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Abstract: A photonic microwave frequency measurement system with single-branch detection based
on polarization interference is proposed. In this scheme, a 15-line non-flat optical frequency comb
(OFC) based on sawtooth signal modulation via a Mach–Zehnder modulator is generated. The
intercepted microwave signal with multiple-frequency components can be measured by frequency
down-conversion with this simple structure. This system can measure the multi-tone microwave
signals in real time. The single-branch detection makes the system a simple and compact structure
and avoids the unbalanced variation, as in a two-branches scheme. The blind area of the system can
be solved by adjusting the comb-line spacing of the OFC. A simulation is carried out and related
discussion is given. The result reveals that it can measure multi-tone microwave signals with a
resolution of less than 2 MHz over 0.1–12 GHz.

Keywords: microwave photonics; microwave frequency measurement; single-branch detection

1. Introduction

Instantaneous microwave frequency (IFM) measurement is a topic of interest in some
fields such as communications, electronic warfare, cognitive radio systems, etc. Traditional
electrical frequency measurement systems are restricted by limitations such as limited
frequency measurement range and problems of electromagnetic interference (EMI) [1]. Fea-
turing with broad bandwidth, high flexibility, immunity to EMI and high speed, photonics-
based frequency measurement has attracted great attention in recent years [2,3].

Generally, the photonics-assisted IFM system can be divided into three categories based
on frequency-to-power mapping [4–6], frequency-to-time mapping [7,8], and frequency-to-
space mapping [9–13]. The majority of frequency-to-power mapping systems rely on
producing an amplitude comparison function (ACF), which constructs the relationship
between the unknown microwave frequency and the optical or electrical power. The
ACF can also be built by polarization [4], interferometers [5] or dispersive mediums [6].
A polarization-multiplexing Mach–Zehnder modulator (PM-MZM) and a polarization
controller (PC) are jointly used to realize polarization interference based on optical power
monitoring with an error of ±0.2 GHz over 4.4–8.7 GHz and 4.4–8.5 GHz [4]. In Ref. [5],
a Si3N4 ring-assisted Mach–Zehnder interferometer is used as a frequency discriminator
to achieve a high resolution of less than ±0.037 GHz error over 5–39 GHz. These systems
are usually adjustable and have simple structure features, but it has the drawback of
only measuring single-tone signals. Another solution is the photonics-based frequency-
to-time mapping measurement. This scheme uses the unique characteristics of some
optical devices to display microwave frequencies in time domain such as multiple central
wavelengths [7] or silicon photonic scanning devices [8]. The above approach was further
extended to measure multi-tune signals. For example, a photonic compressive receiver
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with an effective measurement range of 42 GHz and a multiple-frequency resolution of
1.2 GHz is proposed [7]. An integrated silicon photonic scanning filter is used to establish
the relationship between the unknown microwave frequency and time domain with a high
resolution of 375 MHz and a low measurement error of 237.3 MHz over 1–30 GHz [8].
However, it cannot tackle with the real-time pulse signals and features with its relatively
low resolution (i.e., hundreds of megahertz). The frequency-to-space mapping method
is widely adopted in photonic channelizers due to its real-time characteristics and the
capability of measuring multi-tone broadband signals. In this case, the input microwave
signals with high frequency are down-converted by a channelizer via Fabry–Pérot filters [9],
fiber Bragg grating [10] or optical frequency combs (OFC) [11–13]. Among them, the OFC-
based method is popular because of its lower resolution. In Ref. [12], a system based on a
digital-signal-driven OFC can measure the unknown signals over 0–50 GHz in simulation.
An experimental setup based on the spacing and profile of OFC is also proposed with less
than 2 MHz over 1–40 GHz [13]. However, they are complex systems, such as ones using
multiple photodetectors (PD) and modulators, which is difficult to achieve on a chip.

In this paper, we propose an IFM method based on polarization interference and
sawtooth signal modulation. The system features a compact structure of single-branch
detection and simple operation, which makes the system easy to implement. Moreover, the
system is capable of measuring multi-tone signals, and because of the non-flat OFC, the
input signals are down-converted into many channels with a narrow bandwidth. Therefore,
only low-speed post-processing devices are needed to achieve the proposed system. The
simulation results demonstrate an impressive measurement with high resolution less than
2 MHz over 0.1–12 GHz.

2. Theory and Principle

Figure 1 shows the schematic diagram of the proposed IFM system. The system
mainly consists of one continuous wave laser (CW), one integrated PM-MZM (including
two sub-MZMs, namely MZM1 and MZM2), one polarization rotator (PR), one 45-degree
polarizer, one PD and one low-pass filter (LPF). The light emitted from a continuous wave
laser can be expressed as Ein(t) = E0exp(j2π fct), where E0 and fc denote the amplitude
and frequency of the light signal, respectively. It is firstly input into a PM-MZM, in which
the light wave is divided into two paths. In the upper path, the unknown multi-tone
radio frequency (RF) signal VRF(t) = Vncos(2π fnt)(n = 1, 2, 3, . . . ) is received and fed
to the MZM1, biased at null peak point to achieve carrier-suppressed double-sideband
modulation (CS-DSB). By applying the small modulation condition, only the ±1st order
sideband is considered and the modulated signal is given by

EMZM1(t) =
+∞

∑
n=1

E0√
2
{J−1(m) exp[2π( fc − fn)t] + J1(m) exp[2π( fc + fm)t]} (1)

where m = πVn/Vπ is the modulation index of MZM1. Vn and fn are the unknown
microwave amplitude and frequency and Vπ is the half-wave voltage of MZM1. Ji() is the
i-th order Bessel function of the first kind. The ±1st-order optical DSB signal is obtained as
shown in Figure 2. In the lower path, there is a periodic positive-slope sawtooth wave, as
depicted in Figure 3, which it is expressed as

vsawtooth(t) =
v0t
T

, 0 < t < T (2)

where v0 and T are the amplitude and the period of the sawtooth wave signal. Accord-
ing to the Fourier series expansion method, the periodic signal can be expressed as the
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superposition of multiple RF signals with different frequencies and amplitudes. Hence, the
sawtooth wave signal can be expressed as

vsawtooth(t) = v0

[
a0 +

∞

∑
k=1

(
ak cos

2kπt
T

+ bk sin
2kπt

T

)]
, 0 < t < T (3)

where a0, ak and bk are constant coefficients in the Fourier series expansion, which indi-
cate the amplitude of the RF signals. fs = 1/T is the frequency of vsawtooth. Combining
Equations (2) and (3), the Fourier form of vsawtooth(t) can be written as

vsawtooth(t) = v0

[
1
2
− 1

π

(
sin 2π fst +

1
2

sin 4π fst +
1
3

sin 6π fst + . . .
)]

(4)

Figure 1. Schematic setup of the photonic MMFM system based on polarization interference and
frequency converter. CW, continuous-wave laser; PC, polarization controller; RF, radio frequency;
PM-MZM, polarization-multiplexing Mach–Zehnder modulator; PR, polarization rotator; PD, pho-
todetector; and LPF, low-pass filter.

Figure 2. ±1st-order optical-modulated signal spectrum after DSB.
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Figure 3. Waveform fo the periodic sawtooth wave signal.

When the periodic sawtooth wave signal is sent to MZM2 (MZM2 also works at mini-
mum transmission point to achieve DSB-SC), the optical field output from MZM2 yields

EMZM2(t) =
1
2

Ein (t)√
2

[
ej πvsawtooth(t)

vπ − ej πvsawtooth(t)
vπ

]
(5)

By substituting Equation (4) in Equation (5) and using the Jacobi–Anger identity,
Equation (5) can be described as follows:

EMZM2(t) =
1
2

Ein (t)√
2

ejα
+∞

∑
nk=−∞

Jn1(β1)Jn2(β2) · · · Jnk (βk)ej2π(n1+n2+···+nk) fst

− 1
2

Ein(t)√
2

e−jα
+∞

∑
nk=−∞

Jn1(−β1)Jn2(−β2) · · · Jnk (−βk)ej2π(n1+n2+···+nk) fst
(6)

where α = πv0/2vπ is the amplitude change factor of the modulated optical signal, βn =
−v0/nvπ is the modulation index of MZM2 driven by the sawtooth wave signal and nk is
the order of the Bessel function of the first kind. By defining γ = n1 + n2 + . . . , Equation (6)
can be written as

EMZM2(t) =
1
2

Ein(t)√
2

[
ejα

+∞

∑
γ=−∞

Jγ+ ej2πγ fst − e−jα
+∞

∑
γ=−∞

Jγ− ej2πγ fst

]
=

+∞

∑
γ=−∞

σγej2πγ fst

(7)
where γ is the order of the optical sideband and σγ represents the amplitude of the gamma-
order sideband. According to Equation (7), a non-flat optical frequency comb (OFC) is
generated and its comb spacing is fs as depicted in Figure 4. Subsequently, the output of
the PM-MZM is calculated as

Eo(t) = x̂EMZM1(t) + ŷEMZM2(t) (8)
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Figure 4. Spectrum diagram of the non-flat OFC.

Next, a 45-degree polarizer is applied to adjust EMZM1(t) and EMZM2(t) into the
same polarization state. Figure 5 shows the spectrum of Eo(t). This reveals that at this time,
the modulation signal and non-flat OFC signal can be combined together via polarization
interference. Considering only the upper band of the OFC, many sub-channels are formed
between every two combs, and the modulated signal falls between each sub-channel. The
channel spacing is fs and each sub-channel is named as ch1, ch2, and so on. Then these
two signals are sent to a PD for frequency down-conversion. The output of the PD can be
expressed as

I(t) ∝ <
[
|EMZM1(t) + EMZM2(t)|2

]
∝ <

[
|EMZM1(t)|2 + |EMZM2(t)|2 + M cos(2π∆ f t)

] (9)

where < is the responsivity of the PD, ∆ f is the beat frequency between EMZM1(t) and
EMZM2(t) and M is the amplitude when f = ∆ f . The first two terms in Equation (9) are the
self-beat frequency signals from MZM1 and MZM2, respectively. Taking the upper sideband
as an example, it is assumed that the unknown microwave frequency fn is located between
the i-th comb and the (i+1)-th comb, namely ch(i + 1), where ∆ f refers to fn−L = fn − i fs
and fn−R = (i + 1) fs − fn. The power ratio of the amplitude at fn−L and fn−R is

ρ =
σ2

i
σ2

i+1
(10)

Figure 5. Spectrum diagram after a 45-degree polarizer.
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Accordingly, Equation (10) still holds when both the upper and lower sidebands are
considered. Figure 6 illustrates the spectrum of the beat frequency signals after a PD and an
LPF, for the case when a multi-tone signal is received, as shown in Figure 2. It can be seen
that every single-tone signal is decomposed into beat signal pairs within the bandwidth of
fs. When f1, f2 and f3 are sent to the system, these three beat signal pairs can be observed
in the results. The beat signal pairs have a frequency sum equal to fs and their power ratio
is directly proportional to the power of their adjacent OFC combs. Moreover, there are
some disturbance signals present in Figure 6, such as in boundary frequencies or in the
range f2 − f1, which are introduced by the self-beat frequency signals. Factually, those
disturbance signals do not appear in pairs, which would not affect the measurement of the
tested frequencies. Finally, these data could be acquired by analog-to-digital conversion
(ADC) and digital signal processing (DSP). This way, the high frequencies can be measured
in the low frequency band.

Figure 6. Spectrum diagram of the beat frequency signals after a PD and an LPF.

3. Simulation and Verification

To investigate the feasibility of the system, it is simulated by Optisystem. The setup is
built according to Figure 1. The parameter settings in the simulation are as follows: the
frequency of the CW laser is 193.1 THz, the linewidth is 10KHz and the power is 20 dBm.
The half-wave voltage of both MZM1 and MZM2 are set to 4 V. The work point of these two
MZMs are biased at the minimum transmission point by adjusting the DC bias voltage to
achieve CS-DSB. The frequency of the sawtooth wave signal is set to 1.5 GHz, and the duty
ratio is 100%. A non-flat OFC with many lines can be generated in the output of MZM2
and the comb-line spacing is 1.5 GHz. The degree of PR is set to 90 degrees to prove an
orthogonal polarization multiplexing. Then, the output of the PM-MZM is injected into
a 45-degree polarizer to achieve an optical hybrid. After polarization alignment, a PD is
utilized as a frequency converter and an LPF, whose bandwidth is 1.5 GHz, is used to
monitor the sub-channel. To make the simulation more practical, the PD noises, including
ASE noise, shot noise and thermal noise, are added. Moreover, an electrical noise source is
combined with input RF signals and are sent together to MZM1. The noise power is set
to −120 dBm. After that, an electrical spectrum analyzer (ESA) is adopted to obtain the
frequency information. The resolution bandwidth of the ESA is set to 1 MHz. By changing
the input RF signals, we can ensure different beat frequencies in the ESA.

The non-flat OFC generated by MZM2 is divided into 15 channels by the different
power differences. The channel that contains the microwave signal can be measured by
comparing the power difference between OFC combs. The optical power of each channel is
shown in Figure 7.

As shown in Figure 7, the optical power ratios of channels 1–15 are 10.43 dB, 6.26 dB,
3.55 dB, 2.49 dB, 1.92 dB, 1.55 dB, 1.30 dB, 1.11 dB, 0.96 dB, 0.85 dB, 0.75 dB, 0.68 dB, 0.61 dB,
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0.55 dB and 0.50 dB, respectively. This reveals that the power ratios of beat frequency
signal pairs are consistent with the channel. According to a channel spacing of 1.5 dB, the
multi-tone signal frequency measurement range is 0.1–22.5 GHz. The RF signal over i ∗ 1.5
to (i + 1) ∗ 1.5 can be identified under ch(i+1). The system resolution is only dependent on
the sample rate of the ADC and the DSP technique. Here, an electrical spectrum analyzer
(ESA) is utilized to monitor the final spectrum.

Figure 7. Optical power ratio results of each channel.

Firstly, a single-tone signal of f0 = 8.3 GHz is sent to the proposed system. Its power
is −7 dBm. In principle, after achieving SSB modulation and optical coupling with the
non-flat OFC, its spectrum falls between the 5-th and the 6-th line, namely ch6. Two beat
frequency signals are obtained as f0−L = 8.3− 7.5 = 0.8 GHz and f0−R = 9− 8.3 = 0.7
GHz. Figure 8 shows the estimated frequencies when f0 is intercepted and measured by our
system. Obviously, there are two beat frequency signals, namely at 0.7 GHz and 0.8 GHz,
whose powers are −50.35 dBm and −48.80 dBm, respectively. Due to the characteristics of
the OFC, fn−L has the higher power, such that f0−L = 0.8 GHz. Their power ratio can be
calculated as 1.55 dB, which belongs to ch6. Obviously, the measurement result aligns well
with the theory analysis. After obtaining these information, the final result can be calculated
as f0 = (6− 1) ∗ 1.5 + 0.8 = 8.3 GHz. The disturbance signals are caused by the self-beat
frequency, which is a boundary frequency and would not affect the RF measurement.

Then, the ability of the system to measure multi-tone signals is also verified. Assume
that three RF signals, with frequencies of f1 = 1.9 GHz, f2 = 3.3 GHz and f3 = 10.7 GHz,
are simultaneously sent into the proposed system. Their electrical powers are set to−7 dBm,
−8 dBm and −9 dBm, respectively, to make the simulation more practical. Similarly, these
three RF signals are decomposed into three beat frequency signal pairs and each pair’s
frequency sum is 1.5 GHz. Figure 9 shows the beat signals when the multi-tone signal is sent
to the system. According to the result, three sets of frequency pairs with a frequency sum
of 1.5 GHz is found. Second, the channel to which it belongs can be determined due to the
power ratio of the frequency pair. Finally, the frequency information to be measured can be
inversely deduced by mathematical relations. For example, the powers of two signals with
frequencies of 0.4 GHz and 1.1 GHz are −39.35 dBm and −45.61 dBm, respectively. The
power ratio can be easily obtained as 6.26 dB, which belongs to ch2. So the final estimation
is (2− 1) ∗ 1.5 + 0.4 = 1.9 GHz. The same process can be applied to the remaining two
pairs of signals, which correspond to frequencies of 3.3 GHz and 10.7 GHz, respectively.
It should be noted that in the Figure 9, in addition to the boundary disturbance signal,
there is also an interference signal with a frequency of 1.4 GHz, corresponding to the beat
frequency signal coming from f1 = 1.9 GHz and f2 = 3.3 GHz, which appears separately.
This only happens when the frequency difference between the two RF signals is less than
1.5 GHz for a multi-tone signal measurement. Finally, there is an estimated error over
0.1–12 GHz with a step of 0.3 GHz, where the first eight channels are included. Figure 10
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shows the estimated error curve with respect to different RF signals. The estimated error is
within 2 MHz, demonstrating great accuracy.

Figure 8. Measurement result using a single-tone signal, where f0 = 8.3 GHz.

Figure 9. Measurement result using a multi-tone signal, where f1 = 1.9 GHz, f2 = 3.3 GHz and
f3 = 10.7 GHz.

In this section, the system capability of measuring single-tone and multi-tone signals
is demonstrated. The system could achieve a frequency measurement with a resolution of
less than 2 MHz over 0.1–12 GHz. This MMFM system is achieved only by a single link,
which makes the system more compact. By increasing fs, the measurement range can be
extended. The resolution is only dependent on the ESA sample rate. In practice, the ADC
and DSP techniques can be utilized to realize instantaneous frequency measurements.
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Figure 10. Estimated error with different RF signals over 0.1–12 GHz.

4. Discussion
4.1. Performance Comparison

Table 1 lists the performance comparison between the proposed IFM system and the
previously reported system, where the system accuracy, measurement range, detection
branch number, real-time detection and the ability to measure multi-tone signals are con-
sidered. Compared with other schemes, our multi-tone IFM system could achieve a high
resolution of less than 2 MHz over 0.1–12 GHz, which is compact and simple in structure.

Table 1. Performance comparison.

Measurement
Error (MHz)

Measurement
Range (GHz)

Single-Branch
Detection

Real
Time

Multi-Tone
Measurement

Ref. [4] ≤200 4.4–8.5
4.4–8.7 No Yes No

Ref. [5]
≤0.03 *
≤0.102 *
≤0.037 *

10.5–15.7
24–35
5–39

No Yes No

Ref. [6] ≤270 8–18 No Yes No

Ref. [7] ≤88 0.6–42 Yes No Yes

Ref. [8] ≤273.3 1-30 Yes No Yes

Ref. [9] - 0–19.5
8–10 No Yes Yes

Ref. [10] - 1–23 No Yes Yes

Ref. [11] ≤500
0.5–13.5

13.5–26.5
26.5–39.5

No Yes Yes

Ref. [12] - 0.1–50 No Yes Yes

Ref. [13] ≤2 1–40 No Yes Yes

This work ≤2 0.1–12 Yes Yes Yes
* Root-mean-square error.

4.2. Frequency Ambiguity

In this part of the study, we discuss the frequency ambiguity of this system. As we
have mentioned, the premises of acquiring accurate frequency estimations are: firstly, when
extracting the spectrum information after PD, it should be limited to the interval (0, fs)
due to the disturbance signal; second, it should be ensured that the incident RF signal
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is decomposed into two non-overlapping beat signal pairs whose sum is fs. However,
in some cases, the frequency measurement does not meet the above conditions, thus the
frequency ambiguity problem occurs.

Table 2 summarizes the frequency ambiguity that may occur in different scenarios.
Specifically, in the case of a single-tone signal measurement, the unknown RF may not be
identified in three situations, namely when its frequency is DC, it is the boundary frequency,
or the signal is in the middle of the sub-channel. In the first two cases, the beat frequency of
the RF signal is 0, and fs after decomposition, which is superimposed with the disturbance
signal and makes it impossible to identify the input RF signal. In the last case, the frequency
of the two signals after the beat is fs/2, which makes it impossible to calculate the power
ratio and thus identify the sub-channel to which the RF signal belongs.

When the multi-tone signal is measured, there are three kinds of frequency ambiguity.
Suppose the incident signals are f1 and f2, and both f1 and f2 are greater than 0. The first
case is when these two signals are symmetric with respect to N ∗ fs or N ∗ fs/2, where N is
a positive integer. In this case, the two generated beat signal pairs will overlap, which will
affect the signal estimation. Secondly, if f1 and f2 are respectively located in two channels
and their relative positions are the same, then | f2 − f1| = N ∗ fs is satisfied. The generated
beat signal pairs will also overlap. The last one is the overlap of the disturbance and beat
signals. This disturbance occurs when the interval between two unknown RF signals is
less than fs. Next, the beat frequency signal between f1 and f2 will be generated, as shown
in Figure 6. Finally, if the disturbance signal overlaps with a signal of the beat frequency
signal pair, the accuracy of the power ratio will be affected.

Table 2. The cases of frequency ambiguity in the proposed system.

Situation Cases

Single-tone RF
Measurement f = 0 f = N ∗ fs f = N ∗ fs/2

Multi-tone RF
Measurement

f1 + f2 = N ∗ fs
f1, f2 > 0

| f2 − f1| = N ∗ fs
f1, f2 > 0

| f2 − f1| < fs
| f2 − f1| = f1,2−L,R

In fact, the frequency ambiguity problem can be solved by adjusting fs. Changing
fs means changing the channel interval, which will change the position of beat signal
pair, thus breaking the symmetry or boundary problem of the original channel interval.
In practice, two links with different comb spacing can be adopted due to the simple and
compact structure of the system.

Figure 11 shows the results after receiving a two-tone signal, where f1 = 4.5 GHz
and f2 = 6.75 GHz. Due to their frequency spacing being lager than the PD bandwidth,
the result is similar with a single-tone signal measurement. These two signal frequencies
are the boundary frequencies or in the middle of its sub-channel with a comb spacing of
1.5 GHz. In this case, f1 is decomposed into 0 and 1.5 GHz and f2 is decomposed into
0.75 GHz, as shown in Figure 11a. The input signal cannot be identified effectively. By
adjusting the comb spacing from 1.5 GHz to 1.6 GHz, the overlapping beat frequency pairs
can be separated. Figure 11b illustrates the final result after PD when fs = 1.6 GHz. The
powers of the beat frequency signals in 0.3 GHz, 0.35 GHz, 1.25 GHz and 1.3 GHz are
−47.40 dBm, −50.90 dBm, −52.82 dBm and −43.85 dBm, respectively. The power ratios
are calculated as 3.55 dB and 1.92 dB and the corresponding sub-channels are ch3 and ch5.
In this way, the unknown RF signal is estimated as a two-tone signal, whose frequencies
are 4.5 GHz and 6.75 GHz.

Figure 12 depicts the results after receiving a three-tone signal, where f1 = 2.1 GHz,
f2 = 3.9 GHz and f3 = 5.4 GHz. Among them, f1 + f2 = 4 ∗ fs and f3 − f2 = fs, which
satisfy the first two cases under multi-tone signal measurement, as in Table 1. When the comb
spacing is 1.5 GHz, the final result is shown in Figure 12a. It can be seen that f1, f2 and f3
are all decomposed into 0.6 GHz and 0.9 GHz. This leads to a misjudgment in frequency
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estimation. After changing fs to 1.6 GHz, the overlapping beat frequency pairs appear in the
spectrum as illustrated in Figure 12b. There are three beat frequency pairs, which meets the
relationship of fi−L + fiR = fs, where i = 1–3. According to their power ratios, the three-tone
signal with frequencies f1 = 2.1 GHz, f2 = 3.9 GHz and f3 = 5.4 GHz are identified. A
disturbance signal of f = 1.5 GHz is the beat frequency of f2 = 3.9 GHz and f3 = 5.4 GHz.
This would not affect the result identification because it appears only by itself.

Finally, the last case under multi-tone signal measurement is investigated, where the
disturbance between the multi-tone signals overlaps with the useful beat frequency pairs,
which changes the value of the power ratio and further has an effect on the frequency identi-
fication. Figure 13 depicts the results after receiving a two-tone signal, where f1 = 7.3 GHz
and f2 = 8.6 GHz. With a channel spacing of 1.5 GHz, f1 is decomposed into 1.3 GHz
and 0.2 GHz, and f2 is decomposed into 1.1 GHz and 0.4 GHz. Moreover, the disturbance
signal between f1 and f2 is also 1.3 GHz. Therefore, there are only four signals after PD,
as shown in Figure 13a. In this case, the powers of 0.2 GHz and 1.3 GHz are −51.81 dBm
and −49.00 dBm, respectively. The power ratio is 2.81 dB and its theoretical power ratio is
1.92 dB. By adjusting the comb spacing from 1.5 GHz to 1.6 GHz, the disturbance of 1.3 GHz
is separated. The frequency pairs from 7.3 GHz are 0.7 GHz and 0.9 GHz. According to
Figure 13b, their powers are −51.81 dBm and -49.89 dBm, respectively, and their power
ratio is 1.92 dB. In this way, the frequency ambiguity problem is solved. It also should be
mentioned that the frequencies of the disturbance signals in this case remain unchanged.

(a) (b)

Figure 11. Receiving results for incoming signals at 4.5 and 6.75 GHz, where the comb spacing is
(a) 1.5 GHz and (b) 1.6 GHz.

(a) (b)

Figure 12. Receiving results for incoming signals at 2.1, 3.9 and 5.4 GHz, where the comb spacing is
(a) 1.5 GHz and (b) 1.6 GHz.
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(a) (b)

Figure 13. Receiving results for incoming signals at 7.3 and 8.6 GHz, where the comb spacing is
(a) 1.5 GHz and (b) 1.6 GHz.

4.3. Polarization Angle Drift

In this part, we first discuss the effect of the polarizer angle drift on the system
accuracy. The modulated signal and the non-flat OFC are combined via this 45-degree
polarizer scheme. However, the beat signal power will be influenced by the polarization
angle drift. To investigate it, a simulation based on different polarization angle drifts is
carried out. Assuming the value of the angle drift is ∆α = 0, 1, 2, 3 and 4 and the input signal
frequency is f0 = 8.3 GHz, the measured result is shown in Figure 14. As we can see, the
powers of f0−L and f0−R decrease in a proportional way as the value of ∆α increases. In this
case, their power ratio remains constant, such that it can be concluded that the polarization
angle drift only affect the beat signal power. Furthermore, the channel identification would
be not influenced by the polarization angle drift.

Figure 14. Powers of the beat signal pairs and their power ratios using different values for polarization
angle drift in a single-tone signal, where f0 = 8.3 GHz.

Next, the MZM bias voltage of the PM-MZM will lead to the power variation of the
center frequency. In the proposed scheme, the power ratio of ch1 is obviously larger than
the others. This proves the system performance is not affected by the modulator bias drift
and demonstrates good stability.

5. Conclusions

A photonics-based multiple microwave frequency measurement system has been
presented. The system is designed to achieve a frequency down-conversion via a PM-
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MZM and a polarizer. It has the advantages of measuring multi-tone microwave signals
with a simple and compact structure. Moreover, it has high measurement resolution and
good stability, which is not affected by the polarizer or MZM bias drift. Additionally, free
ambiguity operation is done to demonstrate the system performance. The trend of the
simulated results is consistent with the trend of the theoretical results. Simulation results
demonstrate a frequency measurement error of less than 2 MHz over 0.1–12 GHz.

The system resolution is due to the resolution of the post-processing devices and
the bit rate of the sawtooth signal. According to Figure 7, there is a distinct power ratio
difference in the first 8 channels. The resolution of the system among these channels is only
dependent on the sampling rate of the ESA or the ADC and DSP devices, hence the high
resolution can be achieved. The last 7 channels, have a power difference less than 0.2 dB. In
this case, there is channel ambiguity in the background noise. The maximum estimated
error is comparable to the rate of the sawtooth signal. Future works should investigate a
new method to suppress the intermodulation interference in a multi-tone IFM system. It
provides an important solution for a multi-tone IFM of an RF signal, which has applications
in modern electronic warfare and wireless communication systems.
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