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Abstract: The evaluation of heart health status is the reference standard for measuring the intensity
of exercise performed by different individuals. Thus, the effective analysis of heart conditions is an
important research topic. In this study, we propose a system designed to segment images of the right
ventricle. In this system, the right ventricle of the heart is segmented using an improved model called
RAU-Net. The sensitivity and specificity of the network are enhanced by improving the loss function.
We adopted an extended convolution rather than ordinary convolution to increase the receptive field
of the network. In the network-sampling phase, we introduce an attention module to improve the
accuracy of network segmentation. In the encoding and decoding stages, we also introduce three
residual modules to solve the gradient explosion problem. The results of experiments are provided to
show that the proposed algorithm exhibited better segmentation accuracy than an existing algorithm.
Moreover, the algorithm can also be trained more rapidly and efficiently.

Keywords: deep neural network; attention module; encoding and decoding stage

1. Introduction

The popularization of health and fitness training has had a positive impact on the
global development and adoption of basketball. Fitness training mainly includes training
of muscle strength, sensitivity, and coordination, as well as muscle endurance, cardiopul-
monary endurance, neuromuscular components, and it can improve the aforementioned
aspects of the body through physical training [1]. College students commonly play basket-
ball in nearly all parts of the world. However, many college students do not pay special
attention to their physical fitness and may easily be injured while playing. In this study,
we investigated the knowledge of students in seven developing countries about fitness
training using a questionnaire survey. In total, 300 questionnaires were sent. Through
screening, 289 were effective, with a recovery rate of 96%. Among the 39% of the students
who had engaged in fitness training, 30% of them were familiar with the topic and 31%
were not. This also shows that the popularization of fitness training in developing countries
still involves some notable problems [2].

Basketball is a high-intensity competitive sport that emphasizes physicality and in-
volves considerable requirements in terms of height, body shape, and physical capacities.
In terms of physical muscle strength, college students often perform extensive strength
training in basketball. Throwing the ball, changing direction, and dunking also require a
great deal of flexibility, athleticism, and explosive physical power. Monitoring the cardiac
functions of an individual while playing basketball thus has certain significance. Therefore,
we can consider that fitness training highlights the importance of heart function [3]. In
may developed countries, the mortality rate associated with cardiovascular disease has
decreased rapidly in recent years. By contrast, although the mortality rate of cardiovas-
cular disease in many developing countries has improved, it remains much higher than
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that in developed countries [4]. The knowledge regarding the shape and function of the
heart can help in diagnosis and treatment; however, there is a lack of relevant quantitative
information. The use of medical imaging technology to assist clinical diagnosis has thus
become particularly important.

2. Related Works

At present, cardiac MR imaging is one of the most important, accurate, and noninva-
sive diagnostic tools for imaging cardiac structure and function. Doctors usually analyze
a patient’s cardiac MR images and calculate the continuous dynamic changes in the left
and right ventricular volumes in the process of contraction and relaxation. This approach
can be used to determine parameters, such as cardiac end-diastolic and -systolic volume,
stroke output, and ejection fraction, to judge an individual’s cardiovascular health status.
Therefore, accurate segmentation of ventricles in such imaging is very important. A cardiac
MR image is shown in Figure 1.
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Figure 1. MR image of the heart.

Common ventricular segmentation techniques can be roughly divided into four cate-
gories, including segmentation algorithms based on thresholds and those based on cluster-
ing technology, deformable models, and neural networks.

Segmentation algorithm based on threshold. Threshold segmentation is the most
commonly used general image segmentation method. This approach requires the target
to be segmented to have special quantitative characteristics. The essence of segmentation
is to find pixels within a specified threshold range. The appropriate threshold can be
determined manually or by using an algorithm. Ng et al. [5] proposed a medical image
segmentation method based on a threshold value, which adopted watershed segmentation
and texture-based region merging. Kotropoulos et al. [6] proposed a method to filter an
image first, then perform threshold segmentation, and finally set a function in a support-
vector machine (SVM) classifier to segment the image. Khare et al. [7] proposed soft
threshold segmentation in medicine that used a membership function to classify pixels to
achieve image segmentation. This method is highly robust and does not require manual
interaction for automatic segmentation.

For segmentation algorithm based on clustering technology. Common clustering tech-
niques and segmentation methods include k-means and fuzzy C-means. k-means clustering
calculates the average number of separated classes or cluster values in an image and takes
the average value closest to the image for segmentation. Nandagopalan et al. proposed a
segmentation method based on k-means to improve segmentation speed. Similarly, Li et al.
proposed a volume-based medical image segmentation method, and Kumbhar et al. [8]
used a trained k-means clustering method for the MR segmentation. Their algorithm mini-
mized the change in a cluster through iteration, allocated pixels that violate a given mark to
the cluster, and reassigned pixels until all pixels were divided into corresponding categories.
In medical image processing, the FCM algorithm combining C-means and fuzzy theory has
shown promising results. The performance of FCM can improve the accuracy of Kumbhar
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et al.’s [9] segmentation method by adding spatial influence to the objective function, or
using techniques that can transform nonlinear problems into antecedent problems more
effectively [10]. For example, Li et al. [11] modified an objective function by adding an
influence term defined by the label in the neighborhood pixel. Ozyurt et al. [12] proposed a
similar MR segmentation method. To shorten the segmentation time, Szilagyi et al. [13]
introduced new factors based on the FCM. Balafar et al. [14] used wavelet transform for
gray value processing to reduce the noise in an image before clustering it based on the
central grey level.

Segmentation methods based on deformable models. Compared to the two types
of segmentation methods discussed above, segmentation methods based on deformable
models are more flexible and can be used for complex segmentation. Processes based
on segmentation methods that use deformable models can be considered as a model of
curve evolution. This is based on the target boundary. The characteristics considered
by the target boundary include the shape, smoothness, internal force, and external force
acting on the segmented object. All these factors affect the effectiveness of the obtained
results. A closed curve and its shape in an image are used to reach the object boundary.
The piecewise continuity of these methods is their main advantage. According to their
approach to motion contour tracking, variability models can be divided into parametric
and geometric deformable models. Parametric deformable models are described by a
finite number of parameters, and are also known as active contour methods. The shape
model is represented using a generated parameter curve. The parametric deformable
model is explicitly tracked by sampling the contour points and tracking the evolution
process. This model has the advantages of high computational efficiency and convenience
for real-time applications. The development of parametric deformable models is closely
related to the snake method [15], which is sensitive to initial conditions. The motion contour
can stop at the location where the local function is minimal or at the location where the
gradient amplitude is too small and the external force area is zero. To prevent the curve
from contracting or stopping at a local minima, Cohen et al.’s [16] method expanded or
contracted the contour for weak gradient lengths by adding momentum. A set deformable
model is established based on the level-set method [17]. The level set method can easily deal
with topological changes, and the geometric properties of the contour can be calculated
implicitly, which reduces the computational complexity of the geometric deformation
model. Malladi et al. [18] provided an algorithm that used gradient information to define a
velocity function and added curvature influence to maintain a smooth contour. When the
contour moves to the structural boundary, the increase in the amplitude of the gradient
reduces the velocity value, which slows down the evolution of the contour. If noise is
present in the image, the contour may be produced in segmentation only after a long
processing time. To solve this phenomenon, we apply edge [19] and regional strength
terms [20] to improve the model.

Segmentation algorithm based on neural network models. Owing to their unique
advantages, deep neural networks play an important role in image processing. Deep
learning has thus become the most common approach in medical image segmentation [21].
Because the application of deep learning to the field of medical image segmentation has
played a significant role in improving segmentation accuracy, many such algorithms
has been proposed. In 1998, the LetNet-5 architecture was proposed [22]. AlexNet [23]
and other models [24] won the championship of the ImageNet competition in 2012, and
convolutional neural networks were subsequently widely recognized and adopted. U-Net
is a well-known representative example [25]. The innovative U-Net model adopted an
up-down sampling structure and jump connection. This means that the model only needs
to process the image segmentation once to perform image segmentation. Driven by these
advances, convolutional neural networks are now of great significance in heart-image
segmentation. In clinical diagnosis, heart images must usually be segmented to obtain a
heart-related index to assist the diagnosis. Tran et al. [26] used FCN to segment the left
and right ventricles from cardiac MR images and demonstrated its advantages in terms
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of accuracy and speed. Subsequently, more segmentation methods were developed by
Bai et al. [27], particularly a segmentation method based on U-Net [28]. The combination
of spatial and temporal background information has also been an important research
direction, including segmentation of the heart at the end of diastole and systole. Shape-
based constraints have been shown to be effective when segmenting the left ventricle
using other types of machine learning methods, and were included in a deep learning
strategy based on anatomical constraints [29]. Other important works have considered
MR atrial segmentation [30], CT whole-heart segmentation [31], and 3D ultrasound image
sequence left ventricular segmentation [32]. Given the many challenges evident in the field
of heart image segmentation, considerable room for improvement remains in terms of the
performance of heart segmentation methods.

Although there are many types of segmentation algorithms, most methods are based
on left ventricular segmentation, owing to the complexity of heart images and differences in
heart images among different races. Few studies have been conducted on the segmentation
of the right ventricle, and the accuracy of most methods does not suffice. Therefore, we
adopted the U-Net network as a basis for further development because it is widely used in
right ventricular segmentation.

In this study, we designed and implemented a right ventricular image segmentation
system. In this system, the right ventricular heart is segmented according to the improved
U-Net, which we refer to as RAU-Net. The relevant cardiac index was calculated based on
the segmentation results. The contributions of this study are summarized as follows:

(1) We propose targeted improvements to address some limitations of traditional U-Net.
We adopt extended convolution to increase the receptive field.

(2) We propose RAU-Net by introducing an attention module and improving the network
loss function.

(3) We introduce residual module into the original network to improve the training speed.

The algorithm not only ensures the training speed, but also further improves the accu-
racy of network segmentation. Finally, our experimental results verified the effectiveness
of the improvement. Thus, the proposed approach can be implemented in clinical practice
to perform auxiliary diagnosis.

3. Algorithm Design

Through the reproduction of the right ventricle segmented by the basic U-Net network,
it may be observed that although good results were achieved in some clearer images,
some problems remain with complex images, which considerably affects the accuracy of
segmentation. The shortcomings of the model mainly include the following:

(1) The model does not notice that the receptive field significantly affects the segmentation
performance of the model. The size of the receptive field imparts different sensitivity
to the target segmentation area. Therefore, a change in the receptive field size leads to
a change in the performance of the segmentation model.

(2) Both over- and under-segmentation are possible. Owing to the large difference in
the sample images, the algorithm may segment the segmented and non-segmented
regions incorrectly.

(3) The training speed of the model is slow.

To address these shortcomings, we propose the following improvements:

(1) An extended convolution is introduced to increase the receptive field size of the
network model.

(2) An attention module is introduced to improve segmentation accuracy.
(3) A residual module is introduced into the original network to improve the train-

ing speed.
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3.1. Design of Extended Convolution

The network downsampling stage is known as the shrink path, and is used to extract
the features of the input image. In this process, two convolution operations with a convolu-
tion kernel of 3 × 3, padding value of 1, and step size of 1 were performed, and ReLU was
selected as the activation function. The receptive field of the two convolution operations is
the same as that of a convolution operation with a 5 by 5 kernel, although it reduces the
required computation. After two convolutions, the maximum pooling operation is per-
formed on the feature image with a size of 2 × 2 and a step size of 2. Thus, a feature image
with half the original size is obtained. After shrinking the path, the number of channels in
the input stage is set to 64, then the number of channels is doubled after each stage, and the
number of channels is repeated four times to 512 channels. After 3 × 3 convolution of the
feature image, a feature image with 1024 channels is obtained.

Because the output requires an image of the same size as the original image, the
expansion path requires a reduction in the number of channels. After a 3 × 3 convolution
of the feature image, a deconvolution is carried out with a convolution kernel size of
3 × 3 and step size of 2, the image size is expanded to the original 2, and the number of
channels becomes 512. The image obtained by deconvolution is pieced together with an
image of the same size on the shrink path to complete a jump connection. Two convolution
operations with a convolution kernel of 3 × 3, padding value of 1, and step size of 1 are
performed on the feature image obtained, the ReLU activation function is applied, and the
number of channels is divided in half. The convolution operation is repeated four times;
the size of the feature image is doubled each time, and the number of channels is halved
each time. Finally, convolution with a convolution kernel of 1 × 1 is performed to reduce
the number of feature image channels from 64 to 1 and output feature images.

In the problem of image segmentation, the pooling operation in the process of down-
sampling leads to a reduction in image resolution and the loss of key information. To solve
these problems, we propose extended convolution as a new convolution method. The core
idea of extended convolution is to add 0-value pixels between each pixel to increase the
size of the nucleus in a disguised manner, without changing the size of the feature map
to increase the receptive field. The number of pixels with a value of zero was determined
by the expansion parameter. For example, take a convolution kernel with a size of 3 × 3.
When the expansion parameter is set to 2, a 0-value pixel is added between each row and
column of the convolution kernel. The size of its receptive field increases from three to
seven. Figure 2 shows the change in the receptive field size of a 3 × 3 convolution kernel
when the expansion parameters are set to 1, 2, and 4.
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Figure 2. Schematic diagram of receptive field size changes under different expansion parameters.
(a) The expansion parameter is 1. (b) The expansion parameter is 2. (c) The expansion parameter is 4.
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Figure 2a shows that when the expansion parameter is 1, the size of the convolution
kernel is 3 × 3, and the size of the receptive field is 3. Figure 2b shows that when the
expansion parameter is 2, except for the red dot position in the figure, the other green
positions are 0-value pixels. The receptive field was expanded to seven without changing
the convolution kernel size to 3 × 3 pixels. Figure 2c shows that when the expansion
parameter is 4, the receptive field is also expanded to 15 without changing the size of
the convolution kernel. It may be observed that the receptive field sizes of the expanded
convolution and ordinary convolution differed in proportion to the number of convolution
layers. The size of the expanded convolution receptive field is exponentially related to the
number of convolutional layers. The steps used to calculate void convolution are as follows:

f = (n− 1)× (k− 1) + k, (1)

where f is the size of the hollow convolution kernel, n is the expansion parameter, and k is
the size of the ordinary convolution kernel.

RFi+1 = RFi + ( f − 1)× Si, (2)

Si = ∏i
i=1 Stridei (3)

RFi+1 indicates the receptive field of the current layer, RFi represents the receptive
field of the upper layer, and Si is the product of the steps of all the previous layers.

Table 1 lists the exponential growth process of the receptive field with the number of
convolution layers. Layer 6 has an expanded receptive field with a size of 127, based on
which the extended convolution is applied to the U-Net. Rapidly increasing the receptive
field of the network can not only reduce the network parameters, but also improve the
speed of image processing without affecting the size of the feature image.

Table 1. Extended convolutional receptive field variation table.

Number of
Layers

Convolution
Kernel Size Step Coefficient of

Expansion
Receptive Field

Size

1 3 1 2 3
2 3 1 4 7
3 3 1 8 15
4 3 1 16 31
5 3 1 32 63
6 3 1 64 127

3.2. Improved Design of Edge Detail Segmentation

In the process of segmenting the right ventricle, because most of the cardiac MR
images are tissue images around the ventricle, only a small part is the target area of
the segmentation task, accounting for only approximately 5% of the total images. The
cross-entropy loss function used in the network is a simple binary classification function.
The network may mistakenly focus on the image around the ventricle, resulting in the
network giving higher weight to the nontarget region and the problem of classification
imbalance. The most important step in the process of training the model is the selection of
an appropriate loss function. By changing the loss function value, the performance of the
network can be predicted, and the weight can be updated in the direction of propagation to
make the network gradually reach the optimum. Common loss functions include cross-
entropy, Dice, and Focal loss.
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Ventricular segmentation is essentially a binary classification problem; the cross-
entropy loss function is used to train the neural network. The cross-entropy loss function is
defined as follows:

LB = ∑M
i=1−(Toilog(Poi) + Tbilog(Pbi), (4)

where Poi and Pbi represent the probability of pixel I in the segmented and nonsegmented
regions, respectively. Toi and Tbi indicate whether the pixel is in the corresponding area
with 1 and 0, respectively. When Toi is 1, pixel I is in the segmented area, and 0 indicates
that it is in the non-segmented area Tbi, and vice versa.

Based on the cross-entropy loss function, the sensitivity and specificity functions are
combined as a loss function of the network. The loss function of sensitivity and specificity
is shown in Equation (5).

LS =

(
∑M

i=1 PoiToi

∑M
i=1 PoiToi + ∑M

i=1 PbiToi
+

∑M
i=1 PbiTbi

∑M
i=1 PbiTbi + ∑M

i=1 PoiTbi

)
, (5)

where Poi, Pbi, Toi, and Tbi have the same meaning as in Equation (4). Sensitivity means
that the network mistakenly considers the pixels that should be around the ventricle as the
tissue pixels around the ventricle, while specificity means that the tissue pixels that should
be around the ventricle are mistakenly considered as the ventricular pixels. The improved
loss function is shown as Equation (6).

L = αLB + βLS. (6)

Here, α and β are parameters that can vary, as can the weights of the two loss functions.
In this formula, α = 0.2, β = 0.8. On the one hand, this can reduce the weight of the cross-
entropy loss function and suppress classification imbalance. However, it can improve the
sensitivity and specificity of the network models.

3.3. Attention Module

Enabling the neural network to focus more on the target area can also simplify the
process of designing the network structure and algorithm. A simple network structure can
be used to solve complex problems. The U-Net network adopts the method of long skip
connections, which can be disturbed by useless information and live noise, and reduce
the performance of the training process. Therefore, the channel attention module is added
in the feature extraction stage to highlight the information of the target area to suppress
useless information.

Channel attention refers to the features to which the neural network can pay more
attention according to the target. The input of a neural network is represented by a channel,
and convolution generates new channels. The contribution of each newly generated channel
to the feature information extracted by the neural network differed. By changing the weight
ratio between channels, the neural network can pay more attention to channels with a
high contribution rate, which can improve the ability of the network to judge characteristic
information. The implementation process is shown in (7).

FC = F1 ⊗ Fs =
[

F1
1 · · · · · · Fn

1

]
⊗
[

F1
s · · · · · · Fn

s

]
=
[

F1
1 ·F1

s · · · · · · Fn
1 ·Fn

s

]
, (7)

where F1 represents the weight sequence obtained by the channel attention module,
Fi

1 represents the weight of the i-th channel (i = 1, 2, . . . , c), Fs represents the output
characteristic tensor of the spatial attention module, and Fi

s represents the i channel of the
spatial attention module.

The attention module normalizes the data in a batch. Batch normalization normalizes
the feature information before convolution. The normalization operation adjusts the input
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characteristic information to a normal distribution with a mean value of 0 and a variance of
1 using Equation (8).

xk =
xk − E(xk)√

var(xk)
, (8)

where xk represents the input characteristic information, E(xk) represents the mean value of
xk, and var(xk) represents the variance of the feature. Theoretically, the mean and variance
should be the calculated values of all the trained images, which leads to a large amount of
calculation. The training set was divided into multiple batches, and the values of each batch
were used to replace the values of all data, to reduce the amount of calculation required.
The calculation of the mean and variance are shown in Equations (9) and (10).

µ =
1
m ∑m

i=1 xi, (9)

σ2 =
1
m ∑m

i=1(xi − µ)2 (10)

However, if all the information is adjusted to a normal distribution, the learning ability
of the network is significantly reduced. Therefore, after the normalization operation, we
introduce Equation (11).

yk = γkxk + βk (11)

Using γ and β as learning parameters, we vary the range of the data. Optimal selection
was obtained through parameter learning. Finally, the normalization operation and data
distribution adjustment are shown in Equations (12) and (13), respectively.

xi =
xi − µ√

σ2
(12)

yi = γxi + β (13)

3.4. Network Training Speed Improvement Design

In a traditional neural network, ideally, the performance of the model improves with a
deeper model. However, an increase in the network-level depth makes training increasingly
difficult. The main reason for this is that the training process of the network is a gradient
descent process. In the descending process, a gradient that is too small weakens the
backpropagation training error signal and causes the gradient to disappear. A gradient
explosion caused may also occur. These problems are serious, and can even lead to a failure
of the neural network training process.

U-Net network is a network structure which is symmetrical in shape and tiled like the
letter “U”. The left part of the model consists of a downsampling structure, and the right
part of model is an upsampling structure. To address the shortcomings of the traditional
U-Net network in segmenting the right ventricle, we improved the conventional design.
The improved RAU-Net network structure is shown in Figure 3. The improved network
replaces the ordinary convolution with an extended convolution, which avoids the problem
of information loss in the pooling process of the ordinary convolution, and can increase
the receptive field of the network. The attention module was added in the upper sampling
stage to direct the network to pay more attention to the segmentation target area, to solve
the confusion between the right ventricle and the surrounding tissue in the segmentation
process. Similarly, to solve the problem of characteristic information transmission in the
network, we added three residual modules in the encoding and decoding stages. We also
designed a deeper structure to address the problem of gradient explosion caused by an
excessively deep network. The same training method as that in the previous section was
used to train the model, and the loss function in the original network was replaced by the
improved loss function.
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4. Experiment

We developed a system based on the Electron platform, which is simple to use, quick
to start, and can meet the requirements of the system. The software development environ-
ment included the Windows 10–64-bit operating system, while the hardware environment
included an I7-8750H processor and a GTX1050Ti graphics card.

In this study, we used the Automated Heart Disease Diagnosis Challenge (ADDC)
dataset, announced at the 2017 Medical Image Computing and Computer Assisted In-
tervention (MICCAI) conference. The ADDC dataset consists of cardiac MRI images of
150 subjects taken over 6 years using two different MRI scanners, and is the largest pub-
licly available dataset. According to physiological parameters relating to cardiac health,
150 subjects were evenly divided into five groups, and each group was divided into normal,
previous myocardial infarction, right ventricular abnormality, dilated heart disease, and
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hypertrophic heart disease. The corresponding physiological parameters of each group
were normal, left ventricular ejection fraction less than 40% with abnormal myocardial
contraction, right ventricular volume more than 100 mL/m2 right ventricular ejection frac-
tion less than 40%, left ventricular ejection fraction less than 40%, left ventricular volume
more than 100 mL/m2, left ventricular volume more than 110 mL/m2, and myocardium
segmental diastolic thickness more than 15 m. In addition, the ADDC data also provides
ground-truth data that can be used as a training set, as well as 50 samples in a testing
that do not include annotated sketched results, and can be used to obtain the network
performance by uploading the automatic segmentation results.

The training effectiveness of the datasets plays a significant role in the final perfor-
mance of the network. Training neural networks generally requires a massive amount
of data to achieve the desired results; however, for medical images, the amount of data
manually annotated by experts is very small. Inadequate data can cause overfitting. Over-
fitting leads to excellent performance on the training set, but unsatisfactory performance
on the testing set. Therefore, the data were enhanced via techniques, including rotation
and mirroring, to expand the data volume and prevent overfitting as shown in Figure 4.
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Figure 4. Schematic diagram of data enhancement.

The U-Net network was selected as the baseline network for the following reasons.

(1) Deep learning for neural network training requires a large amount of data, while
relatively few cardiac MR image datasets with expert labels are available. The U-Net
network can also have better segmentation performance with fewer training data.

(2) The U-Net architecture is a simple symmetrical structure, which is convenient
for improvement.

(3) U-Net network is widely used in medical image segmentation, which can be easily
realized as a benchmark network combined with other algorithms.

Figure 5 shows the change in the loss values of the two networks in the verification set.
The red curve represents the loss value change of U-Net on the training set, and the blue
curve represents the loss value change of RAU-Net on the training set. It may be observed
that the RAU-Net network exhibited a better convergence speed and convergence effect
than the U-Net network on the verification set.

The following model parameters were obtained by recording the experimental output
results and visualization technology. In terms of the loss value of the training and veri-
fication set, the former can judge whether the learning state of the network was normal,
and the latter can verify whether the network was effective enough to segment the right
ventricle. The Dice coefficient of the training set can be used to judge whether the network
is learning, and the change of the similarity between segmentation results and expert
annotation results, during training. Similarly, that of the verification set can obtain the
ability of the trained network model to segment the right ventricle. When the network
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training data loss value converged to 0.4, the network training speed was slow. When the
validation set reached a convergence state, the value was 0.84, and the segmentation quality
was low.
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Figure 5. Comparison of network segmentation results. (a) The input feature image. (b) The resulting
images of the U-Net network segmentation. (c) The gold-standard image marked by experts. (d) The
input feature image. (e) The resulting images of the U-Net network segmentation. (f) The gold-
standard image marked by experts. (g) The input feature image. (h) The resulting images of the
U-Net network segmentation. (i) The gold-standard image marked by experts.

The results of right ventricle segmentation by the U-Net network are shown in Fig-
ure 5, which shows three groups of images, each of which is divided into three pieces.
Figure 5a,d,g shows the input feature image, Figure 5b,e,h, which are the resulting images
of the U-Net network segmentation, and Figure 5c,f,i is the gold-standard image marked
by experts.

It may be observed from Figure 5b,c that the result of network segmentation was
consistent with the result image marked by experts. However, it may be observed from
Figure 5e,f that the network-segmented and expert-labeled images were under-segmented
at the apex of the heart. It may be observed from Figure 5h,i that the network-segmented
image and expert-labeled image exhibit the problem of over-segmentation near the ven-
tricular wall. The position shown in the red circle represents the difference between the
gold-standard image and the segmentation prediction area. Therefore, although the results
of the U-Net network were feasible for segmentation of the right ventricle, there was an
error in the segmentation of images with complex ventricular shapes.

Figure 6 shows the changes in the loss values of the two networks in the verification
set. The red curve represents the loss value change of U-Net on the training set, and the
blue curve represents the loss value change of RAU-Net on the training set. It may be
observed that although the convergence speed and convergence effect of RAU-Net network
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on the verification set were better than those of U-Net network, there was still a loss value
of about 0.2. This shows that the network segmentation performance still did not reach the
expected effect.
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Figure 6. Variation in the loss value on the verification set of two networks.

Figure 7 shows the change in the Dice coefficients of the two networks on the veri-
fication set. The red curve represents the change in the Dice coefficient of U-Net on the
verification set, and the blue curve represents the change in the Dice coefficient of RAU-Net
on the verification set. It may be observed that the fitting effect of the RAU-Net network
was better than that of the U-Net network, but the Dice coefficient was 0.91 after dividing
120 batches, indicating that the performance of the network still has room for improvement.
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Figure 7. Dice coefficient variation of two networks in the validation set.

The results of right ventricle segmentation by the RAU-Net network are shown in
Figure 8, which shows two groups of images, each of which is divided into three groups.
Figure 8a,d are the input feature images, Figure 8b,e are the resulting images of the U-Net
network segmentation, and Figure 8c,f are the gold-standard images marked by experts.
The position shown in the red circle represents the difference between the gold-standard
image and the segmentation prediction area.

Table 2 compares the algorithm in this study with the winning algorithm in the
MICCAI challenge to verify that the algorithm in this study exhibited excellent performance
in segmenting images.
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Figure 8. Comparison of network segmentation results. (a) Input feature images 1. (b) Resulting
images of the U-Net network segmentation 1. (c) Gold-standard images marked by experts. (d) Input
feature images 2. (e) Resulting images of the U-Net network segmentation 2. (f) Gold-standard
images marked by experts.

Table 2. Comparison between the proposed algorithm and other algorithms.

Method Loss Dice

Szilagyi et al. [14] 0.31 0.89
Siddiqi et al. [21] 0.22 0.91

Bai et al. [27] 0.14 0.93
Ours 0.09 0.95

The results of the experiments showed that the improved algorithm enhanced the
sensitivity and specificity of the network to some extent. The use of extended convolution
instead of ordinary convolution to increase the receptive field of the network also played a
vital role. An attention module was introduced in the network sampling stage to further
improve the accuracy of network segmentation. In the encoding and decoding stages, three
residual modules are added to solve the problem of gradient explosion and improve the
training speed of the network.

5. Conclusions

In this study, we analyzed the health of the heart after the individual played basketball
to design a new algorithm. By analyzing the defects of the traditional U-Net network
in segmenting the right ventricle, the algorithm improved the U-Net network to form
RAU-Net. We improved the network loss function and the sensitivity and specificity of the
network. We replaced ordinary convolution with an extended convolution to increase the
network’s receptive field. In the upsampling stage, we introduced the attention module
to confuse the right ventricle with other surrounding tissues in the segmentation process
to improve the accuracy of network segmentation. In the encoding and decoding stages,
three residual modules were added to solve the issue of gradient explosion in the process
of feature-image layer-by-layer transmission in the network and to improve the network-
training speed. Finally, we implemented the RAU-Net architecture. The experimental
results confirmed that the speed of the model was significantly improved. In the experiment,
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although the accuracy of the algorithm was improved, considerable room remained for
further improvement, and further research on this subject seems worthwhile.

In subsequent research, our team reflected on these results. For example, to extract
more image feature information in the downsampling stage, two identical RAU-Nets were
connected, i.e., LRAU-Net, to form a multi-pair encoding–decoding structure. Because
the network hierarchy after connection becomes deeper, the network training speed may
be reduced, and thus the residual module needs to be further improved. We plan to
further consider equipping the algorithm with a corresponding system, analyzing the
system requirements based on clinicians’ work requirements, and dividing the system into
different modules to achieve different functions.
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