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Abstract: SRAM or Static Random-Access Memory is the most vital memory technology. SRAM is fast
and robust but faces design challenges in nanoscale CMOS such as high leakage, power consumption,
and reliability. Quantum-dot Cellular Automata (QCA) is the alternative technology that can be used
to address the challenges of conventional SRAM. In this paper, a cost-efficient single layer SRAM cell
has been proposed in QCA. The design has 39 cells with a latency of 1.5 clock cycles and achieves an
overall improvement in cell count, area, latency, and QCA cost compared to the reported designs. It
can therefore be used to design nanoscale memory structures of higher order.

Keywords: QCA cell; memory cell; QCADesigner; low power dissipation; cost-efficient

1. Introduction

There are several parameters that determine a CMOS-based device’s characteristics:
the gate-source voltage, drain-source voltage, oxide capacitance, threshold voltage, and
drain-source current. When any of the above-mentioned parameters are altered, several
quantum effects result in decreased performance of a device at the nanoscale. Small feature
sizes associated with current CMOS technology will have many limitations in the near
future [1]. In addition to leakage currents, power dissipation and oxide thickness scaling
can also result in electron migration and cross-talk [1,2]. There are several examples of
DIBL (drain induced barrier lowering), a decrease in gate oxide thickness, the merging of
source and drain that produces punch-through conditions, and excessive current flow from
a physical perspective [1]. The effects mentioned above violate the laws of physics and
hinder the device from working properly. Furthermore, industries function according to
the principle of cost-benefit analysis. Since the number of components on a single chip is
increasing, excessive heat is generated in the chip and the small size of the chip causes it to
be difficult to remove. The chip is thus destroyed under operative conditions as a result of
the power dissipation [1]. To combat the consequences and effects discussed above, CMOS
in nano regime needs to adopt alternate paradigms. Quantum dot Cellular Automata
(QCA) nanotechnology is one of the most promising new technologies [1,2]. It provides
high operational speed/frequency (in the range of THz) [3,4], high device density [5], and
low power dissipation [6]. Therefore, QCA is attracting researchers to design various
digital circuits, such as adders, multipliers, multiplexers, encoders, decoders, flip flops,
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shift registers, content addressable memory, etc., in QCA technology to overcome the issues
faced by CMOS [7–14].

QCA uses quantum dots or metal islands in place of transistors when designing digital
circuits. There are four quantum dots in a QCA cell. This is one of the key components of
QCA circuits [1,7,8]. Located at the corners of the cell, these quantum dots measure 18 nm
by 18 nm. A pair of free electrons reside in the quantum dots diagonal to one another. It
is not possible for these electrons to move between the cells, but they can tunnel between
the dots. The electrons can be seen as having two polarization states [7]. The values can
be either ‘0’ or ‘1’. It is because of the Columbic repulsion between the cells that the cells
exhibit these polarization states and information flows between them. Figure 1 shows the
basic QCA cell and its polarization states.
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QCA can be implemented using four approaches, which are semiconductor [15,16],
metal-island [17,18], magnetic [19,20], and molecular [21,22]. The first concept of QCA was
demonstrated by fabrication of a metal island, wherein quantum dots were built using
aluminum islands. However, this method was not suitable for higher order scalable circuits
due to low speed of operation [17]. Semiconductor QCAs implementations are possible
using highly advanced semiconductor serial lithography processes available for CMOS
devices [15]. Magnetic QCA (MQCA) uses the concept of magnetic exchange interactions
between nano participles for operation [19,20], whereas molecular implementation theo-
retically provides highly dense, symmetrical, and high speed designs. However, selection
of molecules and clocking is a challenge [21,22]. In this paper, thus, semiconductor QCA
based implementations have been presented.

A QCA cell has four clock levels to ensure that the signal power is dissipated in the
right direction. These are Switch, Hold, Release, and Relax [7,8]. This QCA clocking is
depicted in Figure 2. During the switch phase, the cell switches polarity when the barrier
between dots increases, and it maintains its polarity after reaching the barrier during the
hold phase. When the cell releases its polarity, it loses its orientation. When the cell reaches
the relaxation phase, electrons are free to transfer within [8]. An identical clock signal is sent
to the cells within a zone and a sub-array is formed. A maximum of 100 MHz frequency
is attainable theoretically in magnetic QCA, up to 1 GHz in semiconductor and 1 THz in
molecular QCA [23].

A memory cell is the basic unit of a memory array. Static Random Access Memory
(SRAM) is the fundamental and most vital memory technology. It is fast and robust and
finds its application in microprocessors and microcontrollers. The scaling of transistors
has increased the demand for larger and faster microprocessors and the demand for high-
density and high-speed SRAM. Hence, there is a need to design efficient SRAMs for
low-power and ultra-dense applications. In this paper, an optimized design of SRAM
is presented using semiconductor QCA; however, theoretical power consumption and
throughput calculations have also been performed for molecular QCA implementation of
the same design, since it has a higher speed of operation.
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1.1. Paper Contributions

i. Design of optimized SRAM cell in QCA using majority voter gates and inverters.
ii. Energy dissipation evaluation at different kink energy levels.
iii. Theoretical analysis of power consumption and throughput for semiconductor and

molecular QCA techniques.

1.2. Paper Organziation

The rest of the paper is organized as follows: various design parameters needed for
comparison of QCA circuits are discussed in Section 2, followed by a discussion on various
simulation parameters in Section 3. A brief review of existing SRAM designs in QCA
along with motivation of this work is presented Section 4. The proposed logic design,
its operating table, and QCA implementation are presented in Section 5. The simulation
waveform needed for verification of proposed QCA design is presented in Section 6 along
with energy dissipation analysis, theoretical comparison of power dissipation, throughput
for semiconductor and molecular QCA techniques, and performance comparison with
existing designs. This is followed by a conclusion in Section 6.

2. Design Parameters in QCA

The parameters of QCA circuits which are necessary for designing efficient circuits are
as follows [1]:

i. Cell Count: While designing a circuit layout, the number of cells used determines
the QCA cell count. Circuits should have as few cells as possible.

ii. Cell Area: The cell area is calculated by multiplying the area of a single cell by the
total number of cells in the design. The cell area is 18 nm × 18 nm. Using this
calculation result, it is possible to determine how many semiconductor or metal
materials are needed for fabrication.

iii. Total Area: By multiplying the length by the width of the cellular area, the area
occupied by the cellular arrangement is given. Since it incorporates the intercellular
gap of 2 nm, it is different from the cell area parameter. It determines how much
space a particular cell architecture will consume on a die (wafer), and as a result,
how big the entire chip will be.

iv. Latency: Using the input–output route with the most phase shifts in the clock, the
delay between the input signal and output signal is calculated by dividing the
number by four.

v. Hardware Complexity: The hardware complexity can be determined by the total num-
ber of majority voters, inverters, and crossovers used in a QCA layout. The explicit
interaction of cells in a circuit, on the other hand, does not take this parameter
into account.

vi. Energy dissipation: Electronic devices have been severely restricted by energy dis-
sipation. As the cells are more closely packed in QCA, they do not return to their
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ground state after the clocking has been removed, since they are in close proximity
to the surrounding cells. As a result of this, more energy is needed to stimulate
the cell in the opposite polarization. Therefore, more energy is lost. The increase
in energy dissipation can be attributed to factors including temperature and kink
energy. All these factors are triggered by a non-energy lowering to the ground state.

3. Simulation Parameters in QCA

The simulation parameters that are required for verifying the operation of any QCA
circuit are as follows [1]:

i. Simulation Engine: The coherence vector and bistable approximation simulation
engines are available in QCA designer. In the first one, the speed is better, but the
accuracy is decreased, while in the second one, the speed is better, but the accuracy
is decreased.

ii. Relative Permittivity: QCA circuits can be manufactured with Ga-As, which has
a permittivity of 12.9. Therefore, in the simulation of QCA circuits, this value
was used.

iii. Layer Separation: The layered QCA design supports multilayer crossovers and
reduces the overall circuit area.

iv. Clock Amplitude Factor: By default, the clock amplitude factor was set to 2 V (peak-
to-peak).

v. Temperature: The temperature in QCA designer tool was 1 K by default. However,
the temperature can be changed easily in the simulation settings.

4. Literature Review of SRAM Cell in QCA

Extensive research has been undertaken in the area of QCA to design SRAM memory
cells. Loop-based structures are used in QCA technology for memory cell design. The data
are stored within a closed loop of the QCA cell. Researchers have designed memory cells
using various techniques such as SR latch, D-latch, multiplexer based, and majority—voter-
based cells [23–32] in QCA technology.

Walus et al. proposed a RAM cell design using the D-latch [32]. Coplanar wire
crossing is used in this design, and the QCA cell layout does not optimize the area, latency,
or cell count. Another D-latch memory cell was proposed by Dehkordi et al. in [25]. They
proposed two QCA layouts, one of which was better in terms of cell count than the second.
The first design required 100 cells with a latency of eight clock zones and the second one
required 63 cells and a latency of four clock zones.

Kianpour et al. proposed a RAM cell design [23] that requires only 53 cells, a latency
of 1.5 clock zones, and occupies 0.05 µm2 of area. The design dissipates more energy
which adds to its disadvantage. Another loop-based memory cell proposed by Fan and
Navimipour in [24] required 55 cells and occupies 0.06 µm2 of area. This design dissipated
less energy, but the latency was high.

Hashemi et al. proposed a RAM cell using a 2 × 1 multiplier in [31]. This layout was
more optimal than the D-latch and SR-latch based memory cells, in terms of cell count, total
area, and output stability. Using a majority voter gate that has five inputs and three inputs,
Angizi et al. in [30] proposed a RAM cell with set/reset capabilities. Having features and
full functionality of a memory cell, this design was optimal in terms of number of cells,
total area, and stability of output. Khosroshahy et al. proposed a RAM cell using four
three-input majority gates and one five-input majority gate with four control lines in [26].
The memory cell has achieved high performance, low-complexity, and is energy efficient.

These designs [23–32] were having the problem of a high count of QCA cells, inverters,
and majority voters, which led to increased circuit cost and complexity. Moreover, they
have low throughput, more energy dissipation, and high latency. Considering these
shortcomings, in this paper, an optimized and efficient RAM cell with one inverter and four
majority voter gates is designed in QCA to achieve low cell count, low power dissipation,
and high speed of operation.
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5. Proposed Design of Memory Cell

An optimized design of a memory cell in QCA is presented in this section. In this
memory cell, when Read_Enable is equivalent to logic 1, the output is enabled and when
the Read_Enable is equivalent to logic 0, the output will be logic 0. When Read’/Write is
equivalent to logic 1, the write state is enabled and the memory loop will save the value
of Data_Write. Whenever Read’/Write is equivalent to logic 0, the read state is enabled
and the previously stored bit is given as the result of the output. The operation of this
memory cell is given in Table 1. Figure 3 represents the logic level representation of the
memory cell and the QCA implementation is given in Figure 4. The design was optimized
to 39 cells along with a reduction in total area and QCA cost. This was achieved by using
efficient three-input majority voter gates (for AND and OR operations) and an inverter
in the proposed design. The throughput of a molecular QCA based proposed circuit is
42 GB/s and 42 MB/s for a semiconductor based QCA circuit. This throughput was
calculated as the number of outputs multiplied by the number of stages divided by twice
the initial latency [23]. The number of outputs and number of stages is 1 and the initial
latency was 1.5 for the proposed design. The theoretical frequency of semiconductor and
molecular QCA is 1 GHz and 1 THz, respectively [23].

Table 1. Operation of Memory Cell.

Mode Read’/Write Read_Enable Data_Write Memory Loop Output

Read 0
0 x No Change

0
1 Previous Value

Write 1 x 0 0
Don’t Care1 1
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6. Results and Discussion

In this section, the simulation results are presented for the proposed memory cell
design in QCA. The simulation was performed using QCA Designer 2.0.3 tool [33]. The
engine setup used for the simulation was coherence vector.

As shown in Figure 5, the output of a memory cell is reached after 1.5 clock cycles in
QCA, and it contributes to the latency design. It is validated that when Read’/Write is equal
to logic 1, the write state is enabled and the memory loop saves the value of Data_Write.
Whenever Read’/Write is equal to logic 0, the read state is enabled and the previously stored
bit is given to the output.
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The energy dissipation was investigated using the QCAPro tool [34]. The investigation
was performed at 0.5, 1.0, and 1.5 Ek, which were the three different tunneling levels.
Figure 6 shows the energy dissipation maps at 2 Kelvin temperature for the proposed
design. At 0.5, 1.0, and 1.5 kink energy levels, the total energy dissipated by the proposed
design was 60.38, 77.47, and 98.35 meV, respectively.
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Energy dissipation of the RAM cell was also calculated by simulations using the
QCADesigner-E tool [35], which is an extension of the QCADesigner tool [33] and works on
the principles discussed in [36–38]. It is found that total energy dissipation is
2.38 × 10−2 eV with an error of ±2.38 × 10−3 eV) and average energy dissipation per
cycle is 2.16 × 10−3 eV with an error of ±2.17 × 10−4 eV.

Table 2 shows the performance of the memory cell proposed in this study and finds
that the cost-effectiveness of the proposed design is evident. The proposed design has the
least cell count of only 39 cells and 0.1035 QCA cost, which is much less than the previously
reported designs. Furthermore, in Table 3, we can observe the performance improvement
of up to 75.31% in cells utilized by the design, 75.34% in the area occupied by the cells,
71.25% in the total area utilized by the circuit, 62.5% in latency, and 92.95% in the cost of
the QCA circuit.
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Table 2. Performance Comparison of Memory Cell.

Design Cell Count Cell Area
(µm2)

Total Area
(µm2) Latency QCA Cost

Proposed 39 0.0126 0.046 1.5 0.1035
[23] 53 0.0168 0.052 1.5 0.117
[24] 55 0.0178 0.06 2.5 0.375
[25] 63 0.0204 0.092 4 1.472
[27] 75 0.0243 0.098 1.5 0.2205
[28] 87 0.0281 0.12 1.25 0.1875
[29] 87 0.0281 0.13 1.75 0.398
[30] 88 0.0285 0.08 1.5 0.18
[31] 109 0.0353 0.13 1.75 0.398
[32] 158 0.0511 0.16 2 0.64

Table 3. Performance Improvement of Proposed Memory Cell Compared to Existing Designs.

Design Cell Count Cell Area Total Area Latency QCA Cost

[23] 26.41% 25% 11.53% 0% 11.53%
[24] 29.09% 29.21% 23.33% 40% 72.4%
[25] 38.09% 38.23% 50% 62.5% 92.96%
[27] 48% 48.14% 53.06% 0% 53.06%
[28] 55.17% 55.16% 61.66% -20% 44.8%
[29] 55.17% 55.16% 64.61% 14.29% 73.99%
[30] 55.68% 55.78% 42.5% 0% 42.5%
[31] 64.22% 64.3% 64.61% 14.29% 73.99%
[32] 75.31% 75.34% 71.25% 25% 83.82%

Table 4 shows the performance analysis of throughput and power consumption for
molecular and semiconductor QCA. The power consumption was calculated by dividing
energy and time. For instance, the energy dissipation in the proposed design was 0.06 eV at
0.5 Ek, and 1 eV was equal to 1.60217 × 10−19 Ws. The theoretical frequency for molecular
QCA is 1 THz, and 1 GHz for semiconductor QCA. Therefore, the power consumption was
0.961 × 10−8 W and 0.961 × 10−11 W for molecular and semiconductor QCA, respectively.

Table 4. Performance Comparison of Throughput and Power Consumption.

Design Throughput (byte/sec) Power Consumption
Semiconductor Molecular Semiconductor Molecular

Proposed 42 MB/s 42 GB/s 0.961 × 10−11 W 0.961 × 10−8 W
[23] 42 MB/s 42 GB/s 3 × 10−10 W 3 × 10−7 W
[31] 36 MB/s 36 GB/s 3.633 × 10−11 W 3.633 × 10−8 W
[26] 36 MB/s 36 GB/s 1.56 × 10−11 W 1.56 × 10−8 W
[30] 32 MB/s 32 GB/s 3.02 × 10−11 W 3.02 × 10−8 W
[25] 16 MB/s 16 GB/s 1.92 × 10−11 W 1.92 × 10−11 W

The graphical comparison of the energy dissipation of the proposed memory cell is
presented in Figure 7, which validates the low-power operation of the proposed QCA
design. The improvement in energy dissipation is depicted in Table 5. Energy dissipation
is reduced by up to 74.01% by the proposed design.
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Figure 7. Graphical comparison of (a) average leakage, (b) average switching dissipation, and
(c) total energy dissipation (meV) of the memory cell at different kink energy levels with designs
Hashemi et al. [31], Angizi et al. [30], Khosroshahy et al. [26], Dehkordi et al. [25].
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Table 5. Performance Improvement of Energy Dissipated by Proposed Memory Cell.

Design γ-Factor Level
0.5 Ek 1.0 Ek 1.5 Ek

[31] 73.37% 73.62% 74.01%
[30] 68% 66.76% 65.11%
[26] 49.68% 26.96% 53.16%
[25] 38.2% 40.76% 42.6%

7. Conclusions

In this study, an SRAM cell was proposed in QCA with low cell count, area, and
QCA cost. It was coplanar in nature with high output polarization and validated using
QCADesigner’s coherence vector engine. A total of 39 cells were included in the design
with a clock cycle latency of 1.5 cycles. An improvement of 25% in the cell count was
achieved along with an 11.54% improvement in the area of the design and QCA cost,
respectively achieved by the proposed design compared to the previously reported best
design. In the future, this work can be extended further to design an M × N memory array
with minimum latency to achieve a high speed of operation for different applications.
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