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Abstract: This paper proposes a weakly supervised cross-domain person re-identification (Re-ID)
method based on small sample data. In order to reduce the cost of data collection and annotation,
the model design focuses on extracting and abstracting the information contained in the data under
limited conditions. In this paper, we focus on the problems of strong data dependence, weak cross-
domain capability and low accuracy in Re-ID in weakly supervised scenarios. Our contributions are
as follows: first, we implement a joint training framework with the help of small sample learning
and cross-domain migration for Re-ID. Second, with the help of residual compensation and fusion
attention module, the RCFA module is designed, and the model framework is built on this basis to
improve the cross-domain ability of the model. Third, to solve the problem of low accuracy caused by
insufficient data coverage of small samples, a fusion of shallow features and deep features is designed
to enable the model to weighted fusion of shallow detail information and deep semantic information.
Finally, by selecting different camera images in Market1501 dataset and DukeMTMC-reID dataset as
small samples, respectively, and introducing another dataset data for joint training, we demonstrate
the feasibility of this joint training framework, which can perform weakly supervised cross-domain
Re-ID based on small sample data.

Keywords: person re-identification; weakly supervision; small sample; cross-domain migration

1. Introduction

Person re-identification (Re-ID) [1] refers to the association and matching of a specific
target person using computer vision techniques in scenarios across devices, times and
locations. The task is generally viewed as a fine-grained image retrieval problem with
constraints. Re-ID can make up for the face recognition technology and fixed camera
vision limitations in the fields of intelligent security and video surveillance; and can be
combined with person detection and person tracking [2] for Re-ID systems. Traditional
video surveillance systems, due to their low degree of intelligence, may result in criminal
investigators not only needing to consume a lot of time and energy, but also inevitably
negligent omissions on the way to work. In addition, the suspect may confuse the criminal
investigator by deliberately covering the face or wearing different color clothing to achieve
the purpose of obstructing the tracking. The emergence of Re-ID technology can, to a
certain extent, solve the problem of inefficiency and the high rate of missed detection that
exists in traditional video surveillance. With the construction of smart cities, security needs
are increasing day by day, and intelligent monitoring systems have ushered in a major
development opportunity. As an indispensable part of it, Re-ID has become a hot research
direction in the academic and industrial fields.
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With the improvement of computer hardware performance such as GPU and the huge
amount of data brought by the big data environment, Re-ID algorithms based on deep
learning have developed rapidly. The Re-ID method based on deep learning integrates two
modules: feature extraction and metric learning, that is, the extraction of image features
and the similarity comparison of feature vectors are completed in one model. According
to the different Re-ID methods, the deep learning-based Re-ID models can be divided
into representation models [3] and matching models [4], where the representation models
treat the Re-ID task as a classification problem and the loss functions of the representation
models are classification loss [5] and verification loss [3], etc.

Typically, fully supervised deep learning models require large amounts of labeled
data for training, and expecting data to cover all sample characteristics is alien to the idea
of data-driven model learning. Therefore, model design should focus less on the use of
large amounts of labeled data and more on extracting and abstracting the information
and knowledge contained in the data under limited data conditions. This leads to the
concept of weakly supervised learning. Weakly supervised learning of small amounts
of labeled data in a weakly supervised scenario is of great value and significance for the
implementation of applications related to Re-ID systems. The cross-domain migration-
based approach is unsupervised learning by domain adaptation, where the model is
pre-trained in a supervised manner on labeled source data and then adapted to the target
domain of unlabeled data. Through migration learning, the domain knowledge of the
labeled dataset is transferred to the unlabeled dataset. However, existing Re-ID techniques
mostly rely on supervised learning with a large number of samples, which requires a large
amount of labeled data for training, and thus cannot be generalized to other scenarios,
requiring labor costs and computational costs that are not conducive to the implementation
of Re-ID techniques. Therefore, weakly supervised Re-ID techniques based on small sample
learning are needed to achieve cross-domain Re-ID.

In this paper, we focus on the problems of strong data dependence, weakly cross-
domain capability and low accuracy encountered in Re-ID in weakly supervised scenarios,
and implement a joint training framework based on deep learning with the help of small-
sample learning and cross-domain migration for Re-ID. The framework uses single-camera
labeled data as a small-sample training set and introduces a large amount of data from
non-target domains as prior knowledge to improve the Re-ID performance of the model
through joint training. The main work of this paper is as follows:

1. To solve the Re-ID problem in weakly supervised scenes, a joint training framework
combining cross-domain migration learning and small-sample learning is proposed,
which can train both small-sample data and different-domain data to reduce the
realistic scene data collection efforts and yet ensure that the algorithm models are
adequately trained.

2. To solve the problem of weak cross-domain capability, a Re-ID module residual
compensation and fusion attention (RCFA) based on residual compensation and
fusion attention is designed. In order to effectively utilize the introduced non-target
domain data and solve the disturbance caused by different data distribution, RCFA
module is designed, which can suppress inter-domain differences.

3. To further improve the accuracy of the algorithm, a fusion of shallow and deep
features is designed so that the model can weight fuse shallow detail information and
deep semantic information to solve the model learning bias caused by insufficient
coverage of small sample data.

The rest of this article is organized as follows. Section 2 introduces the related work
of cross-domain Re-ID and weakly supervised Re-ID. Section 3 introduces our proposed
small sample learning weakly supervised cross-domain Re-ID algorithm, and proves the
research results of this paper through the experiments in Section 4. Finally, in Section 5, we
give our conclusion.
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2. Related Work
2.1. Cross-Domain Re-ID

The purpose of cross-domain is to adapt the source domain with fully labeled samples
to the target domain with sparse labels. The existing domain adaptation methods are
divided into supervised, unsupervised and weakly supervised. Weak supervision only
requires image-level annotation, and achieves a balance between the adaptation effect
and annotation cost. The purpose of cross-domain weakly supervised object detection is
to adjust the object-level knowledge of the fully labeled source domain dataset to train
the object detector of the weakly labeled target domain [6]. Therefore, this paper used
weak supervision technology to realize the adaptation of the detector from the source
domain to the target domain. ICCM [7] divided each image into semantic clusters and
aligns the foreground region in the target domain with the labeled region in the source
domain. Ref. [8] proposed a cross-domain weakly supervised object detection (CDWSOD)
method based on DETR, which aims to adapt the detector from the source domain to the
target domain through weakly supervision. H2FA R-CNN [9] enforced two image-level
alignments on the backbone features, and performs two instance-level alignments on the
RPN and the detection head, effectively narrowing the gap between the source domain and
the target domain.

Image style transformation is a transfer learning method in the image domain, first
proposed by Gatys in [10]. Because it can effectively solve the problem of model general-
ization due to image style differences, researchers have widely applied it to cross-domain
Re-ID tasks. For example, Deng et al. [11] proposed SPGAN, an unsupervised domain
adaptive framework consisting of SiaNet and CycleGAN [12]. The samples generated by
coordination between SiaNet and CycleGAN not only have the style of the target domain,
but also retain the underlying identity information. An instance-guided context presen-
tation method is proposed in [13], which transfers the source domain person identity to
a different target domain context in order to achieve supervised Re-ID in the unlabeled
target domain. Yc et al. [14] proposed a new style migration framework STReID, which can
change the style while preserving the image content information, and then use both the
original image and Zhu et al. [15] decomposed person images into foreground, background
and style features, and then use these features to synthesize person images with target
domain background for training. In addition to this, there are many studies in improving
the generalization ability of the model. Ref. [16] proposed a domain-invariant mapping
network (DIMN) to learn the mapping between images and classifiers. It followed a meta-
learning pipeline and samples a subset of the source domain training task in each training
set to make the model domain invariant.

2.2. Weakly Supervised Re-ID

Based on the problems of supervised and unsupervised Re-ID, researchers have
introduced the concept of weakly supervised learning, which is a combination of supervised
and unsupervised learning methods to train effective Re-ID models using only a small
amount of data. With the increasing interest in weakly supervised learning, a large number
of related research branches have emerged and been attributed to it, such that weakly
supervised learning has become a comprehensive research field that covers a variety
of studies that attempt to build predictive models with weak supervision [17]. Weakly
supervised learning, as the name implies, refers to the lack of adequate supervision of the
data provided, and from this perspective, semi-supervised learning can be seen as the first
and most fundamental framework in the field [18].

Semi-supervised learning (SSL) aims to use both labeled and unlabeled data to ac-
complish a specific learning task. The concept of semi-supervised learning first appeared
in [19]. As the earliest semi-supervised methods, self-learning methods are considered as
an iterative mechanism that uses initially labeled data to train a model to predict some
unlabeled samples. Then, the most plausible predictions are marked as the best predictions
for the current model, thus providing more training data for the supervised algorithm.
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The joint training approach [20] provided a similar solution by training two different mod-
els on two different views and using the reliable predictions from one view as labels for the
other model. Figueira et al. [21] proposed a multi-class learning approach. Given any set of
features, regardless of their number, dimensionality and descriptors, the method works by
fusing these features and ensuring that they are consistent with the classification results.
Li et al. [22] proposed a new semi-supervised region metric learning method that learns
discriminative region-to-point metrics by estimating positive neighborhoods to generate
positive regions.

Unsupervised learning does not require labeled data and is therefore more adaptive
and robust. Early unsupervised Re-ID mainly learns invariant components, i.e., dictionary
learning [23], metric learning [24] or significance analysis [25], which leads to limited
discriminability or scalability.

Ye et al. [26] proposed an unsupervised cross-camera label estimation method to build
a sample map for each camera, iteratively update the label estimation and sample map,
and implement cross-camera label association using a dynamic graph matching (DGM)
method to solve the problem of poor quality of feature representation and noise generated
by cross-views during the association process. Wang et al. [27] proposed a consistent
cross-view matching (CCM) framework using global camera network constraints to ensure
the consistency of matching pairs, and a cross-view matching strategy using global camera
network constraints to explore the matching relationships across the camera network and
solve the problem of inaccurate matching results for different camera pairs.

For end-to-end unsupervised Re-ID, Fan et al. [28] first pseudo-labeled the target
domain in a cross-domain dataset and proposed an iterative clustering model for Re-ID,
first training a convolutional network on the source domain, then going to the target
domain for image feature extraction, clustering by K-Means to a set number of families,
fine-tuning the model with the clustered results, and so on iteratively. The pseudo-label
clustering algorithm combining hierarchical clustering and hard-batch triplet loss proposed
by Zeng et al. [29] made full use of the similarity between samples in the target dataset
through hierarchical clustering, and reduced the influence of difficult samples through
hard-batch triplet loss, resulting in high-quality pseudo-labels and improving model per-
formance. The TAUDL proposed by Li et al. [30] trained an end-to-end neural network by
using unsupervised single-camera trajectory information, and then used this image model
to automatically label and learn cross-camera images. Most unsupervised learning does not
consider the distribution differences between cameras. Xuan et al. [31] iteratively optimized
the similarity between cameras by generating pseudo labels within and between cameras.

In recent years, the performance of Re-ID algorithms based on weakly supervised
methods has been significantly improved, but there is still a big gap compared with
methods based on supervised learning. At present, there are relatively few studies on
weakly supervised Re-ID algorithms in academia, and the development is not yet complete.
How to transfer the knowledge learned from labeled source datasets to unlabeled target
datasets through a domain adaptive approach to achieve higher performance of weakly
supervised algorithms will be the focus of related research.

2.3. Small Sample Learning

Small sample learning aims to learn and generalize models through a small number
of samples. In practical application scenarios, there are small samples or small labeled
samples, and labeling a large number of unlabeled samples will consume a lot of man-
power. So, people are committed to studying a small number of samples for learning.
Ref. [32] proposed a new small sample target detection algorithm, which does not require
fine-tuning and can directly perform small sample target detection on unknown classes.
LSTD [33] proposed a regularized transfer learning framework, which can flexibly transfer
from the source domain to the target domain, avoiding task differences. Ref. [34] pro-
posed a new adversarial learning method to learn feature representation, which can not
only achieve domain adaptation, but also achieve class separation in a specific domain.
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Nakamura et al. [35] proposed a fine-tuning method, which uses a lower learning rate in
the process of retraining on small sample categories and can be achieved by adjusting the
entire network when there is a big difference between the source dataset and the target
dataset. In the field of Re-ID, limited by privacy protection laws, it is difficult to obtain
people monitoring data, so it is necessary to adopt small sample learning.

3. The Proposed Method
3.1. Model Basic Framework

In order to solve the problem of insufficient training data for small sample learning,
prior knowledge must be introduced to assist model learning, and different types of prior
knowledge have different effects. If a large amount of labeled data different from the
target domain is introduced, the amount of data for the overall training of the model can be
expanded. However, there are differences between different domains, and directly introduc-
ing them as training data into training does not guarantee a positive effect. Therefore, this
paper designs a basic framework, which can ensure that the introduced prior knowledge
has a positive effect. By enhancing the model’s ability to extract invariant features, it can
effectively utilize a large amount of labeled data in the non-target domain. The overall
structure is shown in Figure 1. The framework uses ResNet-50 [36] as the backbone network
and inserts RCFA modules at different stages to extract domain invariant features.

Figure 1. Model basic framework.

3.2. RCFA Module

In order to improve the generalization ability of the Re-ID model, we design a residual
compensation and fusion attention (RCFA) module based on instance normalization (IN)
residual connection structure and fusion attention (FA) module (as shown in Figure 2).

The FA module helps the model to extract more discriminative semantic features
at the cost of adding a small amount of computation. C, H and W denote the number
of channels, height and width of the features, respectively. In order to introduce spatial
information into the channel dimension, the spatial information map needs to be obtained
first. For the input feature F ∈ Rc × h× w, Average Pooling and Max Pooling operations
are performed along the channel dimension to aggregate the channel features, and two
two-dimensional maps are obtained. Average Pooling can limit the variance of the estimate
due to the restricted neighborhood size by selecting the average pixel value of a certain
region to represent the overall features of the region. Max Pooling is used to select the
maximum pixel value in a region to represent the overall features in that region, which
helps to retain the saliency information in the feature map and gives the model some
resistance to distortion. Second, to efficiently compute the final fused attention weights,
the spatial dimensions of the Favg and Fmax maps need to be compressed. Therefore,
the feature maps with fused spatial information then performed Average Pooling and Max
Pooling operations along the spatial axis to aggregate spatial information and generate two
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spatial contextual descriptors, respectively. The computational results focus on the global
information and saliency information in the feature maps that help to discriminate people,
respectively. Finally, the two spatial context descriptors are combined and fused by a CRCS
(Conv + ReLu + Conv + Sigm) module to obtain the final fused attention weights.

In particular, to suppress the effect of inter-domain differences, the IN normalized
data distribution is used to suppress style differences. And the input features x and
the normalized features xIN are fused by residual concatenation to compensate for the
person discriminative information lost during the instance normalization calculation. Then,
the person features are further enhanced by calculating weights and weighting them by the
FA module. Figure 3 shows the structure of the RCFA module.

Figure 2. FA module.

Figure 3. RCFA module.

The information x ∈ Rc×h×w carried by the input features includes style (activated
mean and variance) and shape (activated spatial structure) information. Instance nor-
malization suppresses the style differences between different domains by calculating the
mean and variance in each channel of each sample while the shape information remains
unchanged. The calculation is as follows:

xIN = IN(x) = γ× x− µ(x)
s(x)

+ β (1)

where, µ(·) and s(·), respectively, represent the average and standard deviation calculated
in the space size of each channel. γ and β are the parameters learned by the network model
during training.
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3.3. Joint Training Framework

In order to solve the problem of Re-ID in weakly supervised scenarios, a joint train-
ing framework combining cross-domain transfer learning and small sample learning is
proposed. Aiming at the problem of building the Re-ID algorithm model in the real envi-
ronment, cross-domain transfer learning and small sample learning can effectively reduce
the data collection work and calculation cost, and ensure that the model is adequately
trained. In a large number of Re-ID studies, due to the complete training data, the model
can learn more sufficient features from a variety of different resolution samples. For the
Re-ID model, sufficient training data with different resolutions is crucial to improve its
generalization ability. For each image in the training set, if all the corresponding images
with the same content but different resolutions can be obtained, it will help the model to
obtain better generalization ability. However, a small amount of learning methods are used
to reduce the collection of real scene data. The selected method is to select a camera sample
for labeling. At this time, while greatly reducing the amount of data collection and labeling,
it also greatly reduces the number of samples with different resolutions, making it difficult
to extract sufficient information in the model learning process. In order to solve the above
problems, this part further improves the basic framework to form the final proposed joint
training framework, as shown in Figure 4.

Figure 4. Joint training framework after feature fusion.

The specific feature fusion process is as follows: Firstly, we input the feature maps
output after each RCFA module of the basic framework into the global pooling module
to obtain features f2, f3, f4 and f5. Features f2 and f3 contain similar information, while
features f4 and f5 contain similar information. In the feature division, it is considered that
features f2 and f3 mainly contain shallow detail information, while f4 and f5 mainly contain
deep semantic information. In this paper, f2 and f3 are weighted and fused according to the
weight w1, f4 and f5 are weighted and fused according to the weight w2, and the formulas
are as follows:

f23 = w1 × f2 + (1− w1)× f3 (2)

f45 = w2 × f4 + (1− w2)× f5 (3)

where, the weights w1 and w2 are calculated by the triplet loss value. The idea is that the
triplet loss function [37] reflects the closeness of the anchor sample and the positive sample
in the feature space, and the distance between the anchor sample and the negative sample in
the feature space. Therefore, the triplet loss can judge whether the information contained in
the feature is sufficiently discriminative. The weights of w1 and w2 are calculated according
to Formulas (4) and (5):

w1 = e
−0.7×

(
Ltrip2+δ

Ltrip3+δ

)
(4)

w2 = e
−0.7×

(
Ltrip4+δ

Ltrip5+δ

)
(5)

where, δ ensures that the denominator will not be zero. In the formula, the ratio of the loss
value is scaled by 0.7 times to ensure that the weight given is close to 0.5 when the loss
values of the two features are the same. By using the negative exponential power function
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of e instead of linear mapping, it is assumed that a larger weight will be given only when
the molecule is much smaller than the denominator.

After obtaining the shallow fusion feature f23 and the deep fusion feature f45, the two
need to be weighted to obtain the fusion feature that finally contains shallow information
and deep information. The calculation method is as follows:

f f usion = wad × f23 + (1− wad)× f45 (6)

where, the weight wad is an adaptive learning weight to ensure that the model adaptively
allocates the proportion of shallow information and deep information in the fusion process.
Finally, the fusion feature is passed through the BNNeck structure [38], and the triplet
loss value and ID classification loss are calculated, respectively, to constrain the model
convergence process.

3.4. Loss Function

This paper uses crossentropy (CE) loss and triplet loss [37] to jointly constrain model
training. However, in general, CE loss and triplet loss have inconsistent embedding spaces
in the constrained optimization process, and it is easy to have one loss value decrease and
another loss value increase [39]. Therefore, this paper introduces the BNNeck [38] structure
to improve the model based framework, as shown in Figure 5.

The purpose of Re-ID is to match all images belonging to the same ID as the query
image from the image library. In terms of the nature of the task, it can still be divided
into an image classification task, in which each person ID is taken as a class and the ID
number is labeled. For image classification problems, CE loss is the most commonly used
loss function, which has two common types, binary classification and multi-classification.
The binary classification represents that there are only two types of prediction results after
training the model. In Re-ID, the prediction is expressed as positive samples and negative
samples. The formula is as follows:

Lbce =
1
N ∑

i
Li =

1
N ∑

i
−[yi · log(pi) + (1− yi) · log(1− pi)] (7)

where, yi represents the label of sample i, the positive sample is 1, and the negative
sample is 0; pi represents the probability that sample i is predicted to be a positive sample.
The probability of this. Multi-classification is an extension of binary classification. In Re-ID,
each row ID is treated as a class, and the formula is as follows:

Lce =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yic · log(pic) (8)

where, M denotes the number of classes, that is, the number of IDs; yic means that when
the real class of sample i is c, take 1, otherwise take 0; pic represents the probability that
sample i is predicted to be a class c.

The core idea of the triplet loss function is to shorten the distance of samples with the
same ID in the vector space as much as possible, and to push the distance between samples
with different IDs farther. Because its idea is concise and clear and fully conforms to the
logical thinking of Re-ID, triplet loss has become a commonly used loss function in the
research of Re-ID algorithms. The formula is as follows:

Ltrip = max(d(a, p)− d(a, n) + margin, 0) (9)

In the formula, a, p, n represent the anchor sample, positive sample and negative
sample, respectively; the function d is often a euclidean distance metric function; margin is
a hyperparameter that can be initially set.
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We introduce the BNNeck [38] structure on the basis of the model framework, as shown
in Figure 5. The structure adds a BN layer between the final stage of feature extraction
and the fully connected layer of the classifier, and initializes the BN layer and the fully
connected layer. In the forward propagation stage, Feature f is input into triplet loss to
calculate the loss, and then Feature f is input into the BN layer to obtain Feature fBN , which
is classified using a fully connected layer. Finally, the probability of ID classification is
output to calculate CE loss.

Figure 5. Loss function.

4. Experiment
4.1. Experimental Preparation

The experimental environment is shown in Table 1.

Table 1. Experimental environment.

Category Type

CPU Intel(R) Xeon(R) CPU E5-267
RAM 128 G

Hard Disk 8 T
GPU 2 × Nvidia TITAN RTX 24 G

Operating System Ubuntu 18.04
CUDA 11.0
Python 3.6.9
Pytorch 1.5.1

Four datasets are selected for the experiments in this paper: Market1501 [40], DukeMTMC-
reID [41], CUHK03-NP [42] and the large-scale dataset MSMT17 [43].

Market1501 was collected by five HD cameras and one regular camera on the Ts-
inghua University campus during the summer. The people in the dataset are divided into
751 training IDs and 750 query IDs.

DukeMTMC-reID contains 36,411 images of 1812 people captured by eight HD cam-
eras. Overall, 702 IDs were randomly selected from the dataset and the corresponding
16,522 images were used as the training set, and 2228 images from the remaining 702 IDs
were used as the query images. CUHK03-NP is a new training and test set splitting protocol
of CUHK03, which splits the training set and test set into 767 and 700 IDs. MSMT17 is
collected under different time periods and weather conditions and contains 126,441 labeled
borders with 4,101 IDs. Among them, 32,621 labeled borders of 1041 IDs are training sets;
the 93,820 labeled borders of 3060 IDs are the test set. The details of each dataset are shown
in Table 2.
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Table 2. Distribution of datasets.

Datasets Cameras Training IDs Training
Images Test IDs Test

Images
Query
Images

Market1501 6 751 12,936 750 19,732 3368
DukeMTMC-reID 8 702 16,522 702 17,661 2228
CUHK03-NP 10 767 7365 700 5332 1400
MSMT17 15 1041 32,621 3060 93,820 11,659

4.2. Experiment Setting

First, data preprocessing is performed by scaling all images to 256 × 128 and padding
them with 10 px, performing random horizontal flipping and re-random clipping to
256 × 128. In addition, data augmentation methods such as random color dithering and
random patching are used to enhance the diversity of the samples. In the training phase,
4 people with 6 images each are randomly selected from the training set to obtain a small
batch size of 24 to train the model. The initial learning rate is set to 3.5 × 10−6, and the
learning rate is increased to 3.5 × 10−4 by Warmup at the 2000th iteration, and then the
cosine annealing mechanism is started at the 8000th iteration to continuously reduce the
learning rate to 7.7 × 10−4. Different training iterations are set on different datasets to train
the model until convergence.

4.3. Evaluation Indicators

To accurately evaluate the model performance, Rank-1 matching rate and mean aver-
age precision (mAP) are used as evaluation metrics. The calculations are as follows:

In conducting the experimental tests, the person features of query and gallery are
compared using the cosine distance with the following equation:

dist = 1− cos(Q, G) (10)

where, Q and G are both feature vectors (in this article, their dimensions are 1 × 2048),
Q is the normalized query person feature vector and G is the normalized gallery person
feature vector. After obtaining the cosine distance, it provides the basis for the subsequent
evaluation metrics calculation.

In this paper, two evaluation metrics, mAP (mean Average Precision) and Rank-1, are
adopted in the experimental process. When the number of images searched by the model
in the dataset is X, only x images out of X are actually the same person to be detected.
The model accuracy can be calculated as

Precision =
x
X

(11)

The average accuracy (AP) of the person can be further calculated as

AP =
∑ Precision

n
(12)

Finally, the average accuracy of all the different types of people is then averaged to
mAP:

mAP =
∑N

i=1 APi

N
(13)

Rank-1 indicates the probability that the first retrieval result is the correct result among
the search results returned according to the similarity level for all samples to be tested.
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4.4. Ablation Experiment
4.4.1. RCFA Effect Validation

This section sets up ablation experiments to verify the effectiveness of each component
of the RCFA module in a cross-domain scenario. Market1501, DukeMTMC-reID and
CUHK03-NP are used as target domains, while other datasets from non-target domains are
used as source domains to simulate different cross-domain scenarios. In the experiments,
ResNet-50 is used as the baseline network; “+RES” indicates the addition of IN-based
residual connectivity structure to ResNet-50; “+RCFA” represents the further addition of
FA module to the previous one.

As shown in Tables 3–5, when the RCFA module is inserted into the model, the best
results are achieved in all cross-domain Re-ID scenarios. Overall, the cross-domain Re-ID
performance of CUHK03-NP is poor compared to other target domains. This is because
CUHK03-NP is far away from other domains in the feature space. By adding each com-
ponent one by one and conducting experiments to evaluate the performance of each
component, it can be found that each component effectively improves the cross-domain
Re-ID performance.

Table 3. Results of the ablation experimental data when Market1501 is the target domain.

Method
Source: CUHK03-NP (%) Source: DukeMTMC-reID (%) Source: MSMT17 (%)

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

Baseline 28.4 55.7 71.7 78.0 28.6 57.2 73.3 79.5 31.7 60.5 76.9 83.4
+RES 33.4 62.3 77.1 82.7 33.8 65.1 79.9 85.4 38.0 66.9 81.9 86.8
+RCFA 34.5 63.3 78.8 83.9 34.2 65.8 81.0 86.2 38.9 68.9 82.7 87.0

Table 4. Results of the ablation experimental data when DukeMTMC-reID is the target domain.

Method
Source: CUHK03-NP (%) Source: Market1501 (%) Source: MSMT17 (%)

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

Baseline 14.6 30.1 45.8 52.4 24.6 43.4 58.6 64.7 39.6 59.2 75.7 81.0
+RES 20.9 40.1 56.0 62.1 28.8 49.6 65.6 70.6 45.4 65.9 78.1 82.4
+RCFA 21.4 41.0 56.7 63.7 30.9 53.5 67.0 72.3 46.0 67.0 79.4 83.3

Table 5. Results of the ablation experimental data when CUHK03-NP is the target domain.

Method
Source: Market1501 (%) Source: DukeMTMC-reID (%) Source: MSMT17 (%)

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

Baseline 14.2 13.6 27.4 36.0 8.7 8.8 18.5 25.0 14.7 14.7 26.8 34.2
+RES 17.0 17.5 33.0 42.0 9.8 10.4 21.4 28.2 16.3 l5.7 30.6 39.9
+RCFA 17.7 18.5 33.6 43.4 10.7 11.9 24.4 31.2 19.0 19.4 34.4 44.3

For different cross-domain scenarios, the IN-based residual connection structure
is first embedded into the baseline, and it can be seen that the Re-ID effect has been
significantly improved. In the DukeMTMC-reID to CUHK03-NP cross-domain scenario,
the improvement of mAP metric is the weakest at 1.1%, while the improvement of mAP
metric is the most significant at 6.3% for the MSMT17 to Market1501 and CUHK03-NP
to DukeMTMC-reID cross-domain scenarios. Other metrics also improved significantly,
indicating that the residual linkage effectively normalizes the style of features and preserves
discriminative information. Then, the FA module is further introduced to form the complete
RCFA module. Similarly, the performance of Re-ID in most cross-domain scenarios is
further improved. The experiments demonstrate that the introduction of the RCFA module
improves the model cross-domain effect significantly.
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Non-local (NL) [44], squeeze and excitation (SE) [45] and convolutional block attention
module (CBAM) [46] are three common attention implementation methods in the field of
computer vision. In the experiment, ResNet-50 is still used as the baseline network, and the
NL, SE, and CBAM structures are inserted into the network, respectively. Market1501,
DukeMTMC-reID, and CUHK03-NP are used as target domains, and other data sets of non-
target domains are used as source domains to simulate different cross-domain scenarios.
The experimental results are shown in Tables 6–8. In most cross-domain scenarios, the Re-
ID effect of RCFA is better than NL, SE and CBAM. It can be seen from these tables that
adding any attention mechanism to the benchmark network can improve the cross-domain
Re-ID performance of the model, which proves that the attention mechanism can also
improve the feature extraction ability of the model in cross-domain scenarios, optimize the
performance of the model, and enhance generalization ability of the model.

Table 6. RCFA and other network comparison results when the target domain is Market1501.

Method
Source: CUHK03-NP (%) Source: DukeMTMC-reID (%) Source: MSMT17 (%)

mAP Rank-1 mAP Rank-1 mAP Rank-1

ResNet-50 28.4 55.7 28.6 57.2 31.7 60.5
ResNet-50 + NL 30.0 57.2 34.9 65.6 38.0 67.4
ResNet-50 + SE 29.4 56.5 32.0 62.7 38.2 67.1
ResNet-50 + CBAM 31.2 61.8 33.8 65.7 38.2 68.4
ResNet-50 + RCFA 34.5 63.3 34.2 65.8 38.9 68.9

Table 7. RCFA and other network comparison results when the target domain is DukeMTMC-reID.

Method
Source: CUHK03-NP (%) Source: Market1501 (%) Source: MSMT17 (%)

mAP Rank-1 mAP Rank-1 mAP Rank-1

ResNet-50 14.6 30.1 24.6 43.4 39.6 59.2
ResNet-50 + NL 14.4 28.0 30.3 52.9 46.3 66.1
ResNet-50 + SE 14.1 27.6 25.5 45.9 44.4 65.7
ResNet-50 + CBAM 21.1 38.3 30.4 52.7 45.3 66.0
ResNet-50 + RCFA 21.1 41.0 30.5 53.5 45.7 66.2

Table 8. RCFA and other network comparison results when the target domain is CUHK03-NP.

Method
Source: Market1501 (%) Source: DukeMTMC-reID (%) Source: MSMT17 (%)

mAP Rank-1 mAP Rank-1 mAP Rank-1

ResNet-50 14.2 13.6 8.7 8.8 14.7 14.7
ResNet-50 + NL 16.1 17.1 9.2 9.7 16.5 l7.0
ResNet-50 + SE 14.1 14.1 8.3 8.6 14.2 l5.4
ResNet-50 + CBAM 16.9 16.9 9.9 11.3 18.2 l8.4
ResNet-50 + RCFA 17.7 18.5 10.7 11.9 19.0 19.4

Compared to SE, NL is generally in a leading position in terms of performance. Simi-
larly, for CBAM, except for the cross-domain scenarios of DukeMTMC-reID to Market1501,
MSMT17 to Market1501, and MSMT17 to DukeMTMC-reID, CBAM is fully ahead of NL
and SE in other situations, demonstrating the effectiveness of CBAM as a lightweight
insertion module in cross-domain scenarios. RCFA achieves excellent results in almost all
cross-domain scenarios. RCFA is only slightly inferior to NL in the cross-domain scenario
from MSMT17 to DukeMTMC-reID, with a slight disadvantage of 0.6% in the mAP, while
there is no significant difference in the Rank-1.
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Under the cross-domain problem, different Re-ID datasets are different. For example,
Market-1501 is collected on the domestic campus in the summer, and the people are short-
sleeved and the colors are relatively bright; DukeMTMC-reID is collected on winter foreign
campuses, and the people wear heavy winter clothes and their colors are relatively dark.
This significant difference in dress style shapes the domain gap between the two data sets
and reduces the accuracy of the model’s cross-domain use between the two datasets, which
puts forward high requirements for the generalization ability of the model. Our RCFA
performs well on cross-domain problems, so it also performs well when facing overfitting.

4.4.2. Exploration of the Insertion Position of RCFA

In order to discover the effect of different insertion positions of RCFA modules on the
network, the framework uses ResNet-50 as the backbone network and inserts RCFA mod-
ules at different stages to extract domain invariant features. To assess the impact of different
insertion positions of RCFA modules on the generalization ability of the model, experiments
are designed to compare various different architectures. Market1501, DukeMTMC-reID
and CUHK03-NP are used as the target domains, while other datasets that are not the
target domains are used as the source domains to simulate different cross-domain scenarios.
Meanwhile, ResNet-50 is set as the Baseline network, and Baseline-RCFA2, Baseline-RCFA3,
Baseline-RCFA4, and Baseline-RCFA5 are set to represent the insertion of RCFA modules
after different residual blocks in the skeleton of ResNet-50, as shown in Figure 1. While
Baseline-RCFA23 represents inserting RCFA modules after residual block 2 and residual
block 3 at the same time, Baseline-RCFA2345 represents adding RCFA modules after all
residual blocks in the network, and so on.

Tables 9–11 show the performance comparisons of several different architectures in
different cross-domain scenarios, where red color indicates the highest value in the vertical
comparison, while blue color indicates the second highest in the vertical comparison. It is
clear that adding RCFA modules after each residual block of the ResNet-50 network can
effectively improve the cross-domain generalization performance of the model compared
to Baseline. The optimal case of a single insertion of the RCFA module is demonstrated,
as shown in Table 12. It is obvious that Baseline-RCFA4 completely outperforms the
other architectures in most scenarios. The performance of Baseline-RCFA4 and Baseline-
RCFA5 is comparable in the cross-domain scenarios of DukeMTMC-reID to Market1501 and
MSMT17 to DukeMTMC-reID. When CUHK03-NP is not considered, both Baseline-RCFA4
and Baseline-RCFA5 outperform Baseline-RCFA2. The semantic information contained in
the deep features is more concentrated in the channel dimension, which is more conducive
to the utilization of the RCFA module. However, when considering CUHK03-NP, the per-
formance of Baseline-RCFA5 changes, and it tends to not be as good as Baseline-RCFA2 or
Baseline-RCFA3 for model enhancement. This may be due to the fact that the erroneous
person detection in CUHK03-NP allows RCFA5 to assist the model in learning erroneous
semantic information at deep features.

We further explore the impact of different insertion combinations on the model,
as shown in Figure 6, which shows that Baseline-RCFA23 significantly underperforms
the other combinations in most of the cross-domain scenarios, suggesting that the RCFA
module is more effective in processing deep semantic features. The exception is that
Baseline-RCFA45 underperforms Baseline-RCFA23 when extended from DukeMTMC-reID
to CUHK03-NP. This suggests that although the RCFA module is good at handling deep fea-
tures, in some scenarios, enhancing shallow features may be more beneficial for Re-ID. The
performance of Baseline-RCFA23, Baseline-RCFA234, and Baseline-RCFA2345 is improved
sequentially, which suggests that adding the RCFA module at the deep layer can effectively
improve the generalization ability of the model. Baseline-RCFA45, Baseline-RCFA345,
and Baseline-RCFA2345 achieve the best results in different cross-domain scenarios, in-
dicating that inserting RCFA modules in the shallow layer does not always improve the
generalization ability of the model when RCFA modules are already inserted in the deep
layer of the network. Overall, the performance of Baseline-RCFA2345 is more stable than
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the other two architectures, thus suggesting that joint processing of shallow and deep
features is more effective in improving the model generalization ability.

Table 9. Experimental data results of different architectures when Market1501 is used as the target domain.

Method
Source: CUHK03-NP (%) Source: DukeMTMC-reID (%) Source: MSMT17 (%)

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

Baseline 28.4 55.7 71.7 78.0 28.6 57.2 73.3 79.5 31.7 60.5 76.9 83.4
Baseline-RCFA2 28.5 56.5 72.9 78.7 30.0 61.8 77.6 83.1 32.8 62.3 78.3 84.1
Baseline-RCFA3 30.7 59.0 74.6 80.0 31.3 62.7 78.0 83.7 34.3 65.0 79.3 84.8
Baseline-RCFA4 31.6 59.5 75.4 82.1 32.6 63.4 78.9 84.3 37.5 66.7 82.0 86.4
Baseline-RCFA5 28.6 56.0 72.7 78.1 32.2 62.9 78.6 84.4 34.8 65.3 79.1 84.5
Baseline-RCFA23 31.5 60.2 76.0 81.6 29.7 61.6 77.2 83.1 33.4 64.5 78.2 83.8
Baseline-RCFA234 32.4 61.0 77.6 83.1 33.1 64.4 80.3 85.1 37.3 67.9 81.3 86.0
Baseline-RCFA345 33.9 61.7 78.2 83.3 32.9 63.9 79.4 84.8 37.8 67.4 81.5 85.9
Baseline-RCFA45 32.4 59.1 75.2 80.9 34.2 66.1 80.4 85.5 39.3 68.7 82.0 86.8
Baseline-RCFA2345 34.5 63.3 78.8 83.9 34.2 65.8 81.0 86.2 38.9 68.9 82.7 87.0

Red color indicates the highest value in the vertical comparison, while blue color indicates the second highest in
the vertical comparison.

Table 10. Experimental data results of different architectures when DukeMTMC-reID is used as the
target domain.

Method
Source: CUHK03-NP (%) Source: Market1501 (%) Source: MSMT17 (%)

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

Baseline 14.6 30.1 45.8 52.4 24.6 43.4 58.6 64.7 39.6 59.2 75.7 81.0
Baseline-RCFA2 17.6 36.1 51.0 57.8 27.7 48.5 63.7 69.6 43.2 64.3 76.7 81.4
Baseline-RCFA3 17.0 34.6 49.6 57.0 28.4 50.0 64.6 70.3 42.1 62.7 76.8 81.3
Baseline-RCFA4 18.4 34.8 51.2 57.3 28.2 47.8 64.2 68.9 44.1 64.9 77.0 81.3
Baseline-RCFA5 15.1 30.8 46.2 52.9 29.6 51.2 66.7 71.9 44.3 65.5 78.4 82.1
Baseline-RCFA23 17.0 34.7 50.8 56.4 27.3 48.7 63.8 69.3 42.7 63.6 76.9 81.4
Baseline-RCFA234 19.4 37.7 54.6 60.6 29.1 49.6 65.0 70.6 44.7 65.4 78.4 82.1
Baseline-RCFA345 20.5 39.7 55.6 62.2 31.1 53.6 67.2 71.4 44.5 64.1 77.8 81.9
Baseline-RCFA45 21.6 41.1 55.1 62.2 30.6 52.7 66.7 72.1 45.2 65.4 78.0 82.9
Baseline-RCFA2345 21.4 41.0 56.7 63.7 30.9 53.3 67.0 72.3 46.0 67.0 79.4 83.3

Red color indicates the highest value in the vertical comparison, while blue color indicates the second highest in
the vertical comparison.

Table 11. Experimental data results of different architectures when CUHK03-NP is used as the
target domain.

Method
Source: Market1501 (%) Source: DukeMTMC (%) Source: MSMT17 (%)

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

Baseline 14.2 13.6 27.4 36.0 8.7 8.8 18.5 25.0 14.7 14.7 26.8 34.2
Baseline-RCFA2 15.5 16.6 30.0 38.5 9.5 9.8 21.0 27.3 15.5 14.4 28.3 37.5
Baseline-RCFA3 14.9 15.1 29.5 38.4 9.5 10.4 21.8 28.4 15.1 14.8 27.6 35.6
Baseline-RCFA4 15.6 16.0 29.9 38.2 10.5 11.4 22.6 29.9 16.6 17.9 30.5 38.1
Baseline-RCFA5 15.6 16.2 29.4 37.4 9.3 9.8 20.5 27.9 15.4 14.9 27.7 35.4
Baseline-RCFA23 16.0 16.6 32.5 40.4 9.8 10.4 21.5 27.0 15.7 15.8 29.0 38.7
Baseline-RCFA234 17.6 17.6 33.6 42.0 9.9 10.4 21.4 28.2 16.3 16.4 31.9 40.6
Baseline-RCFA345 17.1 17.5 33.5 42.1 10.2 10.6 22.4 30.2 16.9 17.1 30.0 38.1
Baseline-RCFA45 17.4 18.1 32.1 40.6 9.7 9.9 20.4 27.1 17.4 17.4 30.9 39.5
Baseline-RCFA2345 17.7 18.5 33.6 43.4 10.7 11.9 24.4 31.2 19.0 19.4 34.4 44.3

Red color indicates the highest value in the vertical comparison, while blue color indicates the second highest in
the vertical comparison.
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Table 12. Optimization of single insertion of RCFA modules.

C → M D → M MS → M
RCFA4 RCFA4, RCFA5 RCFA4

C → D M → D MS → D
RCFA4 RCFA5 RCFA4, RCFA5

M → C D → C MS → C
RCFA2, RCFA4, RCFA5 RCFA4 RCFA4

RCFA23

RCFA234

RCFA2345

RCFA345

RCFA45

Figure 6. The mAP visualization of different combinations of insertion methods.

4.4.3. Joint Training

This section focuses on the single-camera annotation experiments for Market1501 and
DukeMTMC-reID. The training set of Market1501 contains 12,936 images captured under
6 cameras, and the training set of DukeMTMC-reID contains 16,522 images captured under
8 cameras. The number of person IDs captured by different cameras as well as the number
of images are different, and their specific divisions are shown in Table 13.

Table 13. Distribution of different camera data in the dataset.

Camera ID
Market1501 DukeMTMC-reID

IDs Sample Number Rate (%) IDs Sample Number Rate (%)

0 652 2017 3.09 404 2809 6.95
1 541 1709 3.16 378 3009 7.96
2 694 2707 3.90 201 1088 5.41
3 241 920 3.82 165 1395 8.45
4 576 2338 4.06 218 1685 7.73
5 558 3245 5.82 348 3700 10.63
6 - - - 217 1330 6.13
7 - - - 265 1506 5.68

We conduct small sample learning, using samples from each camera in the dataset as
small sample training data, and used ResNet-50 network for experiments. It is generally
believed that the larger the amount of training data, the better the training effect of the
model. However, when the data volume is small, the overfitting phenomenon of the model
is more obvious, and the experimental results are shown in Table 14. It can be seen that
when using only single camera annotation, the performance results of training and testing
on the Market1501 and DukeMTMC-reID datasets are poor. When training with Camera
2 data from the Market1501 dataset, the mAP reaches the highest 26.3%; when using
the DukeMTMC-reID dataset for Camera 5 data training, the mAP reaches the highest
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of 20.7%. Comparing Table 13 and Table 14, it can be found that there is no significant
correlation between model performance and data size at this time. Both the Market1501
and DukeMTMC-reID datasets exhibit a significant decrease in performance due to the
large amount of data collected by a certain camera. The data volume of Camera 5 in the
Market1501 dataset is higher than that of Camera 2 and Camera 5, while the mAP is lower
than that of Camera 2. Even compared with Camera 4, the data volume is increased by more
mAP, but there is no significant improvement. The data volume of Camera 0, Camera 1 and
Camera 3 is different, but the mAP is about 17%. The same is true for the DukeMTMC-reID
dataset. Camera 2 has significantly less data than other cameras, and its performance is
second only to Camera 5; Camera 1 has a large number of samples, and its mAP is only
better than Camera 3 and Camera 4. The comparison results show that the diversity of data
greatly affects the performance of the model. For small sample data, the more the sample
coverage features, the more conducive to improve the generalization ability of the model.

Table 14. Single camera small sample learning experiment results.

Camera ID
Market1501 DukeMTMC-reID

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

0 17.7 43.2 61.4 69.0 18.1 37.7 50.9 57.3
1 17.4 41.7 60.2 67.9 16.4 32.9 47.8 53.9
2 26.3 54.2 72.7 78.9 19.6 40.5 54.7 61.2
3 16.8 40.3 59.6 67.5 14.2 31.4 45.3 51.0
4 21.1 47.7 65.7 73.1 15.4 32.4 47.2 52.5
5 22.7 49.3 68.1 75.2 20.7 40.4 55.2 57.7
6 - - - - 17.4 35.8 51.9 57.7
7 - - - - 17.6 36.4 51.1 57.3

Based on the single-camera labeling experiments, the non-target domain data are
further added for testing. “M (single) + D” means that the single-labeled camera data of
Market1501 is used as a small sample, and the complete DukeMTMC-reID is introduced
for joint training and tested on Market1501; “D (single) + M” means that the single-labeled
camera data of DukeMTMC-reID is used as a small sample, and the complete DukeMTMC-
reID is introduced for joint training and tested on Market1501, respectively. DukeMTMC-
reID’s single-labeled camera data as small samples introduced the complete Market1501
for joint training, and tested on DukeMTMC-reID, and the results are shown in Table 15.

Table 15. Single-camera annotation with the addition of non-target domain data experimental results.

Camera ID
M (Single) + D (%) D (Single) + M (%)

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

0 25.4 54.0 70.9 77.4 24.2 42.2 58.3 64.4
1 24.2 52.1 68.1 74.8 21.0 36.4 52.2 58.9
2 29.2 58.8 74.3 80.2 23.5 40.4 56.8 64.2
3 25.0 53.0 70.3 76.8 20.3 36.4 51.8 59.0
4 27.0 54.3 72.5 78.5 21.4 37.8 53.1 59.7
5 27.7 55.8 73.6 80.2 23.8 42.4 57.0 63.4
6 - - - - 22.5 39.7 54.8 60.6
7 - - - - 22.6 39.4 55.1 61.6

As can be seen from Table 15, for both the Market1501 and DukeMTMC-reID datasets,
any single camera annotation by adding non-target domain data is effective in improving
the Re-ID performance of the model. In most cases, the better performance of the camera
when only using a single camera annotation data, the improvement is not obvious after
adding non-target domain data; on the contrary, the camera with poor performance when
using only a single camera annotation data has a relatively more obvious improvement
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after adding non-target domain data. It is fully demonstrated that different camera data
have different coverage of sample diversity, and additional non-target domains can be
supplemented to a certain extent. However, due to the influence of inter-domain differences,
this auxiliary effect is not obvious. Even if a large amount of non-target domain data is
added, it is still difficult for the model to learn sufficient information and knowledge from it.

In order to make more effective use of non-target domain data, the ResNet-50 network
is now replaced with the model basic framework without changing other experimental
details and parameter configuration. The effectiveness of the model basic framework
(Figure 1) in this joint training scenario is verified by only changing the model architecture.
The results are shown in Table 16. From the experimental data in the above tables, it
is clear that the performance of Re-ID is significantly improved in various “M (single)
+ D” and “D (single) + M” scenarios. It indicates that the basic framework can fully
utilize non-target domain data to assist in small sample training, and the model can
extract pedestrian invariance features from additional data and combine small samples to
improve performance. In the “M (single) + D” scenario, compared to adding non-target
domain data, the mAP improvement of single camera annotation is 7.7%, 6.8%, 2.9%, 8.2%,
5.9%, and 5.0%, respectively. The mAP improvement is more significant and balanced by
replacing the model architecture, which is 13.7%, 12.3%, 11.2%, 11.1%, 12.9%, and 11.8%,
respectively; In the “D (single) + M” scenario, compared to adding non-target domain
data, the mAP improvement of single camera annotation is 6.1%, 4.6%, 3.9%, 6.1%, 6.0%,
3.1%, 5.1%, and 4.0%, respectively. The mAP improvement is more significant and equally
balanced and stable by replacing the model architecture, which is 12.2%, 12.7%, 10.0%,
9.9%, 10.9%, 11.6%, 10.9%, and 10.1%, respectively.

Table 16. Results of the joint training experiment using the base framework.

Camera ID
M (Single) + D (%) D (Single) + M (%)

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

0 39.1 67.4 83.0 87.6 36.4 55.3 71.6 76.8
1 36.5 52.1 80.1 84.7 33.7 53.2 67.3 72.5
2 40.4 69.3 82.7 87.1 33.5 52.9 68.1 72.9
3 36.1 66.1 81.3 86.2 30.2 48.9 63.6 69.5
4 39.9 68.0 83.2 87.6 32.3 51.7 66.1 71.1
5 39.5 68.6 83.2 87.9 35.4 56.0 68.9 74.0
6 - - - - 33.4 53.1 67.6 73.2
7 - - - - 32.7 50.0 66.3 72.5

In order to further improve the model performance, make full use of small sample
data, and solve the problem of insufficient sample resolution learning, the model base
framework is now replaced with the joint training framework proposed in this paper
(Figure 4), while the same experimental details as well as parameter configurations are
used for the experiments.The results are shown in Table 17.

Table 17. Results of the joint training experiment using the joint training framework.

Camera ID
M (Single) + D (%) D (Single) + M (%)

mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10

0 48.2 75.4 86.8 90.3 40.3 61.8 74.6 79.4
1 43.6 71.2 83.9 88.5 42.5 62.7 73.3 77.2
2 54.9 79.0 89.4 82.2 41.4 62.6 75.4 79.4
3 43.0 71.5 85.2 89.3 35.7 56.8 70.2 75.0
4 48.5 75.4 87.3 90.7 40.7 61.1 72.9 77.9
5 47.9 75.9 88.4 92.3 43.5 64.1 76.1 80.3
6 - - - - 41.7 63.1 74.1 77.7
7 - - - - 41.9 62.8 75.0 79.3
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Comparing Table 16 with Table 17, it is obvious that the experimental results of the
joint training framework further increase substantially compared with the base framework.
In the “M (single) + D” scenario, the maximum improvement of mAP is 14.5%, and the max-
imum improvement of Rank-1 is 9.7%; the minimum improvement of mAP is 6.9%, and the
minimum improvement of Rank-1 is 5.4%. In the “D (single) + M” scenario, the maximum
improvement of Re-ID evaluation index mAP is 12.7%, and the maximum improvement of
Rank-1 is 9.2%; the minimum improvement of mAP is 9.9%, and the minimum improve-
ment of Rank-1 is 3.9%. It fully illustrates the correctness of the framework design idea,
and the joint training framework effectively solves the joint training problem of small
sample data and non-target domain data. Both the learning bias caused by insufficient
samples is solved by means of fusion features, and the inter-domain variation problem
caused by additional samples introduced into the training is solved by RCFA modules.

In particular, the visual outputs for Market1501 and DukeMTMC-reID are shown in
Figures 7 and 8. The first picture on the left side is the person to be matched, and the
right side is the matching result from other cameras. It can be seen that the test results
under our joint training framework can basically perform cross-domain matching under
small samples.
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Figure 7. The matching results of Market1501.
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Figure 8. The matching results of DukeMTMC-reID.
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5. Conclusions

In this paper, we propose a Re-ID method based on RCFA, the core of which is an
inserted residual compensation and fused attention module. This module can effectively
improve the robustness of the model and overcome the perturbation caused by different
data distribution to solve the Re-ID problem of cross-domain migration. In the cross-
domain scenario from Market1501 to DukeMTMC-reID, the mAP metric improves by 6.3%
and the Rank-1 metric improves by 10.1% compared to the baseline. The improvement
of each component over the existing methods is also verified by comparing with existing
attention mechanisms and style normalization methods through extensive experiments.
In addition, a joint training framework combining cross-domain migration learning and
small-sample learning is proposed, which can train both small-sample data and different
domain data to effectively reduce the data collection and computational cost of realistic
scenarios, while ensuring that the algorithm models can be adequately trained. Finally,
the feasibility of this joint training framework is demonstrated through experiments in
different scenarios. For example, 2017 images from camera 0 of the Market1501 dataset are
selected as small samples and DukeMTMC-reID dataset are introduced for joint training,
and tested on the Market1501 test set. The joint training framework improves mAP by
22.8% and Rank-1 by 21.4% compared to the ResNet-50 model alone. Our method assumes
that the target domain class and the source domain class overlap to a large extent. In the
actual scene, the target domain is likely to have rich source domain novel classes. How to
further use these novel target domain classes is the problem we will explore next.
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