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Abstract: Anomaly-based intrusion detection systems identify the computer network behavior which
deviates from the statistical model of typical network behavior. Binary classifiers based on supervised
machine learning are very accurate at classifying network data into two categories: normal traffic
and anomalous activity. Most problems with supervised learning are related to the large amount of
data required to train the classifiers. Feature selection can be used to reduce datasets. The goal of
feature selection is to select a subset of relevant input features to optimize the evaluation and improve
performance of a given classifier. Feature scaling normalizes all features to the same range, preventing
the large size of features from affecting classification models or other features. The most commonly
used supervised machine learning models, including decision trees, support vector machine, k-nearest
neighbors, weighted k-nearest neighbors and feedforward neural network, can all be improved by
using feature selection and feature scaling. This paper introduces a new feature scaling technique
based on a hyperbolic tangent function and damping strategy of the Levenberg–Marquardt algorithm.

Keywords: machine learning; binary classification; intrusion detection; feature scaling; feature selection

1. Introduction

In recent years, the need for data protection has grown as computer applications
process a large amount of data across the globe. Intrusion detection systems (IDSs) serve as
the primary line of defense against malicious attacks to the computer networks. Signature-
based intrusion detection systems protect computer networks by proactively detecting the
presence of known attacks. Anomaly-based intrusion detection systems identify abnormal
network behavior by detecting deviations from what is considered “normal” behavior [1].
The concept of normality is generally introduced through a formal model that describes
the relationships between the variables involved in a system’s dynamic, and events are
identified as abnormal when the deviation from the normality model is large enough.
Anomaly detection in supervised machine learning (ML) can be thought of as a binary
classification problem because the datasets used to train and test the models contain binary
labels.

Research efforts have been extensively dedicated to utilizing ML algorithms for
anomaly detection [2–5]. In order to determine the statistical model of an anomaly-
based IDS, various approaches used a number of assumptions about the training data
and validation methods. To classify network traffic, the authors of [6–9] present a compar-
ative analyses and performance evaluation of multiple supervised ML algorithms. The
most widely used supervised ML models including SVM [3–5], Naïve Bayes (NB) [6,7],
DT [7,8], nearest neighbors [9–11], random forest (RF) [6,7,12], artificial neural networks
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(ANN) [7,10,13], logistic regression (LR) [6,7], discriminant analysis (DA) [9], and ensemble
methods (EM) [14–16] were analyzed.

The main problem with supervised learning in the context of anomaly-based intrusion
detection is that a large amount of data can affect classifier decisions. Dimensionality
reduction is the most common method for eliminating irrelevant or duplicate features
related to the target concept. Without compromising classification performance, this
technique can significantly reduce processing time and improve the overall effectiveness
of an IDS [17]. By identifying the features that are most important in deciding about
anomalies, feature selection can improve classifier performance. The selected features must
be able to distinguish between samples from different classes. If they are not, a model is
more likely to overfit, resulting in poor classifier performance. It is important to note that a
classifier built from the reduced feature set must be equally effective as one built from the
full feature set [18].

Feature scaling is a popular method used to enhance classifier performance. Along
with feature selection, many ML-based algorithms require feature scaling to ensure that
all relevant features are on the same scale. This is performed to prevent a single feature
from having a negative impact on the model or other features due to its magnitude. Since
ML-based algorithms primary focus on numbers, different ranges can result in the more
significant number becoming more important during the model training. This paper
introduces a novel feature scaling technique that speeds up processing while improving
model accuracy, based on hyperbolic tangent transformation and the Levenberg–Marquardt
strategy.

Over the past few decades, researchers have examined a variety of anomaly-based
intrusion detection systems. These systems have been tested using different datasets, and
this study aims to provide analysis and comparison of 14 such datasets. Each dataset is
unique in terms of the amount of data it contains, the nature of attacks, and its intended
use [19–26]. These datasets are primarily designed for signature-based intrusion detection
and mainly simulate real network traffic. The Kyoto 2006+ dataset, which was recorded
directly from the actual network traffic, is the only dataset designed specifically for anomaly-
based detection. As a result, we used the Kyoto 2006+ dataset as a baseline for tests on
feedforward neural network (FNN), DT, SVM, k-nearest neighbors (k-NN), and weighted
k-NN (wk-NN) [10–13,27–33]. We compared classification performance of the model using
accuracy, processing time, and F1-score.

2. Related Work

Numerous research challenges in data analysis and comprehension are influenced by
the availability and usability of multi-dimensional data. For that reason, feature selection
is frequently used to reduce the dimensionality of the datasets [34]. Data preprocessing
techniques can also include feature scaling. When feature scaling is not performed, ML
algorithms tend to weigh higher values and treat smaller values as lower regardless of their
units. In order to compare performance of the ML-based models, they must be trained on
the same data. The confusion matrix is a well-known and widely used predictive analytics
tool in machine learning that serves as the foundation for the performance metrics which
are usually used in binary classification [35,36]. The following text discusses research on
four critical topics in anomaly-based intrusion detection: collecting data, feature selection,
feature scaling, and binary classification process.

2.1. Data Collection

The quality of data collected from network traffic is an important aspect of intrusion
detection. It depends on whether the dataset is simulated or not, network traffic, sources
of the attacks, the number of features and duplicates, redundancy, public availability, and
more. Table 1 contains a brief summary of the most commonly used datasets.
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Table 1. Datasets.

Dataset Year Attacks Features Traffic Description

CSE-CIC-2018 2018

Potator (FTP/SSH),
DoS, DDoS, Botnet,
infiltration, Web
attacks

80+ Emulated

The dataset includes
10 days of network traffic
and log files collected
from 50 machines on the
attacker side and 420 PCs
and 30 servers on the
victim side.

CIC-IDS-2017 2017

Botnet, DoS, DDoS,
Goldeneye, Hulk,
HTTP, RUDY,
Slowhttptest

80+ Emulated

The dataset was captured
over a 5-day period; small
network traffic in
bidirectional flow-based
and packet-based format.

Kyoto 2006+ 2006–2015 Port scan, malware,
shellcode, DoS 24 Real

The dataset collected from
10 years of actual network
traffic.

AWID 2015 Attacks on Wi-fi 802.11 156 Emulated

Wireless LAN traffic;
captured 37 million
packet/h; 11 clients; small
network.

UNSW-NB15 2015 Attacks behavior 49 Hybrid

Includes 31 h attacks
against multiple servers;
automated attack
generator tool IXIA
Perfect Storm.

ADFA 2014
Brute force,
Java/Linux interpreter,
C100 webshell

26 Hybrid Linux/Windows OS
system call.

ISCX 2012 2012 Infiltrating, DDoS,
HTTP, SSH 20 Emulated

This dataset includes
7 weeks of small network
traffic in packet-based
format.

CAIDA 2007 DDoS Traffic traces Hybrid

The dataset was collected
via a commercial
backbone link; does not
contain a diversity of
attacks.

DARPA 1998–1999 DoS, R2L, U2R, probe 41 Emulated

This dataset includes
7 weeks of small network
traffic in packet-based
format.

KDD Cup ‘99 1998 DoS, R2L, U2R, probe 42 Emulated

This dataset includes
5 weeks of small network
traffic in packet-based
format.

NSL-KDD 1998 DoS, R2L, U2R, probe 42 Emulated

The NSL-KDD dataset is
derived from the
KDD-Cup’99 dataset and
does not contain
redundant records in the
training set nor duplicates
in the test set.
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In 2013, the Australian Defense Force Academy (AD-FA) produced two datasets
containing records from Linux/Unix (ADFA-LD) and Windows (ADFA-WD) systems. The
ADFA-LD consists of system call traces collected from a temporary local Linux server,
with six current types of cyber attacks [37]. The ADFA-WF is a set of DLL access requests
and system calls that are used in various hacking attacks [38]. Both ADFA datasets are
benchmarks for evaluating IDS based on system calls.

The Aegean Wi-Fi Intrusion Detection (AWID) dataset is a publicly available labeled
dataset based on actual traces of normal and intrusion activity from an IEEE 802.11 Wi-Fi
network, developed in 2016. The dataset consists of 14 simulated existing attacks and
includes 155 different attributes [39].

The CAIDA dataset was produced by the Center of Applied Internet Data Analysis
between 2002 and 2016. Three datasets comprise the full CAIDA dataset: CAIDA OC48,
which contains various types of data observed on an OC48 link in San Hose; CAIDA
DDoS, which contains one hour’s worth of DDoS attack traffic broken down into 5 min
PCAP files; and CAIDA Internet Traces 2016, which contains passive traffic traces from
the Equinix-Chicago High-speed Internet backbone. The CAIDA datasets gather different
types of data in topologically and geographically diverse locations. Due to numerous
shortcomings, these benchmarking datasets lack effectiveness [40].

The Canadian Institute for Cybersecurity (CIC) created the CIC-IDS-2017 dataset in
2018. It contains harmless and most recent common attacks that cover 11 criteria. These
updated attacks include DoS, DDoS, brute force, port scans, and many others [41].

The Communication Security Establishment (CSE) and the CIC jointly created CSE-
CIC-2018 dataset. Seven different attack scenarios were included in the final dataset:
brute-force, hearth bleed, botnet, DoS, DDoS, web attacks, and infiltration. As roughly 17%
of the instances in the dataset have abnormal traffic, this indicates a class imbalance. Instead
of serving as a repository for signature-based IDS, the dataset promotes anomaly-based
intrusion detection [42].

The Lincoln Laboratory of the Massachusetts Institute of Technology (MIT) developed
the DARPA’98 dataset. The dataset is divided into two parts: offline and online. In order to
evaluate IDS offline, network traffic and audit logs collected in a simulated network are
used [43].

Two profiles can be found in the ISCX 2012 dataset. While Alpha runs a variety
of multi-stage attacks, Betha generates real network traffic and background noise. The
network traffic for the HTTP, SMP, SSH, IMAP, POP3, and FTP protocols is included in
the dataset. The dataset does not include HTTPS traces. Furthermore, the distribution of
simulated attacks is based on hypothetical data rather than actual global statistics [41].

The DARPA’98 dataset is the foundation for the KDD Cup’99 dataset. The KDD
Cup’99 dataset comprises approximately 5 million single connection vectors, each of which
has 41 features [44]. From the KDD Cup’99 dataset, the NSL-KDD dataset was created.
It fixes deficiencies in the KDD Cup’99 dataset brought on by redundant records in the
training set and duplicate records in the test set. Additionally, the training and test set both
have a reasonable number of records [19].

Moustafa et al. (2015) first presented the UNSW-NB 15 dataset, which includes real
data and contemporary network traffic attack activities. Raw network packets from nine
different attacks are included in the dataset [45].

The main reason why the Kyoto 2006+ dataset is used in the experiments is that
it contains records of actual network data. Data collected from ~350 honeypots at five
different computer networks inside and outside Kyoto University between 2006 and 2015
are included in the first part of the dataset [18,46–49]. The authors also developed a server
that was installed in the same network as the honeypots in order to produce the data traffic.
The dataset consists of 24 features. Fourteen statistical features were derived from the KDD-
Cup’99 dataset, and an additional 10 features were solely used for anomaly detection. The
dataset omits information on different attack types. Instead, the feature Label determines
whether or not the session was normal [8,50,51]. The IDS Bro software 2.4 is used to convert
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real network traffic into sessions [52,53]. The IDS Bro is suitable for powerful network
monitoring and real-time application-layer status reporting. The Internet Protocol (IP)
packets are received and transformed into events by the Bro event engine.

2.2. Feature Selection

Feature selection is used to find the feature subset that reduces the model complexity,
minimizes the generalization error, improves prediction power, and facilitates quick model
evaluation. The main purpose of feature selection is to prevent classifier performance
degradation due to redundant information in network data [12,54,55]. Feature selection
algorithms are designed to reduce the dataset and speed up the classifier without signifi-
cantly affecting its performance. Depending on whether or not the training set is labeled,
the feature selection algorithm can be supervised [56,57], unsupervised [58,59], or semi-
supervised [60,61]. The unsupervised feature selection works with data without a feature
relevance that is difficult to measure. It is common for a high-dimensional datasets. The
relevance of the features in semi-supervised learning is evaluated using both labeled and
unlabeled data [60]. In supervised feature selection, the induction algorithm is represented
with a set of training instances, which are described by a feature vector and a class label.
The supervised feature selection evaluates features’ relevance based on the information
on the label. It should be noted that an accurate classifier requires a lot of labeled data for
training, which affects processing time. In addition, supervised feature selection can be
divided into three categories: filter, wrapper, and embedded [62]. The filter method selects
features independently, based on classification, regardless of the classifiers used. Prior
to classification, it selects a subset of features in a preprocessing stage. The filter method
evaluates the features without including a learning algorithm. The method is based on the
general properties of the data [63,64]. The chi-square test, variance threshold, and informa-
tion gain (IG) are the examples of the most popular filter feature selection methods [17]. The
wrapper method applies a black box to several variables based on their predictive power to
the learning machine of interest [65–67]. The wrapper method uses a predefined training
algorithm’s predictive accuracy to determine the quality of the selected features. For that
reason, it is expensive to be implemented for feature-rich data. The best-known wrapper
algorithms are the genetic algorithm, recursive feature elimination, and sequential feature
selection. The authors of [68] also present a hybrid version of feature selection method that
uses both filter and wrapper techniques. The embedded method combines the efficiency
of unsupervised and supervised methods. It gains knowledge of which features have
the highest classification accuracy, incorporates the selection of variables into the training
process, and determines the relevance of a feature analytically based on the objective of
the learning model [69,70]. First, the model integrates statistical criteria to select several
features from candidates with certain cardinality and then chooses the subset with the
highest classification accuracy. The most well-known examples of the embedded methods
are L1 and L2 regularizations and the elastic net [71]. The advantages and disadvantages
of the filter, wrapper, and embedded methods are enlisted in Table 2 [72–74].

In our work, we have expected that, based on our knowledge about the dataset,
we can choose features meeting specific criteria as a result of our experience. Here we
used the filter-like feature selection method because of its generalization ability, scalability,
and low risk of overfitting. Moreover, this feature selection does not incorporate specific
processing time. In [75], the authors also examine techniques to shorten the processing
time and propose feature selection for reducing memory storage space and speeding up the
classification algorithm. The authors compared six types of classification based on neural
networks, linear discriminant analysis, k-NN, DT, and SVM. The results show that many
classifiers have a reduction of more than 50% in the processing time and about 90% of
accuracy when only 40% of the features are used. In [76], the authors concentrated on SVM,
DT, BN, k-means, artificial immune system (AIS), and genetic algorithm (GA) and came
to the conclusion that feature selection algorithms that used a filter approach had a lower
time complexity than those based on distance, consistency, information, and dependencies.
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In [77], the authors advised that the correct application of the feature selection could
significantly improve the processing time and overall performance of the classification.

Table 2. A taxonomic summary of filter, wrapper, and embedded techniques.

Feature Selection Advantages Disadvantages

Filter
Does not incorporate specific processing time.
Low risk of overfitting. Excellent generalization
ability. Scalable.

Ignores the dependency of features. Does not
interact with the classifier.

Wrapper

Uses the performance of the learning algorithm
to determine the feature subset with the best
performance. Models feature dependency.
Superior in performance to the filter in terms
accuracy. High computational cost.

The risk of overfitting is higher. Selection is
classifier dependent.

Embedded Interacts with a classification model. Reduces the
risk of overfitting. Models feature dependencies.

Problematic identification of a small set of
features. Classifier-dependent selection.

Various feature selection tactics can also be used to narrow down the dataset size, and
to reduce the influence of the selection of features, which depend heavily on the type of
classification. In [53], the authors propose an RPFMI algorithm that offers the possibility
of selecting features with concerning redundancy between features and the relationship
between candidate features and classes. The mutual information, which is calculated
from the joint probabilities of two random variables estimated from the frequency of the
observed samples in each combination of the variable categories, represents a measure of
the relationship between two random variables [78]. If and only if the two variables are
statistically independent, the mutual information between them is zero [27]. The authors
used the SVM to provide a Radial Basis Function (RBF) kernel to access the accuracy of
detection. In the training phase, there were 10,000 normal and attack instances, while there
were only 2000 in the test phase. They compared RPFMI with the MIFS [79], mRMR [80],
MIFS-U [81], CIMI [82], MMIFS [83], and FMIFS [17] models. The authors showed that
the accuracy of the model was 97.74% using six features for classification. In [84], the
authors combined the FIMFS with the LSSVM to build IDS. The evaluation results showed
that the algorithm assigned more critical features or achieved better accuracy (99.79%)
than MIFS and MMIFS with six selected features. The authors also reported better results
on F-measure, DR, and FPR. Anomaly-based detection, proposed by the authors of [85],
is divided into preprocessing (Min-Max normalization), feature selection, and modeling
phases. The features candidates are calculated using mRMR and Neighbor Component
Analysis (NCA) during the feature selection phase. In [27], the authors recommended
the method of filter-based feature selection in a multi-objective optimization framework
to extract relevant features from an unlabeled dataset. The authors obtained a subset of
optimal features using the solid multi-objective NGSA-II and six proposed models that
used (1) mutual information and standard deviation, (2) mutual information and entropy,
(3) IG and standard deviation, (4) IG and entropy, (5) Pearson correlation coefficient and
standard deviation, and (6) Pearson correlation coefficient and entropy objective functions.
The entropy was metric of information theory that described the uncertainty in a group of
observations, i.e., the impurity of a feature [27]. The IG provided information about the
target feature that was the most informative (meaningful) [86]. The Pearson correlation
coefficient was used for jointly normally distributed data that followed a bivariate normal
distribution. The correlation coefficient is scaled such that it ranged from −1 to 1; the
relationship became stronger and eventually approached a straight line as the coefficient
approached the absolute value of 1 [87]. In [6], the authors applied the subset of the optimal
features in six different ML classifiers: DT, SVM, RF, k-NN, Adaboost, and MLP. After
the subsets were found, 10-fold cross-validation was carried out on one of the subsets.
The authors discovered that for the KDD Cup’99 dataset and the NSL-KDD dataset, the
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DT had the best results. The authors used the DT to conduct the experiments with the
Kyoto 2006+ dataset. The results are as follows: Weighted average accuracy = 99.6%, the
F-measure = 99.65%, and the FAR = 0.3%. In [88], the authors proposed a model that
combined the GA to select features and C4.5 for generating signatures. Afterward, the
frequent element set with the association rule (for building normal traffic rules) was used
for anomaly detection. With a high decision rate and a low FPR, the model Accuracy of
99.94% was achieved. In [89], the authors propose the PCA to reduce the dimensionality
of the dataset. A Min-Max scaling is used to normalize features in the range [0, 1]. The
experiments are carried out in k-NN, SVM, an ensemble of trees and RC algorithms to
estimate the covariance matrix in multivariate data. The results show average Accuracy
(60%), high Precision (0.99), low Recall (0.36) and low F1-score (0.53). The results also
demonstrate that there are no gains from the PCA transformation. In [90], the authors
present the general high-quality performance of the SVM, IBK, MLP, and Ensemble models
based on Accuracy, DR, FAR, F-measure, and Precision. The results are presented for the
PCA, IG and PCA + IG methods, with PCA + IG achieving the best results due to the
ensemble classification. Additionally, the authors of [11] summarize the research on the
effects of the feature selection and instance normalization and demonstrate that using nine
selected numerical features, scaled between [−1, 1] result in accuracy of over 99% for k-NN,
wk-NN, DT, and SVM models, with the wk-NN achieving the highest accuracy and the DT
achieving the shortest processing time. In [8], the authors also examine the influence of
preprocessing on the FNN used for binary classification. Compared to the other models,
the FNN proved to be very precise and has the shortest processing time (PT). In [18], the
authors exclude features related to the security analysis and chose three classification
models: k-NN, NB, and DT. They use the Chi-squared (CS), Area Under Curve (AUC) and
Signal to Noise Ratio (S2N) feature rankings. The authors of [91] test Correlation-based
Feature Selection (CFS) and Particle Swarm Optimization (PSO) scenarios. When compared
results of the experiments conducted to the KDD Cup’99 and the UNSWNB15 datasets, it
was demonstrated that the feature selection method improved accuracy for NB, SVM and
k-NN classifiers by up to 17%. The authors compared the performance of the models before
and after performing preprocessing. Table 3 depicts the literature review of the presented
feature selection methodology and the ML-based classification algorithms.

Table 3. Research articles on features selection used for ML-based classification.

Authors Year Classifiers Features Metrics

Alanazi and Aljuhani [85] 2022 k-NN, DT, LDA, SVM mRMR, NCA F1, Accuracy

Protic and Stankovic [8] 2020 k-NN, DT, FNN, SVM, wk-NN 9 numeric, Min-Max Accuracy, tp

Ahmad and Aziz [91] 2019 SVM, k-NN CFS, PSO Accuracy, TPR, FPR

Suman et al. [27] 2019 DT, SVM, k-NN, MLP NSGA-II F1, Accuracy

Kalavadekar and Sane [88] 2019 DT GA F1, Accuracy

Perez et al. [89] 2019 k-NN, DT, SVM PCA, Min-Max F1, Accuracy

Salo [90] 2019 MLP, SVM PCA, IG Accuracy, F-measure,

Protic and Stankovic [11] 2018 SVM, DT, k-NN, wk-NN 9 numeric, Min-Max Accuracy, tp

Zhao et al. [60] 2018 SVM RPFMI Accuracy

Najafabadiet et al. [18] 2016 k-NN, DT AUC, S2N, ROC Accuracy, TPR, FPR

Ambusaidiet et al. [17] 2014 ANN, DT, SVM, k-NN FIMFS F-measure, Accuracy, tp

The proposed work and the results of the experiments given in the references [6,8,11,18,87–91]
support selection of the dataset, classifiers and measurement metrics used in our work.
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2.3. Feature Scaling

When the features are on significantly different scales, feature scaling can be used to
reduce their mutual impact and negative effects on model evaluation. Two most-known
feature scaling methods are normalization and standardization. Normalization adjusts
and rescales features within the same specified range in order to make them equally
important. It is appropriate when the dataset distribution is known to be non-Gaussian,
which may be helpful in nearest neighbor algorithms or neural networks. Standardization
does not scale features in the same range as normalization. The best-known scaling
techniques are Min-Max, robust and standard scalar, Z-score, Box–Cox, Yeo–Johnson and
L2 normalization [10,11,92,93].

In some cases, the selection of features does not affect the classification, but a suitable
scale can affect the classification positively [89]. Feature scaling enhances ML-based classi-
fier performance and prevents a single feature from having a negative impact on both the
model and other features because of its size.

In [27], the authors propose the Redundant Penalty Between Features (RPFMI) algo-
rithm for feature selection in terms of redundancy, influence between features and classes,
and the relationship between the candidate feature and classes. The authors used the SVM
to access the accuracy detection and compared the RPFMI algorithm to the Mutual Infor-
mation Feature Selection (MIFS) [79], the Maximum-Relevance-Minimum-Redundancy
(mRMR) [80], MIFS Uniform Information Distribution (MIFS-U) [81], Classify and Itemize
Medical Image (CIMI) [82], Modified MIFS (MMIFS) [83], and Flexible MIFS (FMIFS) [17]
models. The accuracy of the models served as a comparison criterion for classifiers. The
authors also developed IDS by fusing the FMIFS with the Least-Squares SVM (LS-SVM) [84].
The F-measure, Detection Rate (DR), and False Positive Rate (FPR) were used to present the
results. The reliable multi-objective Non-dominated Sorting Generic Algorithm II (NSGA-
II) [94] for filter feature selection is presented in [81]. The relevant features are selected
from an unlabeled data record. The authors used the optimal subset of features to train
six different machine learning classifiers: DT, SVM, RF, k-NN, Adaboost, and Multi-Layer
Perceptron (MLP). The metrics used to present the results were weighted average accuracy,
decision rate, precision, F-measure, and the False Alarm Rate (FAR). Reference [89] shows
how Principal Component Analysis (PCA) is used to reduce the dimensionality of the
dataset. The experiments are conducted using the k-NN, ensemble of trees, SVM, and Ro-
bust Covariance (RC) algorithms, while the Min-Max normalization in range [0, 1] is used
for feature scaling. The findings are presented as accuracy, precision, recall, and F1_score. It
is shown that PCA transformation did not affect the models. In [90], the authors present the
best classification performance of SVM, MLP, and ensemble models based on accuracy, DT,
precision, F-measure, and FAR, for the PCA, IG, and PCA + IG methods. The best results
are achieved for PCA + IG feature selection and ensemble model classification. In [8], the
authors summarize the research on DT, SVM, FNN, k-NN, and weighted k-NN (wk-NN)
models and describe feature selection and instance normalization. The instances of each
feature were normalized in the range [−1, 1], and the results show the high accuracy of
all the models. In [12], the authors first removed unknown data samples, infinite data
values, and duplicates from the dataset. Then, they removed negative time-based samples
and reduced the normal traffic samples to avoid bias. The feature were scaled with the
Yeo–Johnson normalization. The highest accuracy was achieved with the deep neural
network (DNN)-based IDS.

This paper refers to a feature scaling based on S-shaped hyperbolic tangent function
that is centered around zero, has a very sharp gradient near zero and is limited in range ±1.
The use of the hyperbolic tangent function to Min-Max normalized instances is essentially
what hyperbolic tangent scaling is.

2.4. Binary Classification

In general, the classification process can be divided into data collection, preprocessing,
classification, and post-processing (optional) (see Figure 1). The term “classification” in
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machine learning refers to a predictive modeling problem where a class label is predicted for
a specific instance of input data. In order to predict the results of future input observations,
it is necessary to fit a statistical model that relates a set of features to their corresponding
goals, and then use the model. Binary classification is used in anomaly detection to divide
network data into normal and abnormal classes. The most popular supervised ML-based
binary classification methods are DT, SVM, k-NN, ANN, and NB [27,28].
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In a DT model, each node represents a feature, each branch represents a decision, and
each leaf represents a class label. To create a tree, the model selects the features automatically
and prunes them to remove unnecessary branches and prevent overfitting [28]. CART,
C4.5, and ID3 are the most frequently used DT models [95]. The idea of maximum margin
separation of hyperplanes in n-dimensional feature space using the kernel function is the
foundation of SVM model [29–32]. The k-NN algorithm identifies a sample given on k
neighbors and computes the distances to the neighbors. The performance of the classifier
are affected by the number of nearest neighbors. If k is small, the model tends to overfit,
while the misclassification can be a result of a large value of k [10,17]. The ANN consists of
neurons, which are processing elements organized in layers, and the connections between
them. Backpropagation (BP) is used to train the network [13,33]. The Naïve Bayes algorithm
adopts the principle of class independence from Bayes’ theorem. This indicates that each
predictor has the same effect on the outcome and that presence of one feature has no
impact on the presence of another feature when determining the probability of a particular
outcome [27].

In [24], the authors propose a hybrid system for anomaly detection that combines the
Least-Squares SVM (LS-SVM) as a cutting-edge learning system with a filter-based DT
as a feature selection algorithm. The effects of various feature selection methods using
SVM, NB, DT, RF, k-NN, LR, and ANN, performed with the NSL-KDD dataset have been
examined in [91]. The results of the experiments also conducted to the NSL-KDD dataset
as a benchmark, but using NB, SVM, and DT classifiers are presented in [96]. The authors
implemented recursive feature elimination (RFE) (13 features) and PCA (8 features) as
feature selection methods. The LS-SVM algorithm is given in [97]. Experiments were
performed on the KDD Cup’99 dataset. When the linear correlation coefficients algorithm
(LCA) and cuttlefish algorithm were used for feature selection, the accuracy was around
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95%. The accuracy obtained by the authors of [91], who also used the KDD Cup’99 dataset
and performed experiments with k-NN, NB and SVM with correlation, and PSO, was
approximately 99.9%. To identify exploit, probe, DoS, generic and normal categories in the
network, the authors of [98] proposed an integrated IDS. The 98.11% accuracy is achieved
with the UNSW-NB-15 dataset using GA feature selection and the DNN classification
algorithm. The supervised classification model that uses PCA for dimensionality reduction
combined to the SVM model is proposed in [99]. The results of the experiments conducted
to the UNSW-NB15 dataset show that the proposed model improves the performance of
the model and achieves an overall accuracy of 99.99%. In [100], the authors performed
classification algorithms for the NSL-KDD and UNSW-NB-15 datasets and use the PCA
to select the relevant features. The authors of [101] conducted the experiments on the
KDD Cup’99 dataset and used entropy-based feature selection (PCA, C5.0) and DT model.
The overall accuracy was 97.7 percent. Using the NSL-KDD and UNSW-NB-15 datasets,
the authors of [100] also used PCA for feature selection and presented the findings of
classification based on ANN, RF, RL, and SVM. In [102], GI and IG are used for feature
selection to determine an average accuracy for DT, k-NN, LR, ANN, stochastic gradient
descent (SGD), and RF classifiers. The UNSW-NB-15 dataset is used. An analysis of the
DT-based classification of the instances from the ISCX dataset can be found in [103]. The
accuracy of k-NN models was evaluated using the ADFA-WF and CAIDA datasets as
benchmarks, and the results were presented in [104]. According to the authors of [105],
the accuracy of the FNN and wk-NN models is over 99.0% and 99.1%, respectively. The
authors of [85] used SVM, DT, k-NN, and linear discriminant analysis (LDA) to perform
classification based on the novel X-IIoTID dataset. The accuracy of SVM and LDA models
was 85.8% and 85.6%, respectively. The k-NN classifier performed well in terms of accuracy
rate (98.6%). Both the DT and k-NN model achieved similar performance result in terms
of the F1-score (99.6% and 98.7%, respectively). The LDA classifier had an F1-score and
of 83.7% and SVM classifier had an F1-score of 83.97%. In [106], the authors present the
accuracy of DT (99.6%), k-NN (99.9%), and ANN (98.32%) when the NSL-KDD is used as a
benchmark for the experiments.

In [8,11,18,27,60,84,88–91], the authors combine various feature selection techniques
to reduce the dimensionality of the dataset and present different scaling techniques to
reduce the impact of one feature on the others. The authors also make extensive use of
SVM, DT, k-NN, and ANN models (see Figure 2), with accuracy being the most commonly
used measure of comparison between models (see Figure 3). Table 4 shows a review of
the research topics from 2018 to 2022 [12,24,85,91,96–102,106]. According to the findings
in [107,108], users who gain knowledge about the datasets can choose features that meet
specific criteria as a result of their experience.
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Table 4. Studies on accuracy of binary classifiers.

Authors Year Dataset Classifiers Accuracy [%]

Protic et al. [105] 2022 Kyoto 2006+
Feedforward neural network 99.0

Weighted k-nearest neighbors 99.1

Alanazi and Aljuhani [85] 2022 X-IIoTID

Decision tree 99.36

k-nearest neighbors 97.91

Linear discriminant analysis 78.86

Support vector machine 78.82

Vallejo-Huanga [100] 2021
UNSW-NB-15

Support vector machine 81.5

Neural network 74.36

NSL-KDD Support vector machine 76.03

Neural network 74.36

Siddiquiand Pak [12] 2020
ISCX-IDS-2012 Neural network 99.73

CIC-IDS-2017 Neural network 95.2

Thakkar and Lohya [106] 2020 NSL-KDD

Support vector machine 99.6
Decision tree 99.6

k-nearest neighbors 99.9

Neural network 98.32

Singh and Banerjee [96] 2020
UNSW-NB-15 Decision tree 99.46
KDD Cup’99 Decision tree 99.88

Keserwani et al. [98] 2020 UNSW-NB-15 Neural network 98.11

Mishra et al. [99] 2020 UNSW-NB-15 Support vector machine 99.88

Wang et al. [102] 2020 SVM
Neural network 81.15

Decision tree 83.96

Serkani et al. [24] 2019
UNSW-NB-15 Decision tree 99.46
KDD Cup’99 Decision tree 99.88

Mohammadi et al. [97] 2019 KDD Cup’99 Support vector machine 95.03

Ahmad an Aziz [91] 2019 KDD Cup’99 Decision tree 99.88

Support vector machine 95.03

Hamid et al. [104] 2018
ADFA-WF k-nearest neighbors 71.43

CAIDA k-nearest neighbors 64.28

Idhammad et al. [103] 2018 ISCX-IDS-2012 Decision tree 99.88

Seelammal and Devi [101] 2018 KDD Cup’99 Decision tree 97.7
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Likewise, the feature selection is performed here to eliminate statistical, connection
duration and categorical features from the Kyoto 2006+ dataset, along with the features
intended to be used in further experiments. The purpose of this step is to reduce the
processing time by using only numerical features for classifier training. It is expected that
accuracy and F1-score may degrade as a result.

Pruning routines, filtering, rule combination, and other similar techniques are com-
monly used in post-processing. These techniques are often used in machine learning
because the results of ML algorithms may not be suitable for use by software applications
or may not be appropriate from user’s perspective. Preprocessing and post-processing tools
are almost always useful when reviewing databases or optimizing acquired knowledge.
These tools often use methods that are neither really symbolic nor logical.

3. Proposed Work

The main purpose of feature scaling to prevent the models from giving more weight
to one feature than the others. For classifiers that make the decision based on the Euclidean
distance between two points, different values can affect the classification and lead to
biased and incorrect results when features are in different units of measure. If the GD
is an optimization algorithm and the features are on a different scale, the classifiers can
update a given weight faster than others. Feature scaling can help the GD converge faster.
Algorithms used in SVM, k-NN, wk-NN, and FNN classification converge faster and give
better results with scaled features.

In this paper, we describe a novel hyperbolic tangent feature scaling technique. The
technique is inspired by the S-shaped, zero-centered hyperbolic tangent function (tanh),
its sharp gradient (tanh’), and the damping strategy of the Levenberg–Marquardt (LM)
algorithm applied to the quasi-linear part of the tanh function. The main idea is to find near-
optimal solution of the nonlinear objective function using the properties of the very sharp
gradient of the tanh function and the approximation of the Hessian matrix of truncated
Taylor formula (second-order derivatives) with the vector-product of Jacobians (first-order
derivatives) through an iterative procedure based on step length and search direction.
Figure 4 shows the tanh function and its derivative. Because the tanh function is centered
on 0 and ranges from −1 to 1, the first derivative of the function is very sharp near zero.
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The magnitudes of the features are limited to the range [tanh(−1), tanh(1)]−
[−0.7616,+0.7616] while changing signs, which ensures that the directions of the gradient-
based updates are independent. The part of the hyperbolic tangent function corresponding
to the range [−0.7616,+0.7616] can be assumed to be quasi linear (see Figure 5). The quasi-
linearity used in preprocessing can be considered fine-tuning before the training step. It is
important to understand that due to the limitation of instances in range [−0.7616,+0.7616],
the product of these values and the maximum values of the weights cannot reach±1, which
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will speed up any gradient-based algorithm. Also, saturation of the FNN at the beginning
of the training process can be avoided in this way.
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The Min-Max normalization is given with the Formula (1).

x(k)normalized =
x(k)− xmax+xmin

2
xmax−xmin

2

, (1)

where x(k)normalized ∈ [−1, 1], xmax and xmin represent the normalized instance, maximum
and minimum values, respectively. The hyperbolic tangent normalization (NTH) scales
feature as follows (2):

x(k)NTH = tanh(x(k)normalized) (2)

where x(k)NTH represents the NTH-normalized instance.
The main characteristic of NTH normalization is that the product of instance and

weight chosen to range from −1 to 1 can never reach values ±1. These characteristic
further speeds up the training of the classifiers. This is due to the properties of the non-
linear Levenberg–Marquardt algorithm, which combines the GD algorithm and the Gauss–
Newton (GN) algorithm. The GD algorithm uses an iterative process based on the step
length and a search direction determined by the negative of the gradient to minimize
objective function. The Jacobian matrix (J) is used in the GN algorithm to simplify the
calculation of the Hessian (H) matrix, because it is assumed that the error function is
approximately quadratic close to the optimal solution [109]. The idea of LM algorithm is to
transform nonlinear function f : R→ R close to the current point m [110] and approximate
the non-linear optimization problem to the extent that f̂ (x) = f (x) and x ≈ m. Consider
the iterates x(1), x(2), . . . x(l). The iterate x(i+1) represents the solution of the problem when
x(i+1) ≈ x(i). It can be derived as in (3).

x(i+1) = x(i) −
(

H + β(i)I
)−1

JT f
(

x(i)
)
=

= x(i) −
(

JTJ + β
(i)I

)−1
JT f

(
x(i)

)
, β(i) > 0,

(3)

where parameter β(i) represents an adjustable variable called the damping factor, I repre-
sents the identity matrix and Hessian matrix can be approximated so that H ≈ JTJ. The
parameter β(i) can be changed as follows: If β(i) is small, then x(i+1) is far from x(i), and
the approximation is poor; i.e., β(i) ought to be truncated (typically β(i+1) = 0.5β(i)).
Otherwise, x(i+1) is too close to x(i), which slows progress down and β(i) should be in-
creased (typically, β(i+1) = 2 β(i)). Additionally, when β(i) → ∞ , then H + β(i)I ≈ I, and
the LM algorithm behaves like the GD algorithm. While β(i) → 0 , the iterate x(i) is close
to the optimal solution, and the LM algorithm behaves like the GN algorithm [61]. The



Electronics 2023, 12, 4158 14 of 20

change between the GD and GN algorithms is called the damping strategy [111]. The
LM approximation and the damping strategy are described more detailed in our previous
work [105,112]. The damping strategy is used here to speed up processing and prevent
problems due to a very large or very small gradients. The main goal of the NTH normaliza-
tion and dumping strategy approach is not only to speed up model evaluation but also to
accelerate weight adjustment and avoid zigzag movements.

4. Experimental Results

To train, test, and compare the models in terms of feature selection and feature scaling,
a MATLAB Classification learner is used. About 60 thousand instances from the Kyoto
2006+ dataset are used as a benchmark for the experiments. The fundamentals of the
experiments are fully explained in our previous work [112]. In brief, the characteristics of
the classifiers are as follows: (1) the maximum number of splits in DT classification is 20;
(2) for k-NN and wk-NN models, k = 10, the distance measure is Euclidean, and weights
are random numbers limited in range [−1, +1]; (3) Gaussian SVM with the One-vs-One
multiclass method is applied, and data standardization is used to differentiate true and
false; (4) the FNN with one hidden layer is used (nine inputs, nine hidden-layer neurons
and one output neuron—all activation functions were tanh), the BP algorithm is based on
mean squared errors (maximum number of iterations = 1000, gradient magnitude < 10−5,
validation checks = 6). The Kyoto 2006+ dataset is preprocessed to remove Not-a-Number
(NaN) values from the features, and then ~57 thousand instances are used to train and
test the models. Second, all irrelevant features—categorical, statistical, and features for
additional analyses—are eliminated. The evaluation of the model was then left to nine
numerical features. Anomalies are determined via the feature Label; if Label = 1, the network
traffic is considered normal, if not (Label = 0), an anomaly is detected. Both Min-Max
normalization and NTH normalization were used to classify the data, with similar results.
The classifier comparison is carried out using the binary confusion matrix as a tool. The
confusion matrix contains True Positives (TP), False Positives (FP), True Negatives (TN), and
False Negatives (FN) [113]. Binary zero describes the negatives, while binary one describes
the positives. These numbers are frequently used to describe the measurement performance
of classification problems in the datasets where the true values are known [114]. Metrics
calculated from the confusion matrix are enlisted in Table 5.

Table 5. Metrics based on confusion matrix.

Metric Description

Recall = TP
TP+FN

Ratio of correctly detected positive class; useful when
FN dominates FP.

Precision = FP
FP+TN

Measure of correctly predicted the target class [115];
useful when FP is of greater concern then FN [36,116].

Acuracy = TN+TP
TN+TP+FN+FP Shows overall correctness of the prediction.

F1− score = 2∗Recall∗Precision
Recall+Precision Harmonic mean of Recall and Precision.

The findings demonstrate that all models, with the exception of the DT classifier, have
very accurate decision making. The DT model is one of the most efficient classifiers, but it
is almost non-affected by feature scaling methodologies. Both kinds of nearest neighbor
models take much longer to process than the other models. The Min-Max scaling prevents
problems with very high or very low derivatives. This did not, however, have an impact on
F1-score or accuracy. High-precision models are evident in the results, but the processing
time problems remained. In the experiments based on NTH normalization, processing time
for all classifiers was found to be significantly reduced. The results support the assumption
that it is reasonable to use NTH normalization to speed up training. All models have a very
high F1-score and accuracy (SVM is the exception). Table 6 displays the results.
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Table 6. Accuracy, processing time, and F1-score of the classifiers.

NTH Min-Max

Model Accuracy [%] PT [s] F1 [%] Accuracy [%] PT [s] F1 [%]

k-NN 99.3 56.1 99.01 99.41 103.2 99.2
wk-NN 99.4 56.3 99.16 99.58 105.3 99.29

SVM 99.1 26.9 98.69 99.17 43.4 98.89
DT 99.4 2.5 99.18 99.41 6.3 99.14

FNN 99.36 5 99.04 99.31 12 99.04

Min-Max normalization helps solve one of the problems with extremely small and
very large derivatives that make training difficult. Except for the FNN, this normalization
increases model properties in terms of processing time and F1-score. The results suggest
that the issue of differing scales has no effect on model evaluation. The range of activation
functions of input nodes is the key reason why this is not true for the FNN. If the number
of inputs is greater than 3, non-tanh function in the hidden layer can become essentially
saturated if weight updates are all positive or negative. Also, because of the very sharp
gradient, zigzagging is prevented when the tanh activation function is used. When the range
of [−0.7616,+0.7616] is chosen, the quasi-linear part of the tanh accelerates the training.
However, this method slightly reduces the accuracy of all models.

5. Observations, Trends, and Research Challenges

In general, research findings can be used to develop more accurate and efficient IDSs,
which can help companies to protect their computer networks from malicious attacks.
This article provides a comprehensive analysis of various ML-based models and their
classification properties. Feature selection and feature scaling methods can help researchers
choose the ML algorithms based on their available resources and application scenarios. This
study reveals interesting trends in anomaly-based intrusion detection. First, the researchers
develop and implement new filter methods to improve the classification process. At the
same time, this study shows that the metric used to measure quality of the models is still
based on the confusion matrix; there are very few new methods to determine the precision
of the classification and the stability of the classifiers. Second, researchers worldwide use
a series of (mostly simulated) datasets of network traffic. The influence of redundant or
duplicated records on model training and testing results in low model accuracy and long
processing time. Third, there are hardly any studies with practical implementation. In
general, simulations do not provide a full insight into the practical results of detecting
anomalies in real network traffic. An interesting aspect of the research would be the
discovery of features that indicate which preprocessing and classification methods give the
best results in detecting anomalies. Another aspect of the research would be to investigate
the predictability and stability of the newly developed classification models. In addition,
new strategies for feature selection and scaling should be proposed. Furthermore, the
classification needs to be improved in terms of the classification predictability. Ideally, the
features should be inexpensive to calculate to reduce processing time compared to trying
different classification methods. In the future, the results of the analysis presented in this
article will be used to identify new, improved models. The study is also extended to include
other preprocessing methods related to both instance scaling and feature selection that were
not within the scope of this research. Also, new research will look at hybrid classification to
develop binary classifiers that enable more accurate decision making.

6. Conclusions

Classifying network behavior as normal or abnormal can be achieved relatively easy by
identifying anomalies. The Kyoto 2006+ dataset, which includes approximately 90 million
instances of real network data, is used in this study to evaluate five binary classifiers for
anomaly detection. The dataset size is reduced via feature selection techniques used as
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a preprocessing stage in the classification process. Furthermore, the features are scaled
with tangent-hyperbolic function. To speed up training, the dumping strategy is used.
According to the results, the processing time is significantly shorter when compared to
Min-Max normalization. Future research will use the findings of this study to identify a
new search space to improve classification models. In addition, both feature selection and
feature scaling will be further explored. Hybrid classifiers, which are expected to be more
accurate with faster processing, will also be the subject of further research.
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M.S. (Mitar Simić), G.O. and S.S.; project administration, G.M.S.; funding acquisition, M.S. (Miomir
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