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Abstract: The estimation accuracy of the mixed matrix is very important to the performance of
the underdetermined blind source separation (UBSS) system. To improve the estimation accuracy
of the mixed matrix, the sparsity of the mixed signal is required. The novel fractional domain
time–frequency plane is obtained by rotating the time–frequency plane after the short-time Fourier
transform. This plane represents the fine characteristics of the mixed signal in the time domain and
the frequency domain. The rotation angle is determined by global searching for the minimum L1
norm to make the mixed signal sufficiently sparse. The obtained time–frequency points do not need
single source point detection, reducing the calculation amount of the original algorithm, and the
insensitivity to noise in the fractional domain improves the robustness of the algorithm in the noise
environment. The simulation results show that the sparsity of the mixed signal and the estimation
accuracy of the mixed matrix are improved. Compared with the existing mixed matrix estimation
algorithms, the proposed method is effective.

Keywords: underdetermined blind source separation (UBSS); mixed matrix estimation; Fractional
Fourier Transform (FrFT); noise suppression; mini-L1 norm of optimal transformation order

1. Introduction

Blind source separation (BSS) is very popular in engineering applications because it
only uses mixed signals to separate source signals without prior known conditions.

In practical application, underdetermined blind source separation (UBSS) has become
a research hotspot because the number of source signals is more than that of receiving
sources, which is more in line with the scene of practical application.

At present, the main method to solve UBSS is sparse component analysis (SCA) [1],
which was the first proposed in 2000 by Lewicki to use the super complete sparse represen-
tation based on the maximum a posteriori probability to obtain the sparse feature of the
signal and realise the restoration of sparse source signals. Given that the number of source
signals is larger than the number of microphones, the unique deterministic solution cannot
be obtained for UBSS, and the dimensional reduction is realised by obtaining the sparse
representation of the mixed signal, thereby acquiring the deterministic solution.

In 2001, Bofill and Zibulevsky proposed a ‘two-step method’ based on SCA [2]: one
step is to estimate the mixing matrix, and the other is to separate the source signal. This
idea to achieve UBSS has been recognised and used by many scholars, which has generated
much research [3–17]. In this paper, considering that the estimation accuracy of the mixing
matrix directly determines the accuracy of the separated source signal, the research on the
first step, that is, estimating the mixing matrix, is taken as our key research object.

Two points need to be considered in the study of mixed matrix estimation.

i. Finding the sparse representation model for the time domain mixed signal
ii. Clustering the sparse representation model
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In the ‘two-step method’ proposed by Bofill [2], the time domain mixed signal is used
to find the sparse representation model of the mixed signal through Fourier transform (FT),
and the potential function method is used to cluster to obtain the mixed matrix estimation.
The experimental results are ideal but have shortcomings. On the one hand, the amount of
data to be processed is too large, and the calculation is complex. On the other hand, the
clustering method of the potential function selected by Bofill does not estimate three or
more observation signals, which places high requirements on the number of source signals
and has limited applications.

In view of the existing shortcomings, many scholars have made improvements [3–8].
For example, in the sparse representation model, in 2006, Li, Y. et al. [3] analysed how to
use the sparsity of the signal to represent the observed signal completely and improve the
linear clustering characteristics of the observed signal, but the implementation steps were
not given. In 2007, M. X. et al. [4] proposed the time domain retrieval average method that
can be used to estimate the mixing matrix. This method requires that each source signal
has enough single-source interval data for estimating the mixing matrix. However, most
signals do not meet this condition in the time domain, so they are not very useful for UBSS.
In the same year, Kim, S. et al. [5] used signal sparsity [3] to achieve the single source point
(SSP) detection of signals to improve the clustering directivity of data points. At a certain
time, only one time–frequency point has a large energy value, and the other values are
approximately zero, to discard some data points that affect clustering and detect useful
points. However, in practical applications, due to the interference and other irresistible
factors, useful points are often discarded, and invalid points such as noise are used as SSPs,
which has a great effect on the clustering results. Therefore, there is much research on
improving SSP [6–8]: Ref. [6] proposed a singular value decomposition method to solve
the mixed vectors corresponding to different sets of SSPs to relax the conditions of existing
methods for time–frequency single-source areas. Ref. [7] proposed using local stationarity
and distribution symmetry to reduce pseudo SSPs. Ref. [8] used low noise points to remove
the influence of noise. Although these algorithms improve the detection of SSP, the gains
and losses are not worth the losses because the computational load is greatly increased
again, which is contrary to the original intention of SSP detection.

In addition, some scholars try to find a better sparse representation model for time
domain mixed signals through other transformations, such as in the paper [9–12]. In [9],
a lp (0 < p ≤ 1) regularisation was provided to reconstruct the sparse sources, in which
p can be dynamically selected to achieve the best performance. The experimental results
demonstrate the robustness of the proposed method to room reverberation under various
speech separation cases compared with conventional methods. However, this algorithm
involves too much computation.

In [10], the author used wavelet transform to replace short-time Fourier transform
(STFT) because wavelet transform inherits and develops the idea of STFT localisation,
overcomes the shortcomings of window size not changing with frequency and can provide a
‘time–frequency’ window that changes with frequency. The time and frequency information
of the signal can be observed simultaneously, which is beyond the reach of FT. However,
wavelet transform also has limitations, that is, the redundancy is very large, which brings
much useless work.

Fractional Fourier transform (FrFT) is selected to replace STFT to find the best sparse
representation model of the observed signal [11–15]. The purpose of FrFT is the same
as that of wavelet transform. It tries to find a transform that reflects the information of
the signal in the time domain and frequency domain at the same time. However, FrFT is
different from the commonly used quadratic time–frequency distribution. It uses a single
variable to represent time–frequency information without cross term problems. In [11],
the observed signal is subject to FrFT, and the mixed signal is separated in the fractional
domain. In this paper, the selection of the rotation angle is not based on the sparse model
of the mixed signal, so the separation characteristics need to be improved.
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In [12], Long et al. first proposed the concept of the fractional low order space time–
frequency matrix, improved pseudo Wigner–Viile using fractional low order moments and
studied blind separation technology based on it. This algorithm systematically demon-
strates the advantages of fractional time–frequency space over UBSS, which can not only
improve the time–frequency point aggregation characteristics of signals but also have good
performance in noisy environments. Through the research of Long et al., the following re-
searchers focus on the fractional time–frequency space. Long et al. verified the advantages
of the time–frequency space in the fractional domain but did not provide a specific method
to obtain the time–frequency space in the fractional domain.

In [13], Wang et al. proposed distinguishing signals in the fractional domain by
using the sparse feature of the fractional domain. After FrFT, the signal amplitude shows
compressibility with the transformation of order. The main information is extracted through
the algorithm proposed by Wang et al., which is divided into the main information domain
and the secondary information domain. The complementary information of the two are
fused to form a mixed amplitude feature, and then the mixed amplitude feature, real part
feature and imaginary part feature are fused. Finally, the fractional domain features of
different orders are fused to achieve face recognition, which also provides an idea for the
study of non-stationary signals in this paper.

In [14], Yao et al. used FrFT to convert the mixed signal into fractional Fourier domain
firstly and estimate the noise power spectrum. In the optimal order domain, they used
spectral subtraction to remove noise from the mixed signal and the fast-Independent
Component Analysis (fastICA) algorithm to perform blind separation and smooth filtering
on the mixed signal. The simulation results show that the separation effect is superior, but
the algorithm is only suitable for BSS, not for the UBSS in this paper.

In [15], the observed signal was transformed into FrFT based on sparsity, and the
residual removal of FrFT energy aggregation and sparse decomposition was used to
suppress noise and reverberation interference. Through the fusion of features in the
multiorder FrFT domain, the separability between targets was increased, and then the
target classification in a specific environment was realised. However, the algorithm was
carried out in a specific environment, and the global threshold was used to search the
fractional transformation order, which required a large amount of computation.

Moreover, many scholars [16,17] opted to improve the clustering method in addition
to improving the sparse representation model.

Zhen et al. [16] used SSP for adding the mixture TF vectors whose sparse coding
coefficient vector contains only one non-element into Ω. Then, the hierarchical clustering
algorithm was used to cluster the data points that meet the requirements, and single source
vectors with dominant energy were grouped to achieve mixed matrix estimation. In this
algorithm, improved SSP is used to reduce the calculation amount greatly and increase the
clustering characteristics of time–frequency data points. Then, the hierarchical clustering
algorithm is selected to achieve high-quality clustering without setting initial values such
as the K-means algorithm and then improve the accuracy of mixed matrix estimation.
However, for the hierarchical clustering algorithm, high-quality clustering is based on
global clustering, which is bound to include clustering of some pseudo SSP points, which
places high requirements for the SSP algorithm. Pseudo SSP is not discussed in this paper,
resulting in the limited precision of mixed matrix estimation in this paper.

He et al. [17] used SSP and the density-based spatial clustering of applications with
noise (DBSCAN) method to achieve mixed matrix estimation. In this algorithm, He et al.
used SSP detection to enhance the linear clustering characteristics of sparse signals. Then,
they used DBSCAN to search high-density points and constantly connect adjacent data to
form clusters, and automatically find the number of clusters and corresponding cluster
centres. Each cluster centre corresponds to a column vector of the underdetermined mixed
matrix to estimate the mixed matrix. This algorithm skilfully uses SSP to enhance the
clustering characteristics, and DBSCAN searches for the cluster centre. However, in UBSS,
the number of clusters that DBSCAN clustering algorithm searches for often generates
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large errors due to the presence of interference, which greatly affects the accuracy of mixed
matrix estimation.

Furthermore, many algorithms focus only on the selection of clustering methods [18–21];
in [18], K-means is selected to cluster time–frequency points, but K-means is particularly
vulnerable to the effect of the initial cluster centre and falls into the problem of the local
optimal solution. In [19], the particle swarm optimisation (PSO) algorithm was selected to
achieve clustering. The advantage of this algorithm is that the initial value setting is simple,
the number of source signals can be well determined, and the mixed matrix estimation
accuracy can be improved. However, the largest problem of this clustering algorithm
is that it is often unable to converge globally. Considering that UBSS is an estimation
of direction, by improving the traditional fuzzy C-means [18], the directional C-means
(DFCM) clustering method [21] is adopted to estimate the number of source signals before
realising the mixed matrix estimation. DFCM is more robust to UBSS, but this algorithm is
easy to be interfered with by outliers and requires very high time–frequency points, which
affects the accuracy of mixed matrix estimation.

For the above contents, the research summary of the mixing matrix in recent years is
shown in Table 1:

Table 1. Research summary of the mixing matrix in recent years.

Ways of
Improvement Paper Year Method Novelty Limitation

Establishment of
sparse model for
observed signal

[4] 2007
Directly complete the mixed

matrix estimation in the
time domain

Reduce the amount
of computation

Not valuable in engineering
applications

[5] 2007 Single Source Point (SSP) Increase the linear clustering
characteristics Pseudo SSPs

[6] 2013
Improved SSP

detection

A singular value
decomposition method Computational load is

greatly increased
[7] 2018 Local stationarity and

distribution symmetry

[8] 2019 Low noise points

[9] 2021 lp (0 < p ≤ 1) regularisation to
reconstruct the sparse sources

Robustness to room
reverberation Computational complexity

[10] 2019 Wavelet transform
Increases the time

and frequency
information

Excessive redundancy

[11] 2011

Fractional Fourier
Transform (FrFT)

First proposed to use FrFT to
implement BSS

The possibility is derived, but
the actual algorithm is

not given

[12] 2014 First proposed fractional
time–frequency space Signal sparsity is not discussed

[13] 2016 Proposed using sparsity to
study the fractional domain

Discussion on image
signal only

[14] 2017 Using fractional field to
realise FastICA Only BSS is discussed

[15] 2021 Energy aggregation
and insensitivity

The global threshold is used to
search the fractional domain
transformation order, which

requires a large amount
of computation

Selection of
clustering methods

[16] 2017 Hierarchical clustering Without setting initial value High requirements on data
points

[17] 2019

Density-Based
Spatial Clustering

of Applications with
Noise (DBSCAN)

Automatically find the
number of clusters

and the corresponding
cluster centre

The number of clusters has a
large error due to the presence

of interference

[18] 2019 K-means Simple and fast Local optimal solution

[19] 2019 Particle Swarm
Optimisation (PSO)

Good determination of
the number of
source signals

Unable to converge globally

[21] 2020 Directed Fuzzy
C-Means (DFCM) Considers the direction Interfered with by outliers
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To sum up, there is much research on mixed matrix estimation, and the estimation
accuracy of mixed matrix is increasing. However, some problems remain:

i. It is easy to be interfered with by outliers, resulting in the low estimation accuracy
of mixed matrix.

ii. The amount of the calculations is too large to be applied in UBSS.

To improve the performance of the algorithm in noisy environments, reduce the effect
of interference and make the computational complexity more moderate, this paper tries
to rotate the static time–frequency plane to obtain FTs at different angles. The rotation
angle (which can be any angle) is the free parameter in the FrFT. Through the FrFT of
different orders, that is, the rotation of the signal at different angles on the time–frequency
plane, all the characteristics of the signal from the time domain to the frequency domain
can be obtained, and then the detailed characteristics of the time–frequency change of the
signal are reversed to obtain the required finer characteristic information [11,12,22]. The
characteristic information can be used to find the sparse representation of the mixed signal.

The contribution of this paper is to select FrFT creatively to rotate the time–frequency
plane, find the fractional domain where the observation signal is sufficiently sparse and
remove the pseudo SSPs in the fractional domain. Thus, the time–frequency points in
the fractional domain are fully clustered without the need of SSP detection, obtaining a
high estimated mixed matrix column vector. In addition, the insensitivity of the fractional
domain to noise improves the suppression of noise in mixing matrix estimation.

2. Proposed Method

For the UBSS system with N source signals and M channels:

x(t) = As(t) + n (1)

where x(t) = [x1(t), x2(t), · · · , xm(t)] is the mixed signal observed in time domain,
A = [a1, a2, · · · , an] is the mixing matrix of [M × N] and s(t) = [s1(t), s2(t), · · · , sn(t)]
is the time–domain source signal we want to separate. n is the noise in the system. The
N-channel source signals form M-channel mixed signals through the mixing matrix. Our
purpose is to separate the source signals from the mixed signals in the UBSS system. The
accuracy of the mixed matrix estimation directly determines the separation performance of
the UBSS system, and the character of linear clustering is the basis of estimating the mixed
matrix. Therefore, this paper aims to find the best linear clustering data point for analysing
the estimation of the mixed matrix A.

In recent years, STFT was generally used to find linear clustering points for time
domain mixed signals. Although the linear clustering characteristics of time–frequency
points have been improved after STFT transformation, the clustering characteristics are still
not evident for many data signals, resulting in inaccurate estimation of the mixing matrix
and too much noise effect.

Combined with the introduction of the fractional Fourier transform, this paper at-
tempts to find the parameters α in the fractional Fourier transform, then the fractional
Fourier transform is implemented for the time-domain mixed signal so as to obtain more
sparse time-frequency points, improve the time-frequency point clustering characteristics
of the signal and achieve the purpose of improving the estimation accuracy of the mixed
matrix. Simply understood, it is to transform the mixed signal into a rotated time-frequency
plane, which can make the data points show more obvious linear clustering characteristics.
This system is the α-UBSS proposed in this paper. The algorithm flow chart is shown in
Figure 1. In this algorithm, because the fractional domain transformation is not sensitive to
noise [23], the noise appears as low energy points in the fractional domain, and the low
energy points can be removed to achieve the purpose of noise removal. In summary, using
this algorithm, the linear clustering characteristics are increased, whereas the influence of
noise is reduced.
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To study the fractional domain UBSS, firstly, the fractional domain FT is briefly introduced.

2.1. Theory of Fractional Fourier Transform (FrFT)

Firstly, different from the existing algorithms, FrFT is performed on the mixed signal
due to the following the reason:

Analysis is made from the definition of FT. It is defined from different angles for FT [23].
The integral form is

F
π
2 [ f (t)] =

√
1

2π

∫ ∞

−∞
exp(−jut) f (t)d(t) (2)

In (2), f (t) is the time domain signal, F π
2 is the FT operator, t represents the time

domain variable and u represents the transformation domain variable.
The form defined by the characteristic function is

F
π
2 [φn(t)] = e−jn π

2 φn(u)

(
φn(t) = exp

(
− t2

2

)
Hn(t)

Hn(t) = (−1)net2 dn

dtn e−t2

)
(3)

In (3), φn is the characteristic function, and the FT operator F π
2 is defined by the

Hermite characteristic function. (2) and (3) are equivalent, that is, the FT operators F π
2 of

(2) and (3) are the same.
To extend the FT form to the general form, the fixed value of π

2 in Formula (3) is
replaced by the general angle α, and the definition of FrFT is obtained:

F α[φn(t)] = e−jnαφn(u) (4)

Euler formula simplification obtains

F α[ f (t)] =

√
1− jcotα

2π

∫ ∞

−∞
exp

(
jcotα

2
t2 +

jcotα
2

u2 − jut
sinα

)
f (u)d(t) (5)
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when α = π/2, and Formula (5) is the definition of FT (2). FrFT is a generalisation of FT.
When α→ 0, FrFT degenerates into the time domain.

F α→0[ f (t)] = f (u) (6)

The above analysis verifies the unified time–frequency characteristic of FrFT. The
fractional Fourier domain can be understood as rotating the time–frequency plane obtained
by FT by a certain angle [24]. This plane integrates the information of the time domain and
frequency domain. Compared with the static time–frequency plane obtained by FT, the
fractional domain can more accurately characterise the characteristics of time domain and
frequency domain, and is more suitable for the blind source separation system (without
prior known conditions). Although STFT realises time–frequency display by adding a
window to FT, the fixed window makes the time–frequency resolution not too high. To
improve the window, it needs to pay the cost of computing, so this paper chooses FrFT to
implement BSS. In addition, the insensitivity of FrFT to noise is another important reason
for choosing it [25–29].

For the time–frequency domain UBSS system with a specific rotation angle,

Xα(t, k) = ASα(t, k) = ∑M
m=1 amsα,m(t, k) (7)

Xα(t, k) is the coefficient of FrFT of the time domain source signal x(t) at the
time–frequency point of time–frequency point (t, k) in the fractional domain, Sα(t, k) is the
coefficient of FrFT of the time domain source signal s(t) at the time–frequency point (t, k),
am is the m-th column vector of the mixed matrix A and α is the rotation angle of FrFT.

2.2. Transformation Order Determination to Obtain Sparse Representation Model

To extend the research of UBSS sparse signals from the Fourier domain to fractional
domain, the Fourier domain needs to rotate a certain angle to the fractional domain. The
most important thing is to determine the rotation angle first. Different rotation angles
correspond to dissimilar properties of the fractional domain. In UBSS, this research focuses
on the sparsity of mixed signals in the fractional domain. In recent years, the commonly
used method for sparsity measurement is L1 norms [9]. Thus, in this paper, this idea is
innovatively applied to α-UBSS, and L1 norms of data points obtained are compared under
different α rotation angles. The minimum value of L1 norms is the sparsest data point [30],
and the time–frequency domain obtained under the corresponding α rotation angle is the
sparsest representation model of mixed signals we are looking for. (Note: In FrFT, α is the
rotation angle and p is the transformation order. π

2 p = α.)
Through the above analysis, this paper uses L1 norm as a sparse measure to determine

the optimal transformation order in the fractional domain.
The mixed speech signal is expressed as

x(t) = [x1(t), x2(t), · · · , xN(t)]
T (8)

After α order of FrFT, x(t) is expressed as Fαx = FX. The L1 norm of FrFT of the mixed
speech signal is (10) according to L1 norm expression (9):

‖x‖1 = ∑N
i=1|xi| (9)

L1 = ‖FX‖1 = ∑N
i=1|FXi| (10)

Finally, the transformation order corresponding to minimising the L1 norm value is
searched, that is, the sum of all vector element values corresponding to the mixed signal is
the smallest, as shown in (11):

α = min
(

Lj
)

j = 1, 2, · · · , J (11)
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j represents the number of all elements contained in the fractional domain mixed
signal vector.

To complete the global α search one by one, the computation is too much. Chu’s [31]
algorithm is used to obtain the optimal order based on the combination of step rough search
and step exact search. In the rough search, a step size of 0.01 is chosen, and in the exact
search, a step size of 0.0001 is selected. In this way, the search accuracy and the calculation
amount can be ensured moderate. The algorithm flow chart is shown in Figure 2.
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2.3. Clustering for Mixing Matrix Estimation

Thus far, the sparsity analysis of mixed signals has been extended to a more generalised
time–frequency plane. Then, how about the clustering characteristics of signals in this
plane? Can the mixed signals show evident differences? The answer is yes.

To make the signal points have sufficient clustering characteristics, in STFT, SSP
detection is firstly performed on the time–frequency point. On any time–frequency point (t,
k) in the fractional domain, the real and imaginary parts of the observed signal Xα(t, k) are

R[Xα(t, k)] = ∑M
m=1 amR[Sα,m(t, k)] (12)

I[Xα(t, k)] = ∑M
m=1 am I[Sα,m(t, k)] (13)

Compared with Formula (5), the real part of the observation signal does not change,
whereas the coefficient of the imaginary part is determined by the rotation angle. Given the
addition of the rotation angle, it is not sensitive to the noise and gathers the energy of the
observed signal [32,33], so that some pseudo SSPs that would have been detected as SSPs
in STFT would not be detected as the noise background in the fractional domain. Thus,
sufficient sparsity can be realised without SSP detection. For the sample point k in any
fractional domain, only one source Sα,i(k) (i = 1, 2, · · · , m) is a nonzero value, and other
sources Sα,j(k) (i 6= j) are all zero values, that is

Xα,1(k)
a1i

=
Xα,2(k)

a2i
= · · · = Xα,n(k)

ami
= Sα,i(k) (14)

Thus far, the estimation of the mixing matrix has been transformed into solving
Equation (14), and each solution corresponds to a column vector of the mixing matrix,
ai = [a1i, a2i, · · · , ami]

T .
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To sum up, the mixed matrix estimation algorithm (Algorithm 1) proposed in this
paper is as follows:

Algorithm 1: estimate mixing matrix algorithm steps

Input: observation signal x̂(t) = [x̂1(t), x̂2(t), . . . , x̂m(t)]

1. Using chirp signal to simulate non-stationary signal as source signal input. s(t) = [s1, s2, . . . , sn ]
2. Using rand (m, n) of MATLAB to random generate mixed matrix.
3. Obtaining mixed signal. x = A ∗ s
4. Adding noise to the mixed signal to simulate the actual scene. x̂(t) = x(t) + n
Process: estimate the mixing matrix A
1. Find the best linear clustering data point

(1) Pre-treated for x̂; standardise, to make the data conform to the distribution with mean value of 0 and
variance of 1 through transformation

(2) Search fractional domain transformation order p
(

π
2 p = α

)
i. Obtain p1 (transformation order) by rough search

dp = 0.01; define the rough search step
p1 = -1:dp:0; achieve global search from [−1, 0]
for i = 1:length(p1)
xaf1(i,:) = frft(x1,p1(i)); data points obtained after FrFT
L(i,:) = norm(xaf1(i,:), 1); use L1norm to realise sparsity measurement
L1 = min(L); find the transformation order corresponding to the sparse time-frequency point

ii. Obtain p2 (transformation order) by exact search
dp = 0.0001; define the exact search step
p2 = P1-dp:dpˆ2:P1+dp; search p2 near p1
for i = 1:length(p2)
xaf2(i,:) = frft(x1,p2(i)); data points obtained again after FrFT
L(i,:) = norm(xaf2(i,:), 1); use L1norm to realise sparsity measurement
L2 = min(L); find the final transformation order corresponding to the most sparsity
time-frequency point

(3) Realisation of FrFT under transformation order p
(4) Remove low energy points; set the threshold value to 0.5, and set the point less than threshold to 0
(5) Obtain sparse time-frequency points with good linear clustering characteristics

2. Choose the best clustering method to realise clustering
3. Each clustering direction vector corresponds to a column vector of the mixed matrix to estimate the mixed

matrix A

Output: obtain the estimated mixing matrix A

3. Simulation Experiment and Result Analysis

The development environment used in this research is MATLAB R2016b. The com-
puter is configured with i7 CPU and 16 GB RAM, the operating system is Windows 11 and
the source signal randomly selects from the consonant data set.

This paper mainly realises the following research:

i. Noise suppression in the fractional domain
ii. Optimal transformation order selection
iii. Comparison of mixed matrix estimation performance

3.1. Noise Suppression in the Fractional Domain

Firstly, the FrFT domain simulation experiment is carried out for single-tone signal
and noise to observe the energy accumulation of single-tone signals with different signal-to-
noise ratios (SNR) in the whole fractional domain. To observe data easily from the equation,
we use π

2 p = α, α is the rotation angle and p is the transformation order, as discussed in
Section 2.1 above. The change from 0 to π

2 of α corresponds to the change of the signal from
the time domain to the Fourier domain, and the corresponding p value is [0, 1]. To facilitate
observation, the transformation is observed from the Fourier domain to the time domain,
that is, α from [−π

2 , 0] and the corresponding p value is [−1, 0], so the whole fractional
domain is p from −1 to 0.

Figure 3 shows the energy aggregation of single-tone u that is randomly selected
with different SNRs in the fractional domain. Figure 3b–d show the search results of
transformation order when SNR is 10 dB, 5 dB and 1 dB, respectively.
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search of signal when SNR = 1 dB.

The experimental results show that FrFT has a certain energy aggregation to the signal
in the transform domain, its energy aggregation is related to the transform order and the
energy aggregation is the best under the optimal order. Moreover, FrFT has a certain energy
aggregation to the signal in the transform domain. Under the conditions of different SNRs,
the energy of speech is relatively concentrated, but the change of the noise bottom is not
evident, the energy aggregation of speech is related to the transform order and the energy
aggregation is the best under the optimal order.

To verify the suppression of noise in speech signals and design the simulation exper-
iment of speech signals with different SNRs at the same transformation order, the same
transformation order is randomly selected for simulation, and the results shown in Figure 3
are obtained. Under the conditions of different SNRs, the energy of speech is concentrated,
but the change of the noise bottom is not noticeable. The distinction between a clean signal
and noise is increased through FrFT to reduce the influence of noise on system performance
in subsequent research of speech separation and achieve the purpose of denoising.

Four groups of speech signals (clean speech signals and noisy speech signals with a
signal-to-noise ratio of 10 dB, 5 dB and 0 dB) are subjected to fractional domain FT of the
same order (p = 0.9943), as shown in Figure 4:
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Figure 4. Spectrum comparison of signals with different SNRs in the fractional domain of the same
transformation order.

The simulation and comparison from Figure 3 verify that the fractional domain FT has
energy aggregation characteristics for speech signals with different SNRs, and the energy
aggregation characteristics are not affected by noise. The advantages of the BSS system in
the noise environment in the fractional domain are verified.

3.2. Comparison of Mixed Matrix Estimation Performance

The estimation performance of the method proposed in this paper is tested on the
underdetermined mixing matrix through the MATLAB simulation results. The chirp signal
is used to simulate a non-stationary signal, and chirp signals with six different parameters
are selected, as shown in Table 2.

Table 2. Six chirp signals with different parameters.

si Amplitude Chirp Rate Starting Frequency

s1 1 400 200
s2 5 600 400
s3 10 800 400
s4 10 600 200
s5 10 200 100
s6 15 800 600

The time domain waveform of the six source signals is shown in Figure 5. (The
horizontal axis is the sampling sample length, and the vertical axis is the signal amplitude).

Select mixed source signal (m = 2 and n = 6) of UBSS system for simulation. The rand
(2, 6) command of MATLAB randomly generates the mixing matrix as follows:

A = [ 0.9572 0.8003 0.4218 0.7922 0.6557 0.8491
0.4854 0.1419 0.9157 0.9595 0.0357 0.9340]
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Figure 5. Time domain waveform of six channel signals. ((a–f) is 6 different signals).

After the six source signals pass through the mixing matrix A, mixed signals are
obtained, as shown in Figure 6:
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Figure 6. Mixed signal after mixed matrix. (a) Time domain; (b) Frequency domain.

Next, to realise FrFT for the mixed signal, the transformation order is searched for
first. In this paper, the order of transformation is obtained by searching the sparsest
transformation domain.

According to the previous analysis, the L1 norm is used as the approximate estimation
of signal sparsity in this paper.

Figure 7 shows the change behaviour of sparsity with the change of transformation order.
In a and c of Figure 7, the horizontal axis is the order change, and the vertical axis is

the L1 norm value that is used to measure sparsity. A and b are about rough search data
and result; c and d are about exact search data and result.

Through the rough search in steps of 0.01, the most sparsity is obtained in the trans-
formation order of P1 = −0.52 and then in the further exact search in steps of 0.0001 near
P1 = −0.52. The obtained transformation order data are shown in the figure, P2 = −0.5194.
Data comparison finds that under the transformation order of p =−0.5194, the mixed signal
realises the most sparsity representation. Figure 8 compares the spectrum of the mixed
signal under the optimal transformation order with that after FT and STFT.
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After comparison from Figure 8, the fractional domain energy aggregation is the best
under the optimal transformation order. In the fractional Fourier domain with p = −0.5194,
data points are the sparsest representation because the L1 norm is used to find it.

We use scatter plots to compare the improvement of clustering characteristics of mixed
signals by different algorithms, as shown in Figure 9.
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Figure 9. Scatter plot comparison of mixed signals. (a) time domain; (b) frequency domain; (c) frac-
tional domain proposed in [34]; (d) fractional domain proposed in our paper.

In Figure 9, we first compared the clustering characteristics of mixed signals in the
time domain and frequency domain, as shown in Figure 9a,b. Through the scatter plot,
we find that the mixed signal does not show clustering characteristics, which makes it
impossible to estimate the mixed signal. Then, we compared the fractional domain scatter
plot proposed in paper [34] with that proposed in our paper. The maximum singular
value method (MSVM) is used to obtain the sparse fractional domain in [34], while the
minimum norm method is used in our paper. The results are shown in Figure 9c,d. From
Figure 9c proposed in [34], the mixed signal presents a line characteristic, which significantly
improves the linear clustering of mixed signals. However, there are too many data points
deviating from the straight line, which is unfavourable to the accuracy of the mixed matrix
estimation. From Figure 9d proposed in our paper, data points have high linear clustering
characteristics but with few interference points, which is very beneficial to the accuracy of
mixed matrix estimation.

Next, the mixing matrix is estimated by using several most commonly used clustering
algorithms under different transformation modes, and the accuracy of the mixing matrix is
compared to verify the superiority of the algorithm proposed in this paper. To compare the
comprehensiveness, this paper selects the classical clustering algorithm K-means algorithm
based on distance and the classical clustering algorithm based on DBSCAN.

The specific steps are as follows (Algorithm 2):

Algorithm 2: Simulation algorithm steps

1. Call 6-channel source speech signals;
2. The mixed matrix is randomly generated by Rand (2, 6) command of MATLAB;
3. 6-channel source signals obtain 2-channel mixed signals through the mixing matrix;
4. The two mixed signals are transformed by FT, STFT and FrFT, respectively;
5. K-means and DBSCAN algorithms are used to obtain the estimated mixed matrix
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The simulation results are as follows:
Firstly, the received signals are transformed by FT, STFT and FrFT, and the sparse

measurement comparison is realised through the L1 norm. To verify the performance in
noise environment, this paper compares the sparsity of pure mixed signals and mixed
signals with SNR from 0 to 30, and the results are shown in Figure 10:

Electronics 2023, 12, x FOR PEER REVIEW 17 of 24 
 

 

Algorithm 2: Simulation algorithm steps 

1. Call 6-channel source speech signals; 

2. The mixed matrix is randomly generated by Rand (2, 6) command of MATLAB; 

3. 6-channel source signals obtain 2-channel mixed signals through the mixing matrix; 

4. The two mixed signals are transformed by FT, STFT and FrFT, respectively; 

5. K-means and DBSCAN algorithms are used to obtain the estimated mixed matrix 

The simulation results are as follows: 

Firstly, the received signals are transformed by FT, STFT and FrFT, and the sparse 

measurement comparison is realised through the L1 norm. To verify the performance in 

noise environment, this paper compares the sparsity of pure mixed signals and mixed 

signals with SNR from 0 to 30, and the results are shown in Figure 10: 

  

Figure 10. Sparsity comparison at different SNRs after different transformations (single time). 

In the simulation, the order of FrFT transform is determined through the rough 

search and accurate search methods of the previous simulation experiment. The compar-

ative experimental results reveal that the signal sparsity after FT is significantly lower 

than that obtained by STFT and FrFT, regardless of the pure signal or the mixed signal 

with high or low SNR. In addition, the pure speech signal after STFT and the signal with 

high SNR(dB) (SNR = 30) have relatively good sparsity. However, when the SNR(dB) is 

low (SNR = 0, 5, 10), the signal sparsity obtained by FrFT is significantly better than that 

of STFT. 

To be more convincing about how the fractional domain has poor aggregation char-

acteristics of noise energy, the above experiment was repeated 50 times. The MATLAB 

rand (2, 6) command was used to generate a mixing matrix randomly to obtain different 

mixed signals each time. The L1 norm derived from different transformations of mixed 

signals under different SNRs was taken as the mean to obtain the following Figure 11: 

Commented [M29]: Please add caption to algo-

rithm 2 

Commented [M30]: Please use commas to sepa-

rate thousands for numbers with five or more dig-

its (not four digits) in the picture, e.g., “10000” 

should be “10,000”. 

Figure 10. Sparsity comparison at different SNRs after different transformations (single time).

In the simulation, the order of FrFT transform is determined through the rough search
and accurate search methods of the previous simulation experiment. The comparative
experimental results reveal that the signal sparsity after FT is significantly lower than that
obtained by STFT and FrFT, regardless of the pure signal or the mixed signal with high or
low SNR. In addition, the pure speech signal after STFT and the signal with high SNR(dB)
(SNR = 30) have relatively good sparsity. However, when the SNR(dB) is low (SNR = 0, 5,
10), the signal sparsity obtained by FrFT is significantly better than that of STFT.

To be more convincing about how the fractional domain has poor aggregation charac-
teristics of noise energy, the above experiment was repeated 50 times. The MATLAB rand
(2, 6) command was used to generate a mixing matrix randomly to obtain different mixed
signals each time. The L1 norm derived from different transformations of mixed signals
under different SNRs was taken as the mean to obtain the following Figure 11:
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Figure 11. Sparsity comparison of different SNR after different transformations (50 times).

Figure 11 reveals that the sparse characteristics of various transformed signals have
an evident trend with the SNR transformation, that is, the signal sparse characteristics after
FrFT transformation are significantly better than FT and STFT. The signal after FrFT does
not change significantly with the SNR transformation, and it is less affected by noise, which
is suitable for practical applications.

After transformation, the time–frequency domain sparse signal is obtained. To repre-
sent the direction of each line uniquely, the sparse signal is normalised, that is, the data
image on the negative line is mapped to the positive direction. The normalised sparse signal
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is clustered and analysed by the K-means and DBSCAN clustering algorithm, and then the
corresponding mixing matrix is estimated. The specific steps are as follows (Algorithm 3):

Algorithm 3: K-means algorithm steps

1. Set the number of clusters.
2. Initialise the cluster centre.
3. Calculate the distance from the centre to each data point and assign the data points to the

nearest cluster.
4. Calculate the mean value of all points in each cluster and take the mean value as the

cluster centre.
5. Repeat steps 3 and 4.

According to the previous simulation, the sparsity of the mixed signal after FT is clearly
weaker than that of STFT and fractional domain FT. Therefore, the K-means algorithm
is mainly used for the sparse signal obtained from the mixed signal after STFT and FrFT
transform. The same is true for the DBSCAN simulation experiment. The number of
iterations is set to 100. The estimation results of the mixed matrix are as follows.

(A1 is the mixing matrix of the sparse signal estimation obtained after STFT transfor-
mation for the data set. A2 is the mixing matrix of the sparse signal estimation obtained
after FrFT transformation for the data set.)

A1 = [0.8153 0.7856 0.5876 0.7859 0.6085 0.4597
0.2787 0.6687 0.7365 0.6865 0.4865 0.7987]

A2 = [0.7976 0.8465 0.4537 0.6765 0.4857 0.7906
0.3654 0.3865 0.6825 0.7786 0.1329 0.9726]

Using the DBSCAN clustering algorithm (Algorithm 4), firstly, two initial values must
be set, neighbourhood radius Eps and the threshold MinPts of the number of data objects
in the neighbourhood. Then, three types of points need to be distinguished: core point,
boundary point and noise point.

The points whose number of sample points in the neighbourhood radius is greater
than or equal to MinPts are called core points. A point that does not belong to a core point
but is in the neighbourhood of a core point is called a boundary point. Noise points are
neither core points nor boundary points.

Algorithm 4: Steps of DBSCAN clustering algorithm

1. Select any point P from the mixed signal points to judge the point.
2. If the point is the core point, find the P point and all data points in the neighbourhood that

conform to the density to form a cluster.
3. If the selected data object point P is a boundary point, select another data object point.
4. Repeat steps 2 and 3 to complete all mixed signal points.
5. The clustering data set meeting the density requirements is obtained.

In this simulation, the neighbourhood radius Eps = 0.04 and the threshold value
MinPts = 10 for the number of data objects in the neighbourhood are set. The mixing matrix
obtained by DBSCAN is as follows: B1 is the mixing matrix obtained by sparse signal
estimation after STFT transformation. B2 is the mixing matrix obtained by sparse signal
estimation after FrFT transformation.

B1 = [0.8443 0.8684 0.5464 0.6983 0.6889 0.7566
0.5572 0.2528 0.6324 0.7563 0.0271 0.8473]

B2 = [0.7532 0.8543 0.5734 0.7747 0.6324 0.8709
0.5425 0.1311 0.9646 0.8953 0.1335 0.9893]
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To evaluate the estimation accuracy of the hybrid matrix, the normalised mean square
error (NMSE) is adopted in this paper, and its mathematical expression is as follows [17]:

NMSE = −10log10

 ∑M
i=1 ∑N

j=1 a2
ij

∑M
i=1 ∑N

j=1
(
âij − aij

)2

 (15)

aij and âij represent the values of the source mixing matrix and the estimated mixing
matrix, respectively. Formula (15) shows that NMSE changes with the deviation of the
estimated mixing matrix value. The greater the deviation is, the greater the NMSE, that is,
the higher the estimation accuracy of the measurement mixing matrix is, the smaller the
NMSE value.

The original mixing matrix A and A1, A2, B1 and B2 are respectively brought into
Formula (15), and the NMSE is obtained, as shown in Table 3 and Figure 12:

Table 3. Comparison of estimation accuracy of mixed matrix obtained by different clustering algorithms.

Data Set
NMSE

K-Means DBSCAN
STFT FrFT STFT FrFT

Clean signal −8.7679 −14.1429 −15.0967 −18.4557

SNR = 0 −1.5434 −8.4982 −4.5434 −10.9985

SNR = 5 −1.6442 −9.2785 −6.5421 −12.4329

SNR = 10 −3.5643 −9.5437 −7.8739 −13.3212

SNR = 15 −4.9838 −10.2379 −8.5470 −15.4596

SNR = 20 −6.2324 −11.9833 −10.4534 −16.6733

SNR = 25 −8.2294 −13.7192 −12.3858 −17.8734

SNR = 30 −8.5430 −14.0319 −14.7854 −18.3212Electronics 2023, 12, x FOR PEER REVIEW 20 of 24 
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The comparison of Table 3 and Figure 12 finds that for the sparse signal data set
obtained by FrFT transformation, the estimation performance of the mixed matrix obtained
by the K-means clustering algorithm and DBSCAN clustering algorithm is better than that
obtained by STFT transformation. The data comparison reveals that for clean signals, the
superiority of the DBSCAN clustering algorithm is not evident, but in noisy signals, the
performance of the K-means clustering algorithm is significantly reduced. However, the
DBSCAN algorithm is not affected by noise. The main reason is that the initial value of
the K-means clustering algorithm has a great effect on the clustering results. However, the
DBSCAN clustering algorithm is a density-based clustering algorithm, which can filter
noise points, find outliers whilst clustering and is not sensitive to outliers in the data set.
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Compared with the actual value of the original mixing matrix, the estimated mixing
matrices have large deviations. For K-means, on the one hand, the clustering centre is the
main reason; on the other hand, the estimation of mixing components is greatly affected
by the mixed signal. For DBSCAN, the main reason is that for the whole data set, only a
group of Eps and MinPts parameters are selected, and the accuracy of the estimated value
of the mixing matrix is clearly restricted. Therefore, for the two sets of data sets obtained by
STFT and FRFT transformation, the K-means clustering algorithm and DBSCAN clustering
algorithm are repeated 30 times, the mean value of each value of the mixed matrix obtained
each time is taken and the mixed matrix estimation composed of the mean value is derived:

Â1 = [0.8223 0.7542 0.5887 0.7665 0.6115 0.4753
0.3087 0.6456 0.7542 0.6564 0.4645 0.8008]

Â2 = [0.7654 0.8563 0.4575 0.6698 0.4857 0.7890
0.4932 0.2874 0.6825 0.7658 0.1452 0.9564]

B̂1 = [0.8332 0.8684 0.5464 0.6834 0.6798 0.7359
0.5983 0.2323 0.6542 0.7563 0.0301 0.8570]

B̂2 = [0.7787 0.8543 0.5644 0.7747 0.6324 0.8709
0.5676 0.1342 0.9085 0.8698 0.1321 0.9864]

The original mixing matrix A and Â1, Â2, B̂1 and B̂2 are brought into Formula (15),
and the NMSE is obtained, as shown in Table 4 and Figure 13:

Table 4. Comparison of estimation accuracy of mixed matrix obtained by different clustering algo-
rithms (30 times).

Data Set

NMSE

K-Means DBSCAN

STFT FrFT STFT FrFT

Clean signal −9.0591 −14.7524 −15.1111 −18.8518

SNR = 0 −2.0793 −8.1088 −7.8875 −11.3087

SNR = 5 −3.7684 −10.5634 −8.6599 −12.8743

SNR = 10 −4.5609 −11.5437 −9.0765 −13.7647

SNR = 15 −6.3658 −11.8675 −10.8847 −14.7824

SNR = 20 −7.2324 −12.6894 −12.5973 −16.2533

SNR = 25 −8.2294 −13.6219 −13.5635 −17.0053

SNR = 30 −8.9430 −14.4297 −14.3764 −18.4534
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Many experiments show that the experimental data are stable. The data show that
in the estimation of the mixed matrix of high SNR signals, the accuracy of the estimated
mixed matrix obtained by the DBSCAN clustering algorithm is slightly better than that
by the K-means clustering algorithm. For signals with low SNR, the estimation accuracy
performance of mixed matrix is significantly improved because the DBSCAN algorithm can
filter noise points and is not sensitive to outliers in the data set. For different data sets, the
estimation accuracy of the mixed matrix is also significantly different. The accuracy of the
sparse signal obtained by FrFT transform is higher than that obtained by STFT transform
whether using the K-means clustering algorithm or DBSCAN clustering algorithm. This
conclusion is particularly clear in noisy signals with low SNR.

In addition, the mixed matrix estimation accuracy obtained by DBSCAN-FrFT is the
best. In this paper, the algorithm proposed in [16,17] is compared with DBSCAN-FrFT.
Firstly, the computational complexity is compared. The results are shown in Figure 14:
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Figure 14. Comparison of the computational complexity of the algorithms proposed in [16,17] and
this paper.

Analysis of the above figures shows that the computational complexity of each method
is closely related to the signal length N. When N is small, the method proposed in [16] has
the smallest amount of computation, but with the increase in N, the computation amount of
the method in [16,17] and the method proposed in this paper are improved. However, the
method in [17] increases greatly with the increase in N, and the method proposed in this
paper gradually shows the advantage of low computational complexity with the increase
in N. The reason is that the method proposed in [16] needs STFT and SSP detection, and
the computational complexity reaches N2. The method in [17] uses the DBSCAN algorithm
to determine the number of source signals. Although the number of source signals is
ensured and the algorithm is improved, the computational complexity is about to reach
O
(

N2log2N
)

because of using SSP. The growth of N makes the computational complexity
of the first two algorithms increase rapidly. The computational complexity of the algorithm
proposed in this paper is O(Nlog2N). Although this algorithm adds the unknown quantity
of rotation angle, the computational complexity is not low when N is small, but when N
is increased, the computational complexity is moderate, which is relatively suitable for
practical applications.

4. Conclusions

In this paper, we propose a fractional domain transformation for global search based
on the most parsimonious representation. Firstly, it is discussed that the fractional domain
FT has the properties of energy aggregation on the mixed signal without obvious influence
of noise, which improves the discrimination between the mixed signal in the presence of
noise. Secondly, it is proposed to investigate the sparseness of the signal quantitatively
by using the norm and then searching for the sparsest representation of the signal. The
simulation results show that the sparsity of the mixed signal and the estimation accuracy
of the mixed matrix are improved. Compared with the existing mixed matrix estimation
algorithms, the proposed method is effective.



Electronics 2023, 12, 456 20 of 21

In the simulation experiment, the mixed signal is most sparsely represented at a certain
angle, but it cannot be well separated. The reason is that the projection of the mixed signal
at that angle overlaps too much in the fractional domain, requiring a multilevel fractional
domain separation, which the authors will perform next.
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