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Abstract: With the rapid evolution of network technologies over recent years, emerging network
services, especially industrial control networks, video conferencing, intelligent driving, and other
scenarios, have put forward higher demand for the low-latency forwarding of network traffic. The
existing flow caching and hardware acceleration methods only improve the overall forwarding
performance of data-plane devices but cannot separate the forwarding process of low-latency traffic
from others to reflect the priority of these flows. In this paper, we extend the POF southbound
interface protocol and propose a marking method for low-latency flows, based on which we design a
composite pipeline to achieve fast processing for low-latency traffic by introducing a fast-forwarding
path. The experiments show that the fast path has a higher forwarding capability than the MAT
pipeline in the POF Switch and can reduce the forwarding delay of low-latency flows by 62–68%. In
a real network environment with a mixed traffic simulation, the reduction reaches 17–20% with no
delay increment for the non-low-latency part.

Keywords: SDN switch; data-plane programming; fast packet processing

1. Introduction

In recent years, networking technology has been rapidly developing within a variety
of application areas. Fields such as industrial control networks, Information-Centric Net-
working (ICN), and Data Center Networking (DCN) constantly update the requirements for
network throughput and latency. Services such as industrial control and unmanned driving
are sensitive to network latency and require high reliability. The transmission of emergency
information such as vehicle status requires millisecond latency. The communication latency
between devices in industrial networks also needs to be controlled within 10 ms [1–3].

DCNs have become an important part of the Internet infrastructure, providing Internet
users with reliable network services. DCNs are internally interconnected by a huge number
of servers and place high demands on the communication latency and bandwidth between
the servers. For example, the end-to-end latency between servers often needs to be on a
microsecond level [4].

In recent years, data center service traffic has been growing exponentially, and data
center expansion is trending rapidly. The year 2020 saw a 10× increase in total servers and
a 50× increase in global data [5]. With increasing service complexity, these issues bring
many challenges for cloud DCNs, and software-defined networking (SDN) becomes the
key to building cloud data centers [6]. DCNs in the cloud computing era have put forward
many new demands on the network. The first problem to address is the automation
and centralized control of large-scale networks, and some other emerging IT application
architectures also require the network to be more intelligent. Traditional networks have
long struggled to meet these demands, but SDN architecture can fit these needs perfectly [7].
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Network flows have their QoS (Quality of Service) requirements, among which low-
latency transmission is a common and significant attribute. In scenarios such as industrial
control networks and telemedicine, the low transmission latency of control flows is a
crucial guarantee of the network QoS. In addition, some traffic has low-latency forwarding
requirements but without evident flags in the packet headers, such as machine-class
communication between servers in DCNs. In DCNs, information such as the addresses
of the devices is usually fixed for a long time, and the routing or other related operations
of the communication data are also relatively stable. These communication flows can be
transmitted in a fast path due to stable routing. We call the network flows described above
low-latency flows.

It is clear that in a single pipeline based on multi-level MATs (match-action tables),
low-latency flows are processed in the same path as others. As network services are diversi-
fying, the pipeline processing flow will also become complicated, ultimately increasing the
processing latency of network flows. Although some programmable switches use methods
such as flow caching [8] to reduce the forwarding latency of some flows, flow caching does
not distinguish low-latency flows from others, so it cannot solve the above problem.

Our approach upgrades the multi-MAT process to a composite pipeline which pro-
cesses low-latency flows in a more efficient path. We borrow the idea of flow caching in
the path and optimize it to reduce the time and space complexity of the scheme through
hierarchical caching. In addition, we use a low-latency traffic identification method that
combines the control plane and the data plane to restrict the cached forwarding rules and
extract the low-latency traffic for separate and efficient processing. The contributions of
this paper can be summarized as follows.

• We extend the POF (Protocol-Oblivious Forwarding) southbound interface protocol,
based on which we provide a method to label low-latency flows.

• We design a fast-forwarding path (FFP) that prioritizes low-latency flows without
affecting the work of the MAT pipeline. The design includes the method to extract
forwarding rules from MATs, the process of forwarding low-latency traffic, real-time
FFP updating, etc.

• We implement the above scheme on a DPDK-based POF Switch and compare it with
the original POF Switch. The results show that our proposed approach can effectively
reduce the forwarding latency of low-latency traffic.

The structure of this paper is organized as follows. In Section 2, we show the recent
work in the field. In Section 3, we propose the FFP design. Section 4 shows our experimental
results. Finally, we conclude the whole paper and discuss our future work plans.

2. Literature Review and Background Work
2.1. Background Work

As a pioneer of SDN, OpenFlow [9] puts forward the packet processing pipeline based
on MATs, which has become a common structure for subsequent SDN data planes [7].
A prepositive parser installed in the OpenFlow switch parses packets according to the
protocol fields defined in the OpenFlow Switch Specification [10]. Due to the finiteness of
the defined fields, the programmability of OpenFlow switches is limited when processing
packets with emerging network protocols.

The POF [11] and P4 [12] were proposed one after another to achieve higher data-plane
programmability. P4 is a high-level language for SDN data-plane programming to configure
the packet processing logic of the switches. The protocol-independent switch architecture
(PISA) [13] is a pipeline engine that supports programmable packet processing for P4 data
planes. A programmable parser, multi-stage programmable MATs, and a programmable
deparser form a pipeline for P4 data-plane programming. The programmable parser
provides support for the processing of emerging network protocols. In the OpenFlow and
P4 switches, the front parser is a mandatory module for all flows. During the parsing, the
parser does not know which fields are needed for subsequent MAT queries, so it parses as
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many protocol fields as possible. However, most of the packet processing uses only a small
fraction of the protocol fields, so a large part of the parser’s work is redundant.

The POF is a protocol-independent southbound interface protocol that builds on
OpenFlow. The POF defines arbitrary packet fields or other status data in {type, offset,
length}, which provides greater programming flexibility than OpenFlow [14]. Thanks to
this design, POF switches do not need a front parser to parse packets. The task is left to the
control plane instead. Control-plane applications load appropriate flow tables and table
entries into data-plane devices based on their respective requirements. When packets are
processed in the pipeline, only the data required for the query need to be extracted based
on the matching fields in the current table before searching the entries. This approach
of real-time parsing during the table lookup is more flexible than the P4 and OpenFlow
switches with front parsers. The parsers are generated in the configuration phase and
cannot be updated at the data-plane runtime, while the runtime flow table updating in the
POF switches solves this problem.

At the cost of enhancing the data-plane programmability, parsing packet headers
hierarchically in MATs increases the packet processing latency and creates difficulties for
the flow cache design [15]. Flow caching uses the entire packet header or parsed fields as
the input, but some of the fields may not be of interest in the pipeline, which can make the
hash results very scattered and thus reduces the cache hit ratio. An often-studied approach
is rule-extraction and aggregation [16–21]. The related research integrates the header fields
used in each phase of the packet processing into a complete forwarding rule. However,
for the multi-MAT pipeline in the POF Switch, the time complexity of the field integration
is quite large. The result of the matching field permutation grows exponentially with the
length of the pipeline, which puts pressure on the storage space.

2.2. Related Work
2.2.1. Global Routing Adjustment

Some studies were carried out in the field of fast packet processing. According to [22],
rule placement optimization improves the packet forwarding performance of DCNs. The
method obtains information about the entire network and analyzes all existing traffic. Then,
a suitable forwarding rule placement policy can be found to improve the traffic processing
capacity. However, these optimization policies are usually static. It is unaffordable to
update the rules in all switches immediately when the status of the traffic, such as the
network address, changes.

2.2.2. Flow Caching

One of the core components of traffic forwarding is packet classification. Ternary
Content Addressable Memory (TCAM) uses a flexible wildcards configuration to classify
packets efficiently at the hardware level. However, the cost and power consumption of the
TCAM limit the number of classification rules in data-plane devices, which exemplifies
the importance of the software implementation of packet classification algorithms. The
optimization of the algorithms is still hard due to the average CPU cache level. Developers
have focused their attention on a proven solution, flow caching. Rule placement optimiza-
tion treats the rule space as a priority resource, while flow caching policies efficiently use
space to store the latest used forwarding rules. Compared to rule placement optimization,
rule caching is a superior approach that allows traffic-based control to provide both a high
performance and scalability, especially in large-scale DCNs.

Open vSwitch (OVS) is a classic commercial OpenFlow switch, and it implements
an exact-matching flow cache at the first version [23]. The device performs successive
classification steps in a slow path for the first packet in a flow and caches the exact-matching
results. Subsequent packets are then processed in the fast cache module by a hash lookup,
with the key of the hash based on the whole packet header. In the slow path, the worst-case
lookup time for an MAT is O(N), where n is the number of rules, while the time complexity
of the hash table in the cache is O(1). Similar mechanisms are common on x86-based
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devices. Although flow caching is a significant improvement, single-connection caching
still requires the slow path to be involved in each new transport connection, even if the
resulting forwarding decisions are similar across multiple connections. For example, when
using exact matching to look up the flow cache, traffic from different source ports requires
separate cache entries.

As a further improvement, we can restrict the range of the matching fields in flow
cache entries to no more than L2 and L3 headers. As an example, the OVS implements
MegaFlow and reverts to a connection cache based on exact matching only when the
forwarding decision on the slow path depends on the L4 header. As long as the matching
is based only on L2 and L3 headers, the computed cache entries do not need to be updated
for each transported connection, and the fast path can process new connections without
sending packets to the slow path. However, forwarding decisions increasingly depend on
the L4 headers, on which almost all network services work. For instance, firewall services
filter out all traffic beyond the SMTP, HTTP traffic needs to be redirected to a caching proxy,
etc. Thus exact-matching-based connection flow caching becomes the only practical flow
caching option.

2.2.3. Hardware-Based Acceleration

Several studies improved the performance of software packet-switching solutions by
leveraging hardware-based acceleration. PacketShader [24], a software router, is developed
based on an acceleration framework based on a GPU. PacketShader implements an I/O
engine for fast and efficient packet processing. Some functions, such as routing table
lookup and IPsec encryption, are offloaded from the main processor to the GPU. The I/O
engine works for kernel-level packet processing operations, and other packet processing
operations are performed in multi-threaded applications in the user space. Based on the
above design, PacketShader can achieve a high throughput of 40 Gbps.

A hybrid architecture switch is designed with a similar method. A network processor
(NP) is programmed to execute tasks, such as receiving/sending packets, processing
packets, managing queues, etc. The software on the host and the NP acceleration card
make up the implementation based on the above design. The OpenFlow software in the
host uses the kernel module to communicate with the NP acceleration card via the PCIe
bus. The packet latency is reduced by 20% compared to traditional OpenFlow switches.

The comparison of the approaches introduced in the above literature and our scheme
in this article is listed in Table 1.

Table 1. Summary of approaches in the literature and our scheme.

Technology Reference Contributions Shortcoming

Global routing
adjustment

Rule replacement
optimization [22]

Improved forwarding
performance High time complexity

Flow caching Open vSwitch [23] High performance and
scalability

Low cache hit ratio for
single-connection traffic

Hardware-based
acceleration

PacketShader [24], OpenFlow
switch with NP acceleration

card [25]

Higher forwarding
performance than software

solutions
Less programmability

Hierarchical-hash
rule caching This article Extract and fast-forward

low-latency traffic

Little latency increasement
for normal traffic in some

scenarios

3. Problem Description

The conducted studies have focused their efforts on the improvement in the overall
forwarding capacity of the data plane. These studies have indeed contributed a lot to
the performance optimization of data-plane devices, such as switches; however, these



Electronics 2023, 12, 461 5 of 23

approaches take no care of the traffic types, resulting in traffic with special QoS requirements
such as time-sensitivity ones not being identified and optimized separately in the processing
flow. To overcome these difficulties, our study needs to address the following questions:

• How to identify and extract low-latency traffic? The POF Switch does not have a
packet parser module to obtain the packet header protocol fields by parsing the packets
in advance, which makes the design of the front-end traffic identification module very
difficult. Therefore, we will use a runtime identification scheme to jointly participate
in the identification and extraction of low-latency traffic by adding tags to the packets
and forwarding rules in combination with control-plane decisions.

• After extracting the low-latency traffic, how to design a dedicated processing path
with a better forwarding performance than the original MAT pipeline? Due to the
nature of the POF, methods such as full-domain hashing that are used in other switch
solutions for flow caching implementation would introduce an excessive time and
space complexity, so we consider following the structure of a hierarchical processing
pipeline. This requires us to improve the execution efficiency of individual processing
stages. Further, we also need to optimize the lookup algorithm for certain tables for
different match field types.

4. The Proposed Mechanisms

In this section, we propose the data-plane implementation based on a software com-
posite pipeline architecture. We design an FFP which runs parallel to a multi-MAT pipeline,
and we achieve fast processing of low-latency flows through the interaction between the
fast path and the pipeline. Figure 1 shows the network system that our work applies to,
and the contributions focus on the POF Switch and the ONOS controller.

Terminal

Servers

POF Switch

ONOS Controller

Control Plane

Data Plane

Figure 1. The network system model where our approach works.

4.1. Definition and Recognition of Low-Latency Flows

As we mentioned earlier, low-latency flows, in this paper, include traffic with require-
ments of low forwarding delay, traffic with relatively fixed forwarding rules, etc. For the
former, data-plane devices, especially protocol-oblivious white-box switches such as POF
Switch, are insensitive to the message content and cannot identify low-latency flows with
the information in messages. In SDN, however, there are no relevant restrictions on the
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control plane, and control-plane network applications understand the semantics of the
various fields in messages. The QoS attributes of traffic are usually explicitly represented
in the message by certain fields, so the control plane can easily generate appropriate for-
warding rules for low-latency traffic based on these fields and load them into data-plane
devices. In other words, the control plane can determine whether a forwarding rule serves
low-latency traffic based on the content of the rule. These forwarding rules are stored in
the data-plane device as MAT entries, so we extend the existing POF southbound interface
protocol. The new protocol agrees with the control plane to add a low-latency flag to
an entry when placing it, to identify whether the entry is involved in the forwarding of
low-latency flows, as shown in Figure 2. For traffic with relatively fixed forwarding rules,
there is no obvious field in the message describing the low-latency property, but these rules
are usually permanent MAT entries or are set with a large timeout. Based on this premise,
the data-plane device assigns low-latency properties to MAT entries and packets at runtime
by analyzing the packet’s match records in the pipeline and the hit statistics of the table
entries. That is, the low-latency flags of these MAT entries are initialized to FALSE when
they are sent down to the data plane and changed in real time as needed. We refer to an
MAT entry with the low-latency flag set TRUE as a low-latency entry or low-latency traffic.

flow_metadata

entry_cookie

cookie_mask

counter_cookie

instruction_block_cookie

table_id command slot_id idle_timeout hard_timeout

index priority field_num l_flag

flags flow_metadata_len reserved

match[field_num]

0 64bits

Figure 2. FLOW_MOD message of the extended POF southbound interface protocol.

The fact that a packet hits a low-latency entry in the pipeline cannot prove that the
packet belongs to a low-latency flow, because packets of other flows may also hit low-
latency entries. Because a flow in the switch is defined by entries in multi-level flow
tables together, the packet can be considered to belong to low-latency traffic only if all the
hit entries during the processing are low latency. To identify low-latency traffic, an easy
method is to actively integrate low-latency entries. By arranging and combining these
entries in each level of the MATs to form a forwarding rule table (FRT) with an overlong
matching field, then each low-latency flow must hit an appropriate forwarding rule in
the FRT. However, this approach has some drawbacks. Firstly, the size of the generated
FRT would be unacceptable because rule consolidation requires a Cartesian product of the
low-latency entries from each level. As the number and length of pipeline branches grow,
the number of consolidated forwarding rules will eventually explode. In addition, only
a small fraction of the rules can be hit by low-latency flows, making the use of resources
inefficient. Secondly, not all packets hitting the rules in the FRT belong to low-latency traffic,
and the hit rules may not be the optimal forwarding policy, because the packet may match
higher priority entries in the pipeline, which will lead to “false caching”. This problem
was investigated in some studies, such as CacheFlow. However, the algorithm complexity
grows with the length of matching fields in the FRT, which makes the performance not as
well as expected.

To solve the above problem, our proposed approach marks the packets in addition
to the MAT entries, which requires the data plane to support state programmability. In a
DPDK-based POF Switch, the packet states are stored in the packet metadata, where we
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can set a flag to mark the current low-latency state of the packet, as shown in Figure 3.
When a packet enters the switch, this flag is initialized to TRUE, indicating that the packet
may belong to a low-latency flow up to now. During the subsequent processing, the flag
will be corrected to FALSE with the result of the MAT lookup.

When the packet hits a normal entry and the packet flag is TRUE, the packet is no
longer part of a low-latency flow, and the flag needs to be updated to FALSE. In other
cases, the flag remains unchanged.

rte_mbuf data (packet)

struct rte_mbuf *m

headroom (packet metadata) tailroom

offset

extra-packet_metadata

command table_id

reason length

index

packetout_port in_port

latency_port shift

out_port_type l_flag pad

timestamp

Figure 3. The structure of rte_mbu f which stores packets and the packet metadata.

4.2. Composite Pipeline Architecture

In data planes with a generic multi-MAT pipeline, low-latency flows are mixed with
others and are forwarded via the same channel. Such an undifferentiated processing
path design can hardly guarantee the fast processing of flows with the need for low-
latency forwarding. To solve this problem, we propose a composite pipeline structure
based on an FFP, which splits low-latency flows from ordinary ones and spends less time
forwarding them.

4.2.1. Architecture Design

As mentioned earlier, whether a flow is low latency depends on both the packets and
the hit MAT entries, so we cannot identify and distinguish the traffic before it enters the
pipeline. The recognition performs during the forwarding process. To be specific, ordinary
flows are processed along with low-latency ones at the beginning and are gradually filtered
out and sent to the pipeline for further processing. This idea is borrowed from the flow
caching of OVS. In OVS, all traffic entering the switch first goes to MicroFlow and MegaFlow
for cache lookup. Some flows hit the cache and are forwarded foremost, and the rest are
sent to the slow pipeline to re-query the MATs. Unlike OVS, in our scheme, after moving
from the FFP to the pipeline, the ordinary flows have no need to match from the first MAT
but start processing at the intermediate stage, i.e., the processing of ordinary flows partly
gains the benefit of FFP acceleration. This design partially offsets the increased latency due
to packet transfer between modules and additional query steps. The data plane with the
FFP is shown in Figure 4.

The FFP is a pipeline-like structure that consists of multiple cascaded lookup tables
(LUTs). Each LUT corresponds to an MAT in the main pipeline and stores the hit records
of low-latency rules. As can be seen, the approach proposed in this paper differs from
common flow caching schemes. A flow cache is usually set in front of the main pipeline
and uses the entire packet header as the input for hash lookup, which is also called the
global-field hash. Obviously, this approach is unfriendly to short-connected caches. Any
slight change in packet header fields will totally change the hash value, which results in a
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poor hit rate of the cache. From a global perspective, the average traffic forwarding latency
increases because of the prolonged forwarding process.

LUT

MAT

LUT

MAT

LUT

MAT

Traffic
Fast-forwarding Path

MAT Pipeline

Figure 4. The architecture of the composite pipeline with an FFP.

Our proposed scheme uses the composite structure shown in Figure 4. Each LUT in
the FFP is composed of low-latency entries extracted from the corresponding MAT in the
pipeline. Packets entering the switch are first processed in the FFP. If a packet does not
hit any low-latency entry in an LUT, the packet will be sent to the pipeline to look up the
corresponding MAT and continue its subsequent forwarding process. It is easy to see that
with the introduction of the FFP, the length of the forwarding process is almost the same as
the pipeline-only scheme, so we need to start our research work from the perspective of
optimizing the single LUT in the FFP.

The MATs in the pipeline are designed based on the principle of protocol hierarchy,
so the matching fields of an MAT only cover fields of a certain protocol in the packet
header. For this characteristic, we borrow the idea of flow caching and use hash tables as
the basic structure of LUTs in the FFP. Our approach alleviates the problems of time and
space complexity to some extent by hierarchical hash. We narrow down the idea of the
global-field hash flow caching to the scope of a single MAT. The matching fields of one MAT
are much fewer and the length is shorter as well, which is more suitable as a hash input
and will get higher space usage efficiency in the limited hash table space. Furthermore,
it is unnecessary to reconstruct a hash table for each MAT. Some types of MATs can split
flows efficiently enough, so adding a hash table will bring extra processing latency for
non-low-latency traffic.

In MAT-based data planes, MATs can be divided into the following categories accord-
ing to matching methods: linear, exact matching (EM), longest prefix matching (LPM), and
mask matching (MM). The entries in linear tables have no matching fields but only an
index, an instruction block, timers, counters, etc. The packet to be processed will carry
an entry index in its metadata when it executes “GOTO_DIRECT” in the previous MAT.
The corresponding instruction block will be executed directly according to the index in
the linear table, so the searching time complexity of a linear table is O(1). EM tables are
implemented using hash tables, so the searching time complexity is also O(1). LPM is a
common algorithm used by routers in IP networks to select entries from routing tables.
The classical LPM algorithm is implemented using a binary tree, and the searching time
complexity is O(logL), where L is the length of the matching field (IP address). DPDK
LPM library provides optimized LPM algorithms, respectively, for IPv4 and IPv6, which
reduces the searching time complexity to O(1) through multi-level hash tables. In future
networking, we should not limit the application scenario of LPM to IP address searching.
Other situations, such as hierarchical naming lookup in named data networking (NDN),
also need LPM. MM tables are used in the case of arbitrary matching, such as 5-tuple
searching in access control lists (ACL). MM sets the effectiveness of each bit in the match
field by a mask to search arbitrary packet header fields. DPDK provides an ACL algorithm
for MM tables based on trie, and the searching time complexity is O(L).
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For EM tables, the searching time complexity is already O(1), and there is almost no
room for further optimization, so we do not need to set another LUT in the FFP for these
MATs. In other words, the pipeline can share EM tables with the FFP to process packets
together. According to this design, any packets in these two types of MATs can complete
their current stage of processing. A packet will directly go to the next-level stage whether
it hits a low-latency entry or a normal one. For other types of MATs, it is necessary to set
hash-based LUTs in the FFP to reduce the searching time complexity.

4.2.2. Preliminary Benefit Analysis

For the above design of the FFP, we can further refine each part and estimate the
benefit of forwarding latency. We can first consider the case of a single MAT. Because we
do not create extra LUTs in the FFP for linear tables or EM tables, the gain of the two types
of tables is 0. Therefore, here we mainly discuss the case of other classes of MATs. Assume
the length of the matching fields in the MAT is l and the size is n. The searching time of the
MAT can be considered a function on l and n, tpipeline(l, n). The expression of this function
varies for different MATs as shown in Table 2:

Table 2. Searching time of different MATs.

Table Types Linear EM MM LPM

Searching time tpipeline(l, n) C khashl + C ktriel + C kbin−treel + C

In addition, due to the hash-based implementation, for the LUTs in the FFP, the
searching time can be unified as

t f p(l) = khashl + C (1)

Based on the above definition of searching time, we can obtain the searching time gain
of the FFP in a single-level LUT:

Wd(l, n) = tpipeline(l, n)− t f p(l) =

{
khashl − ntcmp(l) + C, linear tables
(ktype − khash)l + C, others

(2)

Up until now, we consider only the gain of the forwarding latency for low-latency
flows. Others miss in the FFP and are sent to the pipeline for further searching, which will
give a negative gain in the processing time:

Wd(l, n) = −t f p(l)− ttrans f er (3)

ttrans f er stands for the time cost by transferring the packets from the FFP to the pipeline.

4.2.3. Runtime Updating of the FFP

After the architecture design, we initially determine the basic composite pipeline
structure. The next task is to extract the low-latency entries from the MATs in the pipeline
into the FFP. Low-latency flows are identified by the low-latency flags in both MAT entries
and packet_metadata, which makes the FFP updating a packet-driven reactive process.
Figure 5 depicts the specific steps of the updating.

Similar to flow caching, the FFP is positioned in the switch as the entrance for traffic
processing. During the initialization phase, every LUT in the FFP is empty. As shown in
Figure 5, packet Pkt1 enters the FFP and directly skips the first empty LUT and is then
forwarded to the MAT in the pipeline for processing. Pkt1 hits a low-latency entry r3 in the
MAT. Because the low-latency flag of Pkt1 is initialized to TRUE, the flag does not need to
be changed and Pkt1 retains the possibility of belonging to a low-latency flow. After r3 is
hit, it needs to be extracted and updated into the FFP. Before updating, we need to perform
a restricted-field hash of Pkt1: the input to the hash is a contiguous segment of data that
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originates from the parts of the packet that are covered by the MAT matching fields. For
example, table T0 divides packets by their input port, destination MAC, and network-layer
protocol type. This piece of data was extracted before searching the MAT, so we do not
need to re-extract it. Through the hash calculation, we obtain a key, Key1, which is used
as an index for LUT searching and modification in the FFP, so we need to record Key1. To
simplify the description, we bind the key to the entry r3 in the form of a linked list. Then,
we populate r3 to the corresponding position in the LUT according to the obtained key.
If the packet matches a non-low-latency MAT entry r5, the low-latency flag of the packet
should be updated to FALSE, indicating that the packet is no longer likely to belong to
low-latency traffic, and the subsequent processing of the packet can only be completed in
the pipeline.

LUT

r3

MAT

r1

r2

r3

r4

r5

r6

r7

r8

r9

0

rules extra_rule_num

rules priority

10

20

30

15

25

40

5

45

50

hash key

Key1

Key1

Pkt1

hash

low-latency

FALSE

FALSE

TRUE

FALSE

FALSE

TRUE

FALSE

FALSE

FALSE

Figure 5. The updating progress of LUTs in the FFP.

After the above processing, subsequent packets belonging to the same flow as Pkt1
enter the switch and will directly hit entry r3 in the FFP, avoiding searching the original
MAT. However, this is an ideal situation built on the condition that the original MAT has not
changed. Some new entries with higher priority than that of r3 may be added to the MAT.
In this case, we need to update the LUT in time. Figure 6 shows an example of updating.

Three new entries, r10, r11, and r12, are added to the MAT T0, all of which have higher
priority than r3. We need to screen these new rules during the updating phase of the MAT,
eliminating those that conflict with the low-latency entries recorded in the FFP—in this
case, only r3—and selecting only those that have dependencies on r3 for the next step.

The matching fields of all MAT entries can be represented by value, mask, where the
mask is used to identify which bits in the value are valid. For different types of MATs, the
arrangement of bit-1 in the mask differs. For example, LPM rules only match prefixes, so
the form of the mask is as follows:

n︷ ︸︸ ︷
11 . . . 1

L−n︷ ︸︸ ︷
00 . . . 0 (4)
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n is the prefix length. For the entries in MM tables, the form of the mask is not required, so
MM tables can be used to match arbitrary fields. We can first consider the computation of
rule dependencies in MM tables because this is the most general scenario. The dependencies
between MAT entries can be obtained by intersection, and the specific calculation steps are
as follows:

common_mask = mask1&mask2 (5)

result = cmp_neq(value1, value2, common_mask) (6)

common_mask is the intersection of the rule masks and represents the bits that the two
rules both care about. Then, we compare the common bits from each rule: if there are
any unequal bits, the two rules conflict; otherwise, the packet space covered by both has
an intersection.

MAT

LUT

r3 r123

Rules Extra rule num

r11 r10

Hash key

Key1

45 40 35

priority descending

non-low-latency

rules

r1

r2

r3

r4

r5

r6

r7

r8

r9

rules priority

10

20

30

15

25

40

5

45

50

low-latency

FALSE

FALSE

TRUE

FALSE

FALSE

TRUE

FALSE

FALSE

FALSE

r10

r11

r12

35

40

45

FALSE

TRUE

FALSE

Figure 6. LUT updating when non-low-latency rules are added in the MAT.

To avoid cache mistakes when packets are processed in the FFP, we need to verify the
correctness of the search result. From Figure 5, we can see that the LUT entry structure in
the FFP has a counter, extra_rule_num, and a linked list, extra_rules. The ordinary MAT
entries having dependencies on the recorded low-latency rule are stored in the linked list
in descending order of priority. extra_rule_num indicates the length of the current linked
list. When the packet matches a low-latency rule recorded in the FFP and extra_rule_num
is greater than 0, the extra rules need to be traversed to verify the correctness of the match
result. If a normal rule in the linked list is matched, then the low-latency flag of the packet
is corrected to FALSE, and the packet will be sent to the next MAT in the pipeline for
further processing.

The cost of traversing the linked list varies with its length. Therefore, when we update
the linked list, we need to calculate the average time required for traversal. We calculate
a weighted value according to the priority of each rule. In addition, when an MAT is
created in the pipeline, we calculate its searching time immediately. The factors that affect
the searching time of an MAT are none other than the search algorithm, the length of the
matching fields, and the table size, which are immutable once the MAT is built. Thus, we
can calculate the search time of the MATs in advance. When the correctness of the FFP
search result needs to be affirmed, the solution with the shorter time will be chosen based
on the search time calculated earlier.
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If the packet hits another rule during the verification, the previously hit low-latency
entry record must be invalidated, i.e., the record must be deleted in the FFP to avoid
subsequent packets from hitting again. If the packet does not hit a new rule, it means
that the record is still valid and can be directly used as the matching result for subsequent
packets, so the linked list, extra_rules, can be cleared and the corresponding counter,
extra_rule_num, will be reset 0.

We propose an optimized matching correctness verification scheme for LPM tables.
The scheme simplifies the above universal verification process by taking advantage of the
specificity of the matching field form of the LPM tables and the binary-tree search structure.
Rules in the LPM tables have no priority, and if packets can match multiple rules at the
same time, only the rule with the longest prefix will be used as the result. In another word,
the prefix of an LPM entry plays a similar role to the priorities in other MATs and is used to
determine the final matching result of the packet. As we mentioned earlier, for new MAT
entries, we only need to focus on those with higher priority than recorded low-latency rules
in the FFP. Therefore, in LPM tables, we only need to consider the new rules with longer
prefix lengths.

The intersection relationship between MAT entries is intuitively represented based
on the special lookup structure of LPM tables, which is a binary tree with each table entry
distributed among the tree nodes, including all leaf nodes and some intermediate nodes.
If a new entry intersects with the packet space covered by a low-latency rule recorded in
the FFP, the nodes corresponding to them must be on the same path from the root node to
some leaf node. Because we only consider new rules with longer prefixes, if two rules have
an intersection, then the node of the new rule must be a descendant of the low-latency one.
We already know this result when updating the binary tree, because the insertion process
of the new entry node will go through the node of the low-latency rule. Therefore, we do
not need to record these new rules in the form of a linked list in the FFP. Instead, we only
need a flag, veri f y_ f lag, to identify whether we need to continue traversing the binary tree
as well as the address of the hit rule node, as shown in Figure 7.

LUT

Hash key Rules Verify_flagTreeNode

key1 r3 True&node_1

Root

0 1

00 01 11

110 111

r1 r2

r3

r4 r5

MAT

Rules Prefix

r1 00

r2 01

r3 1

r4 110

r5 111

Figure 7. LUT design for LPM tables.

When a packet hits a low-latency rule in an FFP LUT, veri f y_ f lag should be checked.
If a further search is required, the packet starts searching the subtree from the provided
node address. If another entry is matched in the subtree, the previously hit low-latency
rule record should be deleted from the FFP. Otherwise, veri f y_ f lag resets, and subsequent
packets no longer need verification.

The above discussion is conducted for normal-rule addition scenarios. For new low-
latency MAT entries, the conclusion differs a bit in the process. If a packet hits a new low-
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latency rule during the verification, the previously hit record in the FFP will not be deleted
but modified with the latest hit one to update the processing logic of subsequent packets.

In Section 4.2.2, we performed benefit analysis in the ideal scenario where each low-
latency flow hits a rule in the FFP. However, we need to take the matching correctness
verification into consideration. After the above analysis, the time required for matching
correctness verification can be described as follows:

Tv = min{tlist, tpipeline} (7)

t_list and t_pipeline are, respectively, the time required to traverse the linked list extra_rules
and search the MAT in the pipeline. We estimate t_list using a priority-weighted average:

Tlist = p′tcmp =
1
N
(

N

∑
i=1

ipi)tcmp(l) (8)

N is the length of extra_rules, and pi is the priority of each extra-rule. t_cmp(l) represents
the time required to execute a comparison.

For all low-latency traffic entering the LUT, assuming that the percentage of traffic that
directly hits a rule without verifying the matching correctness is ρ, the average processing
time of all low-latency flows can be denoted as:

Tl = ρt f p + (1− ρ)(t f p + tveri f ication)

= t f p + (1− ρ)tveri f ication

= khashl + (1− ρ)min{ 1
N
(

N

∑
i=1

ipi)tcmp(l), tpipeline(l, n)}+ C

(9)

It is easy to see from the above equation that the average processing time of low-latency
flows is mainly affected by ρ. In practical situations, only the first packet in a flow needs to
be verified for correct matching during processing, unless there are frequent rule updates at
the same time. However, from experience, rule updates are similar to network flows on the
temporal dimension, usually having aggregation and burstiness. Therefore, ρ can maintain
relatively large values in the vast majority of cases, and the average processing time of
low-latency flows can be approximated as the same as the searching time of a hash table.

In the previous section, we only consider traffic missing in the FFP when searching
a hash table to calculate the average processing time of ordinary flows. However, part of
normal traffic may match low-latency rules in the FFP and be founded not low-latency
after the match correctness verification. Assuming that the query misses account for ρ′ of
all normal traffic, the ratio of ordinary traffic filtered out during the validation process is
1− ρ′. Then, the average processing time of ordinary flows can be denoted by:

Tn = ρ′(t f p + tpipeline) + (1− ρ′)(t f p + tveri f ication)

= t f p + ρ′tpipeline(l, n) + (1− ρ′)tveri f ication

= khashl + ρ′tpipeline(l, n) + (1− ρ′)min{ 1
N
(

N

∑
i=1

ipi)tcmp(l), tpipeline(l, n)}+ C

(10)

Similar to low-latency traffic, the packet filtered out during the verification is usually
the first packet in a normal flow, and the rule updates also have some effect on the value of
ρ′. For the same reason, we can approximate the above equation as khashl + t_pipeline(l, n).
In other words, after the introduction of FFP, the processing of ordinary traffic has an
additional hash table lookup phase compared to the original one.

From the results of the above analysis of single-stage processing, it seems that the
gain from introducing an FFP is not significant enough. However, ultimately, we have to
analyze the whole problem from the perspective of a multi-stage pipeline.
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Figure 8 briefly depicts the forwarding process of traffic within the switch, where Pi
denotes the MAT at level i in the pipeline, and Li is the LUT in the FFP corresponding to Pi.
The cases except EM tables are discussed here first. In the figure, ρi indicates the proportion
of traffic that hits low-latency rules and goes to Li+1 among the traffic processed by Li. ρ0
is initialized to 0. From a simple analysis, we can obtain the percentage of fast-processed
and slow-processed flows to the total traffic:

RLi =
i

∏
j=0

ρj (11)

RPi = RLi−1 − RLi (12)

L1

P1

L2

P2

Ln

Pn

L3

P3
...

...1 ρ1 ρ1ρ2

1-ρ1 ρ1(1-ρ2) ρ1ρ2(1-ρ3)

Figure 8. Traffic forwarding process model.

The low-latency traffic handled entirely by the FFP represents only a fraction of the
total traffic, and the specific ratio is RLN . All other traffic undergoes a portion of fast-path
processing, more or less. Assuming that the traffic size (the number of packets) over some
time is F, the number of packets for low-latency traffic is

FL = FRLN (13)

and the one for other flows is

FN = F(1− RLN ) (14)

We denote the average time for node Li and node Pi to process a packet as tli and tpi .
Then, the cost time of each node in the FFP when the switch processes the F packets is

TLi = FRLi−1 tli (15)

So, the processing time of the whole fast-processing path is

TL =
N

∑
i−1

TLi = F
N

∑
i=1

RLi−1 tli = F
N

∑
i=1

(
i−1

∏
j=0

ρj)tli (16)

Apportioning this time to each low-latency packet, we can obtain the average forward-
ing delay for low-latency flows as

LatencyL =
TL
FL

=
∑N

i=1 RLi−1 tli
RLN

=
∑N

i=1(∏
i−1
j=0 ρj)tli

∏N
i=0 ρi

(17)
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Similarly, we can make an estimate for non-low-latency flows:

TNi = F(
i−1

∑
j=0

RPj tpi + RPj tni ) (18)

TN = F
N

∑
i=1

[(1− RLi−1 tpi ) + (RLi−1 − RLi )tni ] (19)

LatencyN =
TN
FN

=
1

1−∏N
i=0

N

∑
i=1

[(1−
i−1

∏
j=0

ρj)tpi + (
i−1

∏
j=0

ρj)(1− ρi)tni ] (20)

As a comparison, all traffic is processed by the pipeline without an FFP. The average
packet forwarding delay can be denoted as

Latency =
N

∑
i=1

tpi (21)

Based on the above equations, we can summarize the benefits of low-latency traffic
delay reduction:

WL = Latency− LatencyL

=
N

∑
i=1

tpi −
∑N

i=1(∏
i−1
j=0 ρj)tdi

∏N
i=0 ρi

=
1

∏N
i=0 ρi

[(
N

∏
j=0

ρj)tpi −
N

∑
i=1

(
i−1

∏
j=0

ρj)tdi
]

(22)

5. Experimental Results

To verify the feasibility of our approach, we conducted a series of experiments.

5.1. Simulation Setup

The emulator runs on a Linux platform with an Intel Xeon Silver 4208 CPU@2.10 GHz
and 64 GB of RAM, and an Intel X710 is plugged as the NIC (Network Interface Card). The
operating system is CentOS 7.9.2009. The software POF Switch is compiled using the O3
optimization option and works with DPDK 19.11.3 on the server. The ONOS controller
works on another server with the same hardware configuration and connects to the POF
Switch. Spirent SPTC50 is set as the traffic generator and the data analyzer. We use Spirent
SPTC50 to generate traffic and input it into the POF Switch, and the switch processes
the traffic and forwards it backward to the traffic generator. The forwarding latency and
capability of the switch are collected by Spirent SPTC50 and shown in the Spirent TestCenter
Application. The devices are connected as shown in Figure 9.

Spirent TestCenter Application

ONOS Controller

POF Switch

Spirent SPTC50

POF Southbound 

Interface

Network Traffic

Figure 9. The setup of the experiments.
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We simulated three real network scenarios:

• Communication in the big data processing. Communication between servers in DCNs
requires basic routing and techniques such as an ACL to secure the network and
servers. We use an ACL as a traffic processing step in our experiments to test the
forwarding performance of the traffic.

• Videoconferencing. Videoconferencing is a typical use case of the publish–subscribe
pattern in the present and future networks, with high requirements for video trans-
mission quality and latency. We choose the SEADP (on-Site, Elastic, Autonomous
Datagram Protocol) as the transport-layer protocol to encapsulate the traffic in our
tests because it can provide ID-IP resolution-based routing and multiple QoS supports.

• IoV (Internet of Vehicles). As one of the core applications of 5G communication, the
IoV demands an extremely low response latency. We use WSM (Wave Short Message)
in our experiments to carry the simulated traffic of the IoV.

We conduct our experiments with a traffic processing model. The model consists of
three processing stages. The first stage checks the Ethernet layer, including fields such
as the destination MAC and Ethertype. Stage 1 distinguishes the messages encapsulated
in the different network-layer protocols. The second stage includes the ACL table on the
IPv6, the SEADP table, and the WSM table, which implement the QoS applications for the
above three types of traffic, respectively. The third stage is an FIB (Forward Information
Database), which consists of routing entries and matches only the destination IP or MAC.

Figure 10 shows the traffic processing flow. With the above configuration, the MAT in
stage 1 and stage 2 are MM tables, while the FIB table matching the destination IP and the
destination MAC in stage 3 are the LPM and EM, respectively.

Table 0
INPUT_PORT

DST_MAC

Ethertype

Ethertype(VLAN)

Ethertype(QinQ)

Table 1 (ACL)
SRC_IPv6_ADDR

DST_IPv6_ADDR

PROTOCOL

SRC_PORT

DST_PORT Table 4
DST_IPv6_ADDR

Stage 1 Stage 2 Stage 3

Table 2 (SEADP)
SRC_ID

DST_ID

QoS_FLAGS

Table 3 (WSM)
PSID

Data Rate

Transmit Power Used

Table 5
DST_MAC

Figure 10. The traffic forwarding process.

First, we tested the forwarding performance of the simple pipeline POF Switch and
the composite pipeline one proposed in this paper for low-latency flows. We measured the
performance by the forwarding delay. We then used Spirent SPTC50 to generate mixed
traffic containing low-latency flows to simulate real scenarios. We tested the improvement
in the composite pipeline on the performance of the low-latency traffic forwarding and the
cost of the increased latency of other flows forwarding in the mixed traffic scenario.
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5.1.1. Forwarding Performance For Low-Latency Traffic

In this experiment, we used pure low-latency flows as the input traffic. For the native
POF Switch, these flows are forwarded by the pipeline, while in our composite pipeline
POF Switch, the processing of these flows is performed entirely in the FFP. We can use this
test to learn the packet processing capabilities of the FFP and the pipeline, respectively. The
average packet length is adjusted to test the maximum throughput and the forwarding
delay without the packet loss in each scheme.

Figure 11 shows the forwarding capability of the switch when processing the traffic
with different average packet lengths in the three scenarios. It is clear that when processing
the server communication and videoconferencing traffic, the MAT pipeline in the native
POF Switch cannot forward packets at the wire speed (10 Gbps) until the packets are longer
than 640 bytes. In contrast, our proposed FFP has a better forwarding performance and can
support wire-speed forwarding for 256-byte and longer packets. While for the forwarding
capability of the IoV traffic, the MAT pipeline has a similar performance to our approach.
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 Server communication (FFP)
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 Server communication (MAT pipeline)
 Videoconferencing (MAT pipeline)
 IoV (MAT pipeline)

Figure 11. The low-latency traffic forwarding capabilities of the FFP and the MAT pipeline in the
native POF Switch.

To make the results more convincing, we kept the packet length above 640 bytes so
that both schemes can work at the wire speed. Then, we measured the forwarding latency,
and the statistical results are depicted in Figure 12. It is easy to find that our proposed
FFP has a much lower forwarding delay for server communication and videoconferencing
traffic. By calculating the results, we can obtain a forwarding latency reduction of about
62–68%. As in the previous forwarding throughput test, the forwarding latency of the IoV
traffic still does not show a significant difference between the two methods in this test. This
is because the IoV traffic uses the efficient WSM protocol, in which case the difference in
the search time between the hash lookup and MM table is not obvious due to the short
input data.
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Figure 12. The low-latency traffic forwarding latency of the FFP and the MAT pipeline in the native
POF Switch.

5.1.2. Forwarding Performance in Mixed Traffic Scenarios

Actual network traffic is composed complexly, so we used the traffic generator to
generate mixed traffic to test the forwarding capability of the native POF Switch and the
composite pipeline based on the above experiments. It should be noted that to work effi-
ciently in real networks, our composite pipeline needs to ensure that the impact on normal
traffic forwarding processes is within an acceptable range. For the above requirements, we
tested the forwarding delay of low-latency flows and non-low-latency ones by adjusting
the proportion of the low-latency part.

As Figures 13 and 14 show, for the server communication and videoconferencing part
of the mixed traffic, our proposed scheme can complete the forwarding work with lower
latency than the native POF Switch. In addition, for the non-low-latency part, the composite
pipeline also has a better performance. The reason is that the FFP takes up part of the
forwarding process for these flows, and the delay reduction is more than the delay increase
caused by the packet transmission between the FFP and the MAT pipeline. Crucially, the
above conclusion holds, regardless of the percentage of the low-latency portion of the
mixed traffic.

However, for the IoV flows, as analyzed in the previous tests, the FFP cannot provide
an effective optimization to the forwarding performance. Therefore, the delay reduction
in the FFP is less than the delay increase in the packet transmission, and the forwarding
latency shown in Figure 15 can be explained. All these results are consistent with the
conclusions we analyzed in the previous sections.

Based on the above experimental data, we compiled the following table listing the
round-trip time and reliability of different flows at a fixed percentage in the mixed traffic
(20%). Table 3 shows the result of the comparison.
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Figure 13. Forwarding latency of server communication traffic mixed with normal traffic.
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Figure 14. Forwarding latency of videoconferencing traffic mixed with normal traffic.
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Figure 15. Forwarding latency of IoV traffic mixed with normal traffic.
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Table 3. The average round-trip time and the reliability of traffic in the three scenarios.

Traffic Type Average Round-Trip Time (µs) Reliability

Server communication 14 ± 0.5 99.99999%
Videoconferencing 15 ± 0.2 99.99999%

IoV 15 ± 0.2 99.999%

To show our approach achievements, we compared the round-trip time of the existing
schemes and ours in Figure 16. The figure shows that due to the disability of distinguishing
low-latency traffic, Approaches 1–5, respectively, perform an identical round-trip time for
the normal/low-latency traffic. In contrast, our composite pipeline shows the disparity
between the two types of traffic: the round-trip time for the low-latency traffic is much less,
which meets the requirements of priority.

Table 4 lists the detailed data and the contribution that each approach makes to the
reduction in the round-trip time. As shown in the table, some existing approaches greatly
reduce the forwarding latency of the data-plane devices, such as PacketShader, by taking
advantage of high-performance hardware. However, our approach is designed in software,
and the result of the comparison shows the novelty of our approach—the obvious reduction
in the round-trip time for the low-latency traffic.
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1. Rule replacement optimization
2. Macroflow/Microflow (OVS)
3. PacketShader
4. NP-OVS
5. NP-OVS (CPU-NPU load balanced)
6. Composite pipeline (this article)

Figure 16. The round-trip time of normal/low-latency traffic in each approach.

Table 4. The average round-trip time and the reliability of traffic in the three scenarios.

Approaches
Average Round-Trip

Time before
Optimization (µs)

Average Round-Trip
Time after

Optimization (µs)

Reduction
for Normal

Traffic

Reduction for
Low-Latency

Traffic

Rule replacement
optimization 184 175 4.89% -

Macroflow/
Microflow (OVS) 172 99 42.44% -

PacketShader >1000 280 >72.00% -

NP-OVS 313 258 17.57% -

NP-OVS
(CPU-NPU load

balanced)
234 60 74.36% -

Composite pipeline
(this article) 90 32 <10% 64.44%



Electronics 2023, 12, 461 21 of 23

6. Conclusions

Our approach aims to improve the forwarding efficiency of low-latency traffic on SDN
programmable data planes. In this paper, we provide the following contributions. Firstly,
we proposed an identifying method for low-latency traffic based on the POF southbound
interface protocol, which is accomplished jointly by marking the MAT entries on the control
plane and labeling the packets on the data plane. Then, based on the above work, we
proposed a composite pipeline architecture to improve the forwarding efficiency of low-
latency traffic by introducing an FFP, in which we also made special optimizations to
LPM tables. Finally, we demonstrated the effectiveness of our scheme through a series of
experiments. The results show that the low-latency traffic forwarding capability of the FFP
in the composite pipeline is much better than that of the MAT pipeline. Specifically, in
DCN server communication and videoconferencing scenarios, we reduced the lower limit
of the average packet length required for wire-speed forwarding from 640 to 256 bytes,
and the forwarding capacity of the FFP is more than twice that of the MAT pipeline when
processing packets shorter than 256 bytes. In terms of forwarding latency, we tested wire-
speed input traffic. The results showed that the forwarding delay of low-latency flows
is reduced by more than 60%. In addition, we also measured the forwarding capability
of mixed traffic with different percentages of the low-latency part. The results show that
the composite pipeline reduces the forwarding delay of the low-latency flows by 17–20%,
and the forwarding delay of the non-low-latency part has a similar reduction. While in
the simulated IoV scenario, the forwarding process consists of efficient MATs with less
searching time, the improvement in our approach is not outstanding enough, and the
forwarding latency even increases slightly. To sum up, our work in this paper has a certain
degree of improvement for low-latency traffic forwarding in SDN data planes.

In order to make our approach more efficient, our future work will focus on optimizing
the FFP, including improving the lookup hit rate of LUTs, reducing the lookup time for
short matching fields. When the optimization completes, we will further offload the FFP
module to hardware devices such as FPGAs with a higher performance.
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Abbreviations
The following abbreviations are used in this manuscript:

ICN Information-Centric Networking
DCN Data Center Networking
SDN Software-Defined Networking
QoS Quality of Service
MAT Match-Action Table
POF Protocol-Oblivious Forwarding
FFP Fast-Forwarding Path
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PISA Protocol-Independent Switch Architecture
TCAM Ternary Content Addressable Memory
OVS Open vSwitch
NP Network Processor
FRT Forwarding Rule Table
LUT LookUp Table
EM Exact Matching
LPM Longest Prefix Matching
MM Mask Matching
NDN Named Data Networking
ACL Access Control List
SEADP on-Site, Elastic, Autonomous Datagram Protocol
IoV Internet of Vehicles
WSM Wave Short Message
FIB Forwarding Information dataBase
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