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Abstract: Device to device (D2D) communication technology is the main component of future
communication, which greatly improves the utilization of spectrum resources. However, in the
D2D subscriber multiplex communication network, the interference between communication links
is serious and the system performance is degraded. Traditional resource allocation schemes need
a lot of channel information when dealing with interference problems in the system, and have the
problems of weak dynamic resource allocation capability and low system throughput. Aiming at
this challenge, this paper proposes a multi-agent D2D communication resource allocation algorithm
based on Advantage Actor Critic (A2C). First, a multi-D2D cellular communication system model
based on A2C Critic is established, then the parameters of the actor network and the critic network
in the system are updated, and finally the resource allocation scheme of D2D users is dynamically
and adaptively output. The simulation results show that compared with DQN (deep Q-network)
and MAAC (multi-agent actor–critic), the average throughput of the system is improved by 26% and
12.5%, respectively.

Keywords: D2D communication; deep reinforcement learning (DRL); interference management;
spectrum resource allocation; power control

1. Introduction

With the rapid development of the fifth-generation mobile communication technology
and the arrival of the new era of We Media, the number of intelligent terminal devices
has increased rapidly [1,2]. The Internet of Things household equipment [3], autonomous
vehicle, [4], smart roads, smart cities [5], etc. have entered thousands of households. The
accompanying mobile network online conference, 4K ultra clear audio and video programs,
mobile We Media, Metauniverse, cloud storage, cloud services and other applications
occupy more and more cellular network services [6]. High speed, large capacity, low
delay and other communication requirements are constantly put forward, data traffic is
experiencing explosive growth, and cellular network technology is advancing. According
to statistics, globally, the number of intelligent terminal devices and the number of inter-
connections (CAGR of 10%) are growing much faster than the population (CAGR of 1.0%)
and Internet users (CAGR of 6%). This trend has promoted the growth rate of the number
of intelligent terminals owned by each family and each person [7]. Cisco forecasts that
the number of network devices per capita will reach 3.6. With a variety of new terminals
with different forms, functions and uses entering the market, more and more applications,
such as medical care, intelligent security, transportation logistics and smart homes have
exploded [8,9]. They not only improve labor productivity, but also improve people’s life
experience, but also increase the traffic burden on wireless communication networks [10].

According to the statistics of the Internet Data Center (IDC), in the next 10 years
(2015–2025), the CAGR of new data generated each year will be about 26%. It is predicted
that the new data traffic will reach 175.8 zettabytes (ZB) in 2025, an increase of nearly ten
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times compared with 18.2 ZB in 2015 [11]. This has led to the severe congestion of tradi-
tional cellular base stations designed for large-radius service areas, especially in campus,
government and other intensive office spaces and large business districts [12]. During
commercial or holiday celebrations, the rapidly increasing amount of communication equip-
ment will impose a huge burden on the limited spectrum resources. At the same time, the
development of communication technology will be difficult by 2030. It consumes 51% of
the world’s electricity and exacerbates global greenhouse gas emissions, accounting for
23% of the total [13]. If effective control measures are not taken, energy and environmental
problems will affect the global economy and threaten human physical and mental health.

Therefore, on the one hand, the future cellular network needs to improve the utilization
of spectrum resources and ensure the reliable communication of user communication. On
the other hand, it needs green and reliable communication technology to mitigate energy
consumption. As the main component of the next generation of communication, D2D
communication technology has attracted much attention [14].

D2D communication technology refers to enabling two terminal devices with close
geographical locations to bypass the base station (BS) directly for short-distance commu-
nication [15]. In a broad sense, any link that can communicate directly in authorized
or unauthorized frequency bands can be regarded as D2D communication [16]. Due to
the inherent requirements for high-speed data transmission, low-delay communication
and specific areas’ or users’ communication quality, D2D communication technology is
considered the key technology in 5G cellular networks and an important part of future
communication [17]. D2D communication can also save energy. In short-distance com-
munications, the transmission power of D2D is very small, which greatly saves electric
energy. In terms of the use of spectrum resources, D2D communication has a variety
of communication modes. In the D2D communication mode, only one communication
link is required for information transmission; two communication links are required in
cellular mode. Most importantly, cellular users and D2D users can share the same radio
spectrum resource.

By introducing D2D communication technology into wireless cellular networks,
nearby intelligent terminals can directly establish direct communication links. On the
one hand, this can improve the spectrum utilization in wireless communication networks;
on the other hand, it can greatly improve the data throughput and user experience of dense
users. However, when multiple D2D users reuse cellular users, although they gain many
advantages, they also bring about link interference that cannot be ignored. This interference
includes same-layer interference between D2D users when multiple D2D communication
users reuse the same cellular user, and cross-layer interference between D2D users and
cellular users. The same-layer interference and inter-layer interference greatly limit the
development of D2D communication technology.

In order to reduce the interference in D2D communication systems, some traditional
resource allocation schemes are proposed. These methods can be divided into centralized
and distributed.

Centralized resource allocation mainly includes resource allocation based on graph
theory [18], resource allocation based on airspace isolation [19] and some resource alloca-
tion schemes based on a meta heuristic algorithm. Distributed resource allocation mainly
includes resource allocation based on game theory [20,21] and resource allocation based
on machine learning [22]. In reference [23], a radio resource allocation scheme based on
imperfect channel information of artificial bees was proposed. The artificial bee colony
algorithm was used to optimize the distance ratio between cellular users and D2D users,
select the optimal resource matching scheme and improve the connection number of D2D
users and the system throughput. Reference [24] proposed a tabu search (TS)-based D2D
communication resource allocation meta heuristic algorithm to solve power allocation and
RB allocation problems with lower complexity. Compared with similar algorithms, the
algorithm complexity is lower than that of genetic algorithms and maximizes the system’s
security capacity under the minimum quality of service requirements. Reference [25] pro-
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posed the maximum greedy SNR and minimum interference element heuristic scheme
for D2D user subchannel allocation. Compared with the minimum interference scheme,
the maximum greedy SNR scheme achieved a higher sum rate and lower computational
complexity, but required global channel information; the minimum interference element
heuristic scheme required the location information of each node. Reference [26] proposed
a three-dimensional D2D communication resource allocation scheme based on a three-
step hypergraph, which solved the non-convex problem of mixed integers in traditional
D2D communication resource allocation, improved the confidentiality rate of the D2D
communication system and obtained an approximate optimal result of o (n4) time com-
plexity. Reference [27] proposed a weighted minimization clustering model considering
both social attributes and physical proximity, and then used the stable matching theory to
optimize the system throughput and achieve one-to-one matching of wireless spectrum re-
sources. Reference [28] proposed an improved interference map resource allocation scheme.
Compared with traditional random multiplexing allocation, the centralized allocation of
communication resources for detecting packets by the base station (BS) can obtain more
useful interference map information and improve the resource allocation capability of
cellular networks. Reference [29] proposed a D2D communication mode selection and
resource allocation algorithm based on graph theory, and applied it to the full duplex
cellular D2D communication system, which improved the utilization of the radio spectrum
and maximized the throughput of the communication system. Reference [30] proposed a
resource allocation algorithm based on the alternative offer bargaining game. In the whole
game, the player is a D2D user, and the reward and punishment return is the transmission
power. The adjacent D2D users compete with each other for a higher signal to interference
noise ratio (SINR). The algorithm greatly improved the system throughput on the premise
of ensuring the user’s QoS. Reference [31] proposed a dynamic resource allocation scheme
between cells based on repeated games. A pair of D2D users played repeated games with
nearby BTSs to maximize the utility function of D2D users and significantly improve the
throughput of the entire D2D communication system. Reference [32] proposed a D2D
communication resource allocation algorithm based on a Stackelberg game, established a
master–slave game model for millimeter wave base stations and D2D users, reduced system
energy consumption and improved users’ SINR and spectral efficiency. However, in future
wireless networks with dense users and rapidly changing scenarios, resource allocation
will mainly face two challenges. First, as the number of users increases, acquiring channel
state information [33] (CSI) requires a huge signal overhead. It is unrealistic to assume
that BS will have global network information. Second, the resource allocation problem is
usually modeled as a combination optimization problem with nonlinear constraints, which
is difficult to effectively optimize with traditional optimization methods.

Fortunately, deep reinforcement learning (DRL) has been proved to be effective in
solving decision-making problems under uncertainty [34]. Reference [35] proposed a DQN-
based resource allocation and power control algorithm to maximize system capacity and
spectral efficiency, while ensuring sufficient QoS for D2D users. Reference [36] proposed
a multi-agent deep reinforcement learning method based on a Stackelberg game, which
uses the Stackelberg Q value (ST-Q) to guide the learning direction and performs well in
improving the average utility and channel capacity. Reference [37] proposed a resource
allocation scheme of multi-agent DQN, which combines DQN with DDPG to reduce
the complexity of the network and improve the throughput and fairness of the network.
Reference [38] proposed a D2D spectrum access algorithm based on dual-depth Q network
(DDQN) to improve the QoS of cellular and D2D users. Reference [39] proposed a D2D
communication resource allocation scheme based on dual DQN that can reduce system
interference and improve system throughput while obtaining a small amount of channel
information. Reference [40] proposed an improved DRL resource allocation scheme to
optimize the transmission power of D2D users and cellular users. Reference [41] proposed a
6G-oriented D2D resource allocation scheme based on joint reinforcement learning to ensure
the quality of service (QoS) requirements of cellular users and D2D users, while maximizing
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the total capacity and minimizing the total power consumption. Reference [42] combined
Q learning with an adaptive greedy algorithm to optimize the energy efficiency of D2D
in heterogeneous networks, but ignored the convergence of the algorithm. Reference [43]
proposed a collaborative reinforcement learning D2D resource allocation scheme, which
realized the cooperation of adjacent D2D communication users using shared value function
and sharing strategy ideas, and optimized the quality of service and throughput of users in
the communication system. Reference [44] proposed a deep reinforcement learning D2D
communication resource allocation algorithm based on priority sampling, which helps the
data characteristics obtained by the system after agent learning environment interaction
to the greatest extent, improves the D2D communication network’s resource allocation
ability, and reduces network latency. Reference [45] modeled the resource allocation
problem in a D2D communication network as a Markov decision problem, realized the
adaptive switching between the traditional cellular communication mode and the D2D
communication mode, established the actor network and critic network architecture, and
improved the energy efficiency of the system. Reference [46] proposed a logarithmic cooling
D2D resource allocation scheme based on Q learning to improve the access rate of D2D
communication in multiple cells, but ignored the communication quality of users.

However, the above work does not effectively solve the problem of user QoS and
throughput in DRL-based D2D communication resource allocation. Especially in the case
of extremely low delay requirements, this is still worth further research to improve the
performance of D2D and cellular communications.

2. System Model
2.1. System Model Establishment

In this paper, we consider the multi-D2D multiplexing single cell network communi-
cation system in the single cell scenario. Figure 1 shows the system model.
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Figure 1. D2D communication system model.

The m-th cellular user in the system is defined as Cm, where 1 ≤ m ≤M, and the n-th
D2D communication pair is defined as Dn, where 1≤ n≤N. The D2D communication pair
is n, and the transmitting user and receiving user are represented by Tx and Rx, respectively.
Both the downlink communication of the cellular link and the D2D link communication
use orthogonal frequency division multiplexing (OFDM) technology. Each cellular user
occupies a physical resource block RB, and there is no interference between any two cellular
links. In the system model, a cellular user is allowed to share the same RB with multiple
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D2D users, and the D2D users can independently allocate RB. There are three types of
interference in the system model, namely: (1) the cellular users are interfered by D2D
transmitting users sharing the same RB; (2) interference from the base station received by
the D2D receiving user; (3) interference between D2D links sharing the same RB.

Set the transmission power of the base station to be fixed, expressed by PB. The
transmission power of the D2D transmitting user is adjustable, expressed by PD. The
channel gain of the cellular downlink target link from the base station to the cellular user
Cm and the channel gain of the D2D target link from the D2D transmitting user Dt

n to the
receiving user Dr

n are respectively expressed by GB,Cm and GDt
n ,Dr

n
. When multiple links

share RB, the channel gains of interference links from D2D transmitting users to cellular
users, from base stations to D2D receiving users, and from D2D transmitting users to
receiving users are GDt

n ,Cm
, GB,Dr

n and GDt
i ,Dr

i
, respectively.

The signal to interference noise ratio (SINR) (SINR) of the received signal on the k-th
RB received by the cellular user (Cm) (Cm)from the base station can be expressed as:

SINRCm =
PBGB,Cm

∑
n∈Dk

PDt
n
GDt

n ,Cm
+ N0

(1)

The SINR of D2D communication to the received signal on the k-th RB can be expressed as:

SINRDn =
PDt

n
GDt

n ,Dr
n

PBGB,Dr
n + ∑

n∈Dk,i 6=n
PDt

i
GDt

i ,Dr
n
+ N0

(2)

Here Dk represents the set of D2D communication pairs using the k-th RB, and repre-
sents the power spectral density of additive white Gaussian noise (AWGN).

Combining the above Formulas (1) and (2) and the Shannon formula, we can obtain
the unit bandwidth communication rates of the cellular link and the D2D link respectively:

RCm = log2(1 + SINRCm) (3)

RDn = log2(1 + SINRDn) (4)

Because cellular users are the primary users of the cellular frequency band, the com-
munication quality of cellular users needs to be guaranteed. The outage probability of the
cellular communication link must meet the following conditions:

P
(

SINRCm ≤ SINRtgt
C

)
≤ εC (5)

This represents the minimum threshold of SINR received by the cellular communica-
tion link and the maximum threshold of outage probability of the cellular
communication link.

2.2. Problem Establishment

After the system model in Figure 1 is established, it is assumed that each cellular user
is assigned an RB and the RB will not be shared between cellular users. One RB can be
assigned to multiple D2D communication pairs. The RB allocation matrix is defined as
BN×K = [bn,k] to represent the RB allocation of D2D communication pairs. When the k-th
RB is assigned Dn to the D2D communication pair, bn,k = 1; otherwise, bn,k = 0. Define a
power control vector PN = [PDt

n
], where PDt

n
represents the transmission power of the D2D

transmitting user Dt
n.

The optimization objective of this chapter is to maximize the system capacity by
optimizing the RB allocation matrix BNxK and power control vector PN of the D2D commu-
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nication pair on the premise of ensuring the communication quality of cellular users and
D2D users. The optimization problem can be described as follows:

max
BN×K ,PN

(
M

∑
m=1

RCm +
N

∑
n=1

K

∑
k=1

bn,kRDn

)
(6)

s.t. P
(

SINRCm ≤ SINRtgt
C

)
≤ εC (7)

P
(

SINRDn ≤ SINRtgt
D

)
≤ εD (8)

K

∑
k=1

bn,k ≤ 1, bn,k ∈ {0, 1} (9)

PDt
n
≤ Pmax (10)

The first constraint Equation (7) makes the outage probability of the cellular link
less than a threshold, which is used to ensure the communication quality of cellular
users. SINRtgt

C and εC represent the minimum threshold of the cellular communication link
reception and the maximum threshold of the cellular communication link outage probability,
respectively. The second constraint Equation (8) makes the outage probability of the D2D
link less than a threshold to ensure the communication quality of D2D users. SINRtgt

D and
εD represent the minimum threshold for the D2D communication link to receive SINR
and the maximum threshold for the outage probability of the D2D communication link,
respectively. The third constraint Equation (9) indicates that each D2D communication pair
can only be assigned one RB at most. The fourth constraint Equation (10) indicates that the
transmission power of the D2D transmitting user cannot exceed a maximum transmission
power threshold Pmax.

3. Proposed Algorithm

This paper proposes a model of the multi-agent environment, and then proposes
a distributed framework based on multi-agent deep reinforcement learning to solve the
resource allocation problem of D2D communication.

3.1. A2C Environment Model based on Deep Learning

The goal of this paper is to find a resource allocation strategy to maximize the D2D
system throughput in cellular systems. In this paper, each D2D is regarded as an agent,
and Figure 2 is a model of the A2C-based multi-agent D2D communication system.

Each D2D communication pair acts as an agent, which includes an actor network and
a critic network. In a time slot t, the actor network and critic network observe a state St from
the state space of the D2D communication environment, and calculate the corresponding
mathematical expectation value according to their respective action value function and
state value function. Finally, the advantage value calculated by the critic network is used for
dynamic action selection of D2D communication. Actions αt include RB and transmission
power selected by the D2D communication pair.

In time slot t, after the agent executes the action, the environment may change, the
agent’s observation of the environment will shift to a new state St+1 and a reward ri will
be obtained. This reward is determined by the capacity of the D2D communication link
corresponding to the agent and the communication quality of the cellular users sharing the
spectrum with the D2D communication link. The agent adjusts the new strategy according
to the return obtained so that it can obtain a higher return.
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Combined with the model, the relevant settings of status, action and reward are
as follows:

State space: Si
t =

[
γD,t

i , γC,t
i , It−1

i , GD
t , GC

t , KC
t−1, KD

t−1

]
γD,t

i represents the signal-to-noise ratio of the i-th agent at that time; γC,t
i indicates the

cellular user’s signal-to-noise ratio multiplexed by the i-th agent at the time; It−1
i indicates

the interference to the D2D communication link in the last timeslot; GD
t indicates the

instantaneous channel status information of the D2D communication link; GC
t indicates

the instantaneous channel status information from the BS to the D2D receiving user; KC
t−1

indicates the RB occupied by the adjacent cellular users of the D2D communication pair in
the last time slot. KD

t−1 indicates the RB occupied by the adjacent D2D communication pair
of the D2D communication pair in the last time slot.

Action space: ai
t =

[
Pt

i , Bt
i
]
. Pt

i represents the power selection of the i-th agent at time
t; Bt

i represents the channel resources multiplexed by the i-th agent at time t.
Reward function: ri

t =
[
Rt

D, Rt
C
]
. Rt

D represents the throughput of D2D users of the
i-th agent at time t; Rt

C indicates the cellular user throughput at time t.
The multi-agent D2D deep reinforcement learning communication system model is

the extension of the single-agent model. This paper proposes a multi-agent communication
system with collective training and decentralized execution, as shown in Figure 2. The
multi-agent model includes multiple single agents, and each single agent is composed of
actor network, critic network and advantage function. The actor network selects actions
according to the state information observed by the agent, and the critic network gives a
preliminary score of the original operation’s advantages and disadvantages after perform-
ing the actions. Finally, the advantage function is used to dynamically adjust the selection
actions. Both actor network and xritic network are fitted with a depth neural network, as
shown in Figure 3.

3.2. Network Parameter Update

The A2C algorithm is mainly composed of three parts, namely, dominance function,
actor network and critic network. The dominance function is shown in Figure 3. If the action
exceeds the average performance, the output value of the dominance function is positive,
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and vice versa. In the multi-agent actor–critic deep reinforcement learning network, the
advantage function of the i-th D2D user is:

Ai(si
t, ai

t
)
= Qi(si

t, ai
t
)
−Vi(si

t
)
= E

[
ri

t
∣∣si

t, ai
t
]
−Vi(si

t
)

≈ ri
t + γVi(si

t+1

∣∣si
t, ai

t
)
−Vi(si

t
)
= δi(δi

t
) (11)

In the formula Ai =
(
si

t, ai
t
)
, Qi =

(
si

t, ai
t
)
, Vi =

(
si

t
)
, δi =

(
δi

t
)

and Vi =
(
si

t+1

∣∣si
t, ai

t
)

are respectively expressed as the time advantage function, action value function, state value
function, TD error value and state value function at t+1 of the i-th agent.

For parameter update in the actor network, we adopt TD error based on gradient rise
to update.

θi
t+1 = θi

t + αa∇θi J
(

θi
t

)
(12)

αα indicates the learning rate of the agent. ∇θi J
(
θi) ≈ δi(si

t
)
∇θi ln πi

θi

(
ai

t
∣∣si

t
)
, θi

indicates the policy network parameters of the i-th agent. πi
θi

(
ai

t
∣∣si

t ; θi
)

represents the
policy of the i-th agent.

The loss function of the critic network of the i-th agent is defined as:

Li
Critic =

[
δi
(

si
t

)]2
=
(

ri
t + γVi

(
si

t+1

∣∣∣si
t, ai

t

)
−Vi

(
si

t

))2
(13)

Similarly, the critic network uses a gradient rise algorithm to update its own parameters:

wi
t+1 = wi

t + αc∇wi Vi
wi

(
si

t

)
δi
(

si
t

)
(14)

Both actor network and critic network adopt DNN parameter optimization. The actor
network output layer uses the Softmax activation function to determine the probability of
each action. The critic network is used to assist strategy training, help the evaluation of the
superiority function and output the current optimal strategy. The flow of the algorithm
proposed in this paper is shown in Algorithm 1.
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Algorithm 1. D2D communication resource allocation algorithm

Algorithm: A D2D Communication Resource Allocation Algorithm Based on A2C

Initialization:

Initialize the cell, base station, cellular user and D2D user using communication
simulation.
π : Policy model for all D2D users π

Actor network: Parameter θ, Learning rate αa
Critic network: Parameter ω, Learning rate αc
γ : Discount factor γ

Advantage function: Ai
t

(
Si

t, ai
t

)
T : Number of communication simulation timeslot cycles.

Train :

1: t← 0
2: Cycle:
3: All D2D communication users observe their own state Si

t.
4: All D2D communication users are based on the current state Si

t and
Policy π. Output ai

t, RB and transmit power Pi
t .

5: All D2D communication users are based on the current status Si
t.

and π. Ri
t Rewards obtained by output ai

t.
6: All D2D communication users observe the next state Si

t+1
7: All D2D communication users input Si

t+1 into the critic network as
an input parameter and obtain the mathematical expectation of the
critic network to calculate the advantage function.
8: Update Critic network parameters ω.
9: Update actor network parameters θ.
10: Update MAA2C algorithm strategy π.
11: Ri

t+1 Rewards obtained by output ai
t+1.

12: t← t + 1 Simulation platform updates.
13: Until t = T, return the test result.

4. Simulation Results and Analysis

In order to enrich the reliability and progressiveness of the experiment, this paper takes
the outage probability and throughput of users in the D2D communication network as the
experimental indicators. The interruption probability is an expression of the link capacity.
When the link capacity cannot meet the required user rate, communication interruption
will occur, and the event probability is the interruption probability. Throughput can reflect
the ability of the network to transmit data. In the algorithm comparison phase, this paper
uses two dimensions for comparison. First, DQN, which belongs to the field of deep
reinforcement learning, is compared with the multi-agent D2D communication resource
allocation algorithm (MAA2C) proposed in this paper based on A2C, to further prove the
reliability of deep reinforcement learning in dealing with D2D communication resource
allocation problems. Then, MAAC, which is also based on actor–critic architecture, is used
as the comparison algorithm to horizontally compare progressiveness. The data indicators
of the comparison experiment include the convergence of the algorithm, the user’s outage
probability and the system throughput. Experiment simulation parameters and simulation
experiment diagram are shown in Algorithm 1and Figure 4, respectively.
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4.1. Simulation Parameter Setting

For the setting of simulation experiment parameters, this paper considers a cell with a
radius of 500 m. The cellular users and D2D communication pairs are randomly distributed
in the cell. The number of D2D users is 5, 10, 15, 20 or 25. The number of cellular users is 5.
The threshold of outage probability for each D2D cell user is 0.01. The noise power spectral
density is −174 dBm/Hz. See Table 1 for specific simulation parameters.

Table 1. Simulation Parameters.

Simulation Parameters Parameter Value (unit)
Base station transmit power 46 dBm

D2D transmits the maximum transmit power of the user 23 dBm
D2D communication to the maximum distance 20 m

Number of cellular users 5
The number of RB 5

Number of D2D communication pairs 5, 10, 15, 20, 25
Path loss model of cellular communication link 128.1 + 37.6log10(d)

D2D communication link path loss factor 4
Cellular user target SINR threshold 0 dB

Cellular subscriber outage probability threshold 0.01
D2D user target SINR threshold 0 dB

D2D user outage probability threshold 0.01
Noise power spectral density −174d dBm/Hz

The cellular network and the distribution of users are shown in Figure 4. The simula-
tion experiment is a unit circle with a radius of 500, in which the red circle is the cellular
user, the middle is the base station position and the blue and green divergent circles are the
positions of the transmitter and receiver of the D2D user.
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4.2. Result Analysis

Deep reinforcement learning is one of the important ways to deal with the D2D com-
munication resource allocation scheme, and has attracted much attention. How can one
judge the quality of the deep reinforcement learning algorithm? The evaluation index
of convergence gives a perfect answer. In this part, three reinforcement learning algo-
rithms, MAA2C, MAAC and DQN, are simulated and compared in the same experimental
environment. Figure 5 shows the trend of all agents’ total benefit parameters and iter-
ative convergence in the single cell and five D2D users’ multiplexing mode. It can be
seen from the figure that the DQN algorithm has the fastest convergence speed, but the
overall throughput benefit is not good. This is because compared with other algorithms,
the DQN algorithm unilaterally overemphasizes the competition between agents and the
environment and the interaction of environmental information, ignoring the idea of cooper-
ation. The MAAC algorithm has the worst convergence. This is because, compared with
MAA2C, the MAAC algorithm is slow in adjusting cooperation ideas each time. There
is no system advantage function that can directly fine tune the actor network and critic
network. Looking at the three deep reinforcement learning algorithms, it is not difficult to
find that MAA2C has the best effect, whether it is the number of convergence iterations or
the income of the algorithm after the stable iteration.

In order to prove that the proposed algorithm has good performance in protecting
the communication quality of cellular users, this paper presents the curve trend chart
of cellular user outage probability. Figure 6 shows the relationship between the outage
probability of cellular users and the number of D2D links. It can be seen from the figure
that with the increase in D2D logarithm, the distributed MAA2C algorithm proposed
in this paper is superior to the other two algorithms. First, the three methods all use
the distributed interference management mode, so the curve trend is similar. Secondly,
the MAAC algorithm is better than the DQN algorithm because there is a cooperation
mechanism in MAAC. The performance of the MAA2C algorithm is better than that of the
MAAC algorithm, because MAA2C not only has a cooperation mechanism, but also has an
advantage function mechanism, which enables multiple D2D users to consider cooperation
in the reuse competition scenario to generate higher benefits. On the other hand, MAA2C
uses the adjustment of the advertising advantage function to perform more accurate
proxy actions.
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In order to prove that the D2D link has good communication performance when the
algorithm proposed in this paper is multiplexed in cellular networks, the trend curve of
D2D outage probability is shown. Figure 7 shows the relationship curve between the
outage probability of D2D users and the number of D2D users. It can be seen from Figure 7
that the algorithm proposed in this paper is better than the DQN resource allocation
scheme, and slightly better than MAAC. It can be seen from the figure that the outage
probability of DQN is the highest. The performance of MAAC algorithm is better than that
of DQN, because the MAAC algorithm introduces global information to guide training,
which enables agents to learn cooperative strategies and avoid interference caused by
multiple D2D users’ competitive access during distributed execution. The performance of
the MAA2C algorithm is better than that of MAAC, because MAA2C fully considers the
parameter updating process of the state value network and action value network in the AC
network and the influence of the difference between them, i.e., the dominance function, on
the system on the basis of considering the cooperation of multiple D2Ds.
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In order to prove that the proposed algorithm has good performance for D2D user
throughput in cellular networks, Figure 8 shows the change curve of the number of D2D
link systems and D2D communication pairs. The total throughput of the D2D link system is
represented by the ordinate (after the throughput of all D2D users). The abscissa represents
the change in the number of D2D users. It can be seen from the figure that the MAA2C
algorithm performs best among the three algorithms. It can be seen from the figure that
when the number of D2D users is two to three times the number of cellular users, the
optimization effect gradient is MAA2 > MAAC > DQN. This is because the reward function
in the MAA2C algorithm is based on the real-time throughput of D2D users in the D2D
link, and the throughput growth of D2D users is taken as the positive feedback of the
system. The effect of all outputs is optimal. In the later period, as the number of D2Ds
continues to increase, the algorithm proposed in this paper grows slowly. This also proves
that the proposed algorithm has good convergence ability and dynamic adaptive resource
allocation ability.
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The throughput output capability of a system is an important indicator to measure
the data communication capability of a communication system. In order to prove that the
proposed algorithm has good D2D communication resource allocation capability, this paper
simulates the trend curve of the throughput output of the cellular system. The system
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capacity includes the communication capacity of D2D users and cellular users. Figure 9
shows the curve of system capacity changing with the number of D2D communication
pairs. It can be seen from the figure that compared with the DQN algorithm and the MAAC
algorithm, the MAA2C algorithm in this paper has obvious advantages. The first point is
the system throughput. It can be seen that the performance is good, because the MAA2C
algorithm can learn and cooperate during centralized training, as well as rationalize the
dynamic selection of power and channel, so as to obtain the maximum global total return.
Compared with other distributed algorithms, the algorithm proposed in this paper can
make decisions that are more conducive to improving the global performance. Second,
in terms of the system convergence performance, the comparison of the three algorithms
shows that the MAA2C algorithm has a smooth output curve, while the other two have large
fluctuations, which fully demonstrates that the MAA2C algorithm has good convergence.
In conclusion, the algorithm proposed in this paper is optimal both in terms of algorithm
convergence ability and system throughput output in a D2D system.
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5. Conclusions

In this paper, a multi-agent D2D communication resource allocation algorithm based
on A2C is proposed. The D2D user is regarded as an agent. Through the interaction
information between the multi-agent and the wireless communication environment, the
policy network and the state network are deeply studied and trained. Finally, the best
transmission power output and the best channel matching of the D2D user are achieved.
Simulation results show that the proposed algorithm has the best performance in improving
system throughput and reducing user interruption. At the same time, we found that
compared with a single policy network (DQN), the actor–critic dual network has a higher
system performance optimization capability in D2D resource allocation. Compared with
MAAC and MAA2C, we can see that a certain degree of actor–critic complex network has
a better D2D communication resource allocation capability. However, deep reinforcement
learning itself has the problems of slow training speed and difficult convergence, which
requires further optimization of learning efficiency. In the future, we will continue to
deepen the complexity of the actor–critic network and further improve the convergence
ability of the algorithm.

6. Patents

A patent entitled “Heterogeneous cognitive wireless sensor network cluster routing
method” is disclosed under CN110708735B.
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