_KMM [49] - 46.5 49.4 40.4 29.9 19.6 4509
Tracktor++v2 [37] Tracktor 52.6 52.7 42.1 29.4 26.7 1648
ArTIST-T [34] Tracktor 53.6 51.0 - 31.6 28.1 1531

GATM_T (Ours) Tracktor 53.7 53.0 42.7 34.0 24.6 1956
The red represents the best results, blue represents the second best, and green represents the third best.

Overall, the proposed method attains competitive performance on the MOT16, MOT17,
and MOT20 datasets. As the results show in Tables 2–4, this is evidenced by the higher
IDF1 scores due to the ability of its graph attention and track management components to
maintain the identity of tracklets for longer periods of time. This procedure allows GATM
to keep more tracklets for more than 80% of their actual lifespan, resulting in very high MT
and outperforming competing methods. High MOTA and IDF1 metrics across different
scenarios demonstrate the robust association performance and generalization capability of
our tracker. Moreover, our method, which primarily focuses on the association step, can be
applied to any detector.

4.6. Visualization of the Results

As illustrated in Figures 8 and 9, our method effectively preserves the target identity
across diverse scenarios. All scenes in Figure 8 are captured using a mobile camera, while
a stationary camera records all scenes in Figure 9. The robust and reliable performance
of the algorithm is demonstrated through successful tracking in video sequences filmed
from various angles. For instance, the aspect ratios and sizes of the targets in groups c and
d of Figure 8 display significant variation. Nevertheless, the tracker, with the assistance
of the graph attention network, is capable of retaining its identity through appearance
features. Group b and group c sequences in Figure 8 were shot with mobile cameras in
busy commercial neighborhoods. Our method still had good tracking performance after
experiencing chaotic background, varying light intensity, and a wide range of occlusions.
In particular, the shooting time of group c is at night, and the appearance characteristics of
pedestrians are fuzzy, so combining appearance information and movement information
greatly improves the tracking effects. Tracking pedestrians on the road is particularly
important in real-world autonomous driving environments in cities. Group e in Figure 8
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shows a scenario in which pedestrians on both sides of the road are accurately tracked,
which plays an essential role in the timely avoidance measures taken by subsequent
vehicles to avoid traffic accidents. Considering that the motion of objects in a video is
continuous, the higher the number of objects appearing in the same frame, the higher the
likelihood of tracking failure. Especially in crowded scenes, it will be affected by similar
objects around. In this paper, the generalization ability of the tracker is increased using
graph attention network-augmented features and combined with a track management
mechanism. The outcomes in group e of Figure 9 further reveal the tracker’s suitability for
crowded scenarios.

Figure 8. Qualitative tracking outcomes of our method are presented, derived from the MOT17
dataset, captured using a mobile camera. In these representations, individual objects are differenti-
ated by bounding boxes of diverse colors with their corresponding IDs denoted at the top-left corner.
Groups (a–e) represent different scenes from video sequences MOT17-06, MOT17-07, MOT17-10,
MOT17-12, and MOT17-14, and four randomly selected frames from each scene are used to demon-
strate the tracking effect.
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Figure 9. Qualitative tracking results of our method on MOT17 and MOT20 datasets by a static
camera. In these representations, individual objects are differentiated by bounding boxes of diverse
colors with their corresponding IDs denoted at the top-left corner. Groups (a–e) represent different
scenes from video sequences MOT17-01, MOT17-03, MOT17-08, MOT17-09, and MOT20-04, and four
randomly selected frames from each scene are used to demonstrate the tracking effect.

5. Conclusions

This paper presents a novel method for multiple object tracking that utilizes both graph
attention networks and track management. The proposed method employs cross-attention
and self-attention to selectively prioritize the features of beneficial nodes, thus enhancing the
distinctness of node features and bolstering the discriminative capacity of the model. Simulta-
neously, we introduce a track management method that is designed to systematically control
tracklet states, undertake tracklet creation, confirmation, termination, and manage occlusions.
The online tracker is formulated by amalgamating the graph attention networks and track
management, ensuring the maintenance of accuracy and robustness of the tracker across
diverse scenarios. Comprehensive experiments on three MOT benchmark datasets (MOT16,
MOT17, and MOT20) substantiate the precision and efficiency of the proposed method. In this
study, a distinct appearance feature extractor network is used, which operates at a somewhat
slower speed compared to joint trackers. Future work could incorporate the feature extractor
network into the detector head, employing a joint detection and embedding approach.
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