
Citation: Fan, D.; Sun, Y.; Wang, Z.;

Peng, Y. Online Mongolian

Handwriting Recognition Based on

Encoder–Decoder Structure with

Language Model. Electronics 2023, 12,

4194. https://doi.org/10.3390/

electronics12204194

Academic Editors: Morgado Dias,

Fabio Mendonca and Sheikh

Shanawaz Mostafa

Received: 19 September 2023

Revised: 7 October 2023

Accepted: 8 October 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Online Mongolian Handwriting Recognition Based on
Encoder–Decoder Structure with Language Model
Daoerji Fan * , Yuxin Sun, Zhixin Wang and Yanjun Peng

College of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China;
32156020@mail.imu.edu.cn (Y.S.); 32156005@mail.imu.edu.cn (Z.W.); 32256046@mail.imu.edu.cn (Y.P.)
* Correspondence: fandaoerji@imu.edu.cn; Tel.: +86-133-1489-4340

Abstract: Mongolian online handwriting recognition is a complex task due to the script’s intricate
characters and extensive vocabulary. This study proposes a novel approach by integrating a pre-
trained language model into the sequence-to-sequence(Seq2Seq) + attention mechanisms(AM) model
to enhance recognition accuracy. Three fusion models, including former, latter, and complete fusion,
are introduced, showing substantial improvements over the baseline model. The complete fusion
model, combined with synchronized language model parameters, achieved the best results, signif-
icantly reducing character and word error rates. This research presents a promising solution for
accurate Mongolian online handwriting recognition, offering practical applications in preserving and
utilizing the Mongolian script.

Keywords: Mongolian script; online handwriting recognition; pre-trained language model;
fusion model

1. Introduction

The traditional Mongolian script, known as “Mongol Bichig”, is a unique writing
system with a vertical layout, primarily used for the Mongolian language. It features com-
plex, cursive characters with ligatures and pictorial elements. Historically, it has preserved
cultural heritage and remains important in contemporary Mongolia for newspapers, official
documents, and education.

Mongolian employs a phonetic script similar to English, but its writing style is distinct.
In Mongolian, words are written vertically from top to bottom, with all the letters fused
together to create a vertical backbone, as shown in Figure 1. Letters are categorized as
initial, medial, or final based on their position within a word. The same letter, when placed
differently, can undergo shape transformations, which can significantly impact the accuracy
of the Mongolian handwriting recognition model.

Figure 1. Mongolian handwritten samples.

Mongolian is classified as an agglutinative language, characterized by its extensive
vocabulary. The primary feature of agglutinative languages is their ability to derive numer-
ous other words from a single root word. Based on incomplete statistics, commonly used
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Mongolian words (considering only root words) amount to approximately 60,000. When
considering all possible derivations, Mongolian may encompass millions of words [1].

Clearly, in the training of Mongolian handwriting recognition systems, the vocabulary
within the training dataset represents only a small fraction of the entire lexicon, making
it highly likely to encounter out-of-vocabulary (OOV) words. This results in the model
having a relatively high recognition accuracy for in-vocabulary words but a significantly
lower recognition capability for OOV words. To address this issue, the common approach
is to incorporate a post-processing module based on a dictionary or language model after
the recognition model [2,3]. However, in this scheme, the recognition model and the post-
processing model are independent of each other, cannot be jointly optimized, and do not
support end-to-end recognition.

In response to the above problems, this article proposes a novel fusion model for
online Mongolian handwriting recognition. In summary, we trained a character-level
Mongolian language model using large-scale Mongolian word corpora and incorporated the
pre-trained language model into a traditional Encoder–Decoder handwriting recognition
model. The decoder not only receives the writing features from the encoder but also
receives guidance information from the language model, using the fused information as a
basis for decoding and judgment, in order to improve the accuracy of the recognition of
OOV. During Encoder–Decoder model training, the parameters of the pre-trained language
model can also be fine-tuned. This not only achieves joint tuning of the recognition model
and the language model but also achieves end-to-end recognition of Mongolian.

2. Related Work

In the realm of Mongolian language processing and recognition, several significant con-
tributions and advancements have emerged in recent years. Pan et al. [4] introduced the
MOLHW dataset, a substantial Mongolian online handwriting dataset containing 164,631 sam-
ples encompassing 40,605 Mongolian words, curated by 200 native Mongolian-speaking
college students. This dataset has served as a foundational resource for research in the field.

Cui et al. [2] presented an end-to-end neural network model tailored to irregularly
printed Mongolian text recognition. Their comprehensive approach spans from image
input to text output, enabling direct detection and extraction of Mongolian text from images.
This end-to-end methodology has significantly enhanced the accuracy and efficiency of
recognizing irregularly printed Mongolian text.

Sun et al. [5] introduced the Mongolian Generator (MG), a novel approach employing
Generative Adversarial Networks (GANs) for automated Mongolian handwritten word
image generation. MG excels in producing highly detailed and accurate word images,
accommodating diverse writing styles and text content. The integration of perceptual ad-
versarial loss further enhances the realism of generated images. This innovation simplifies
Mongolian handwritten image synthesis, benefiting both researchers and practitioners.

Fan et al. [3] addressed the challenges in Mongolian language processing arising from
its agglutinative nature. They proposed a sub-word-based language model to mitigate
high out-of-vocabulary rates and data sparsity. The system encompasses three key compo-
nents: handwritten image preprocessing, image-to-grapheme mapping, and LM decoding,
collectively contributing to improved Mongolian text processing.

In [6], a segmentation-free approach for efficient Optical Character Recognition (OCR)
of Mongolian text was presented. The end-to-end model directly extracts features from
input word images, surpassing glyph segmentation-based methods in performance. It also
effectively handles out-of-vocabulary words, further enhancing Mongolian text recognition.

Da et al. [7] introduced an end-to-end model for Traditional Mongolian online handwrit-
ten word recognition. This model combines a bidirectional Long Short-Term Memory (LSTM)
network with a Connectionist Temporal Classification (CTC) network. The core of the model
is the bidirectional LSTM network, augmented by the CTC network, facilitating efficient label
recognition for input sequences. Additionally, the study delves into error analysis, addressing
a less-explored area in the context of online handwritten Mongolian recognition.
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Fan Yang et al. [8] proposed a segmentation-free, lightweight network structure for on-
line handwritten Mongolian character recognition. Their model utilizes a one-dimensional
CNN for feature extraction, followed by a Bidirectional Long Short-Term Memory(BiLSTM)
Seq2Seq model for the conversion of variable-length sequences.

Wei et al. [9] presented an end-to-end model for offline Mongolian word recognition.
This model employs a sequence-to-sequence architecture with attention mechanisms, fea-
turing two LSTMs and an attention network. Experimental results highlight the model’s
superior performance compared to state-of-the-art methods.

In [10], an additional Mongolian online handwriting dataset, MRG-OHMW, contain-
ing 946 Mongolian words was introduced, co-created by 300 Mongolian volunteers. Ji
Liu et al. [11] used the MRG-OHMW dataset for data augmentation by placing handwritten
Mongolian words under a grid at different locations on a canvas. They employed two
feature combination methods and a multi-classification combination strategy to perform
recognition using CNNs, enriching the information of Mongolian shapes.

Fan et al. [12] propose a hybrid model combining hidden Markov models (HMMs) and
deep neural networks (DNNs) for Mongolian offline handwriting recognition. The concept
of Mongolian grapheme code decomposition is first introduced in this work and is used as
the smallest modeling unit. In our study, grapheme codes are also employed as Mongolian
text encoding, with the definition of glyph codes provided in Figure 2.

Figure 2. Grapheme code.

These studies collectively represent significant advancements and contributions in the
domain of Mongolian language processing and recognition, addressing various challenges
and pushing the boundaries of research in this field.

Encoder–decoder models have gained widespread adoption in the field of online hand-
written text recognition, as evidenced by recent studies [13–15]. These models, equipped
with attention mechanisms, have proven effective in converting handwritten trajectories
into textual outputs. The attention mechanism is a fundamental component in the field of
natural language processing and deep learning. It has gained significant popularity due to
its ability to enhance the performance of various sequence-to-sequence tasks, including
machine translation, text summarization, and speech recognition [16].

The integration of pre-trained language models and encoder–decoder architectures is
not a novel concept, as demonstrated in prior research. In [17], the effective incorporation
of pre-trained masked language models such as BERT into encoder–decoder models for
grammatical error correction (GEC) was explored. Similarly, ref. [18] enhanced Attention-
based Encoder–Decoder (AED) models by integrating external language models (LMs) and
adopted a Bayesian approach, incorporating the internal language model. Additionally,
ref. [19] addressed the challenge of integrating external language models (LMs) into end-to-
end automatic speech recognition (ASR) systems, particularly when no clear divisions exist
between acoustic and language models.

Building upon this existing research, our work introduces a novel application: the
utilization of pre-trained language models for Mongolian script cursive handwriting recog-
nition tasks, marking the first of its kind in this context.

3. Method

Encoder–decoder models in online handwritten text recognition work by taking
handwritten trajectory as input, encoding them into a latent representation using the
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encoder, and then decoding this representation to produce readable textual output. This
procedure involves recognizing and comprehending the handwritten characters and their
spatial arrangement, enabling tasks such as text conversion, translation, and handwriting
generation, making them valuable tools in the field of handwritten text processing.

This paper enhances the traditional Gate Recurrent Unit(GRU) based encoder–decoder
structure by incorporating a language model, achieving an end-to-end Mongolian hand-
written text recognition model, as illustrated in Figure 3. In traditional encoder–decoder
models, the decoder initially predicts the next character after the start symbol <SOS> based
on the encoder’s output. Subsequently, this predicted character becomes the input for
predicting the subsequent characters, continuing until the end symbol <EOS> is predicted.

To enhance prediction accuracy, an attention module is often integrated into the
encoder–decoder architecture. The core idea behind the attention mechanism involves
calculating a set of attention weights that determine how much attention should be assigned
to each input element. The attention weights are computed using a scoring function,
often based on the similarity between the current decoder state and the encoder outputs.
The scoring function utilized in this paper is as shown in Equation (1):

Attention Weighti =
exp

(
hT

x · hi
y

)
∑j exp

(
hT

x · h
j
y

) (1)

where hx represents the encoder output and hy represents the current hidden state
of decoder.

This module ensures that, when predicting the current character, the model focuses
on relevant portions of the overall writing trajectory, thereby improving its overall perfor-
mance. The decoder itself operates in a manner very similar to a language model, where
it predicts the next most likely character based on the current character. However, when
understood as a language model, the decoder is trained using only the vocabulary present
in the training dataset, which is not as comprehensive as training a language model.

Figure 3. The overview framework of the proposed model.

We all know that when we see most of a word, it is often easy to guess the remaining
part. For example, when the current prediction is “schoo”, there’s a high likelihood that
the next character is “l”. In handwriting recognition, this kind of prediction can be made
without relying on the handwriting information. However, in traditional encoder–decoder
models for handwriting recognition, the aforementioned contextual semantic information is
not fully leveraged, especially in languages with extensive vocabularies such as Mongolian.
To achieve this, a model combining a pre-trained character-level language model and a
decoder has been proposed. This model is used to integrate contextual semantic information



Electronics 2023, 12, 4194 5 of 14

with handwriting trajectory data to predict the next character. Subsequently, we will
provide a comprehensive overview of each module.

3.1. Character-Level Language Model

The language model, an essential and pivotal component in natural language pro-
cessing, can be trained using extensive, unsupervised text data to independently acquire
knowledge about word associations. Its primary role is to calculate the likelihood of a
sentence composed of multiple words, enabling it to assess the sentence’s fluency. A well-
trained language model can furnish the likelihood of a grammatical word within a sentence,
which is valuable for generating text and predicting the next word. Because Mongolian is an
agglutinative language with an extensive vocabulary, utilizing a character-level language
model is the optimal choice.

The Gated Recurrent Unit (GRU) model is commonly applied in language models to
capture sequential dependencies in text data. It is a variation of recurrent neural networks
(RNNs) designed to address the vanishing gradient problem and improve the training of
deep networks. GRU models excel in tasks such as natural language processing (NLP)
and language modeling due to their ability to capture long-range dependencies while
mitigating some of the challenges faced by traditional RNNs, such as the exploding and
vanishing gradient problems. Mikolov proposed the use of RNNs in language models in
2010 [20], and subsequent researchers have obtained good results using such models [21].
We propose a GRU-based language model that can be divided into three parts, as shown in
Figure 4.

Figure 4. Structure of language model.

The first part is an encoding layer that converts grapheme codes into one-hot vectors of
fixed dimensionality to facilitate feature learning and computation by the neural network.
The second part is a unidirectional GRU network that learns features for each input one-hot
vector, and subsequently obtains a prediction result. The language model cannot use a
bidirectional GRU because text generation can only be generated from front to back, which
is unidirectional. The third part is a softmax classification module to classify the predicted
output of the GRU.

In a character-level language model, the smallest unit is not a word but rather a
character. For example, assume a Mongolian word corresponds to a grapheme code of
“a az bos ex”. We need to add the start of sentence <SOS> before the first code, and use
“<SOS> a az bos ex” as the input sequence of the model. We add the end of sentence <EOS>
after the last code, and use “a az bos ex <EOS>” as the output sequence.
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The input sequence is one-hot processed and fed into the GRU network, and the
output distribution is calculated for each step t to predict the probability distribution of
each character. The loss function on the tth step is the cross-entropy between the predicted
probability distribution ŷ(t) and the next real word y(t), as shown in Equation (2):

J(t)(θ) = CE
(

y(t), ŷ
)
= − ∑

w∈V
y(t)w log ŷ(t)w = − log ŷ(t)xt+1 . (2)

where V is corpus, w ∈ V is a word, and x ∈W is a character. The results of Equation (2)
are averaged to obtain the overall loss of the training set, as shown in Equation (3):

J(θ) =
1
T

T

∑
t=1

J(t)(θ) =
1
T

T

∑
t=1
− log ŷ(t)xt+1 . (3)

3.2. Baseline Model

The baseline model employed in this paper is a sequence-to-sequence encoder–decoder
model based on GRU and attention mechanism (Seq2Seq + AM). The encoder is a bidirec-
tional GRU network consisting of forward and backward GRUs, with the forward GRU
reading the input sequence x = (x1, x2, · · · , xT) sequentially to generate the hidden state
vector (~h1,~h2, · · · ,~hT). The backward GRU reads the input sequence from the reverse

direction, generates a hidden state vector (
←
h1,

←
h2, · · · ,

←
hT), and connects the hidden state

vectors in both directions at each time step, hi =
[
~hi,

←
h i

]
. Each state vector hi corresponds

to the information of the ith data and its surrounding data of the input sequence.
The decoder is constructed with a unidirectional GRU network. At each moment t,

the attention mechanism decides which hidden state vectors are most relevant. The rele-
vance weight parameter αt of the tth word is calculated by a forward neural network f ,
whose inputs are the hidden state hi of the encoder, the hidden state st−1 of the decoder
at the previous moment, and the output yt−1 of the decoder at the previous moment, as
shown in Equation (4):

αt = f (hi, st−1, yt−1). (4)

αt is used to obtain the contextual information vector ct of the tth word by Equation (5),

ct =
T

∑
i=1

αthi. (5)

The hidden state of the decoder at the current moment is calculated by the context
information vector ct, the hidden state st−1 of the decoder at the previous moment, and the
predicted output yt−1 at the previous moment by Equation (6). Then, a fully connected
layer is used to generate the output yt of the current moment, as shown in Equation (7),
and finally, the probability distribution of the output is obtained by the softmax activation
function and the maximum probability is selected as the predicted character,

st = fr(ct, st−1, yt−1) (6)

yt = Wst + b, (7)

where fr is the unidirectional GRU network structure, W is the weight matrix of the linear
layer, and b is the bias vector.

3.3. Fusion Model

The primary breakthrough in this paper lies in the incorporation of a pre-trained
language model into the Seq2Seq + AM model, which we term the “fusion model”. In this
procedure, the language model underwent independent training on a substantial corpus,
and the top-performing model was chosen based on perplexity (PPL) scores. Following
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this, the pre-trained language model was integrated into the baseline model and co-trained
with the recognition model using a handwritten dataset. Building upon the interaction
between the language model and the decoder, we have introduced three fusion approaches:
the former model, the latter model, and the complete fusion model.

3.3.1. Former Fusion Model

In the former fusion model, the pre-trained language model predicts the probability
of the next character based on the historical inputs. This probability distribution is then
incorporated as a part of the decoder’s input, as illustrated in Figure 5. The input of the
decoder of the original model at the tth time consists of three parameters: the context vector
cSeq

t , the hidden state sSeq
t−1 of the decoder at the previous time, and the predicted output

ySeq
t−1 at the previous time. In the former fusion model, our goal is for the language model to

continuously supply the decoder with semantic information related to Mongolian words
as it operates. The output yLM

t of the language model contains the prediction information
of the language model for the next character, so the context vector cSeq

t is spliced with the
output yLM

t of the language model, and this is used as the input of the decoder, together
with the other two parameters, to calculate the hidden state st at the tth time by Equation (8).
The output yt is then obtained by Equation (9),

sFM1
t = fr

(
cSeq

t + yLM
t , sSeq

t−1, ySeq
t−1

)
(8)

yFM1
t = WsFM1

t + b. (9)

Because this model fuses the Seq2Seq + AM model with the language model before
the decoder works, it is called the former fusion model.

Figure 5. Structure of former fusion model.
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3.3.2. Latter Fusion Model

In the latter fusion model, both the decoder and the language model receive the current
character and operate independently. However, before making predictions, the outputs
of the decoder and the language model are concatenated and fed into a linear layer for
prediction. In the baseline model, the state sSeq

t of the decoder at the tth time is fed into the
fully connected layer to obtain the output ySeq

t by Equation (10). We want the language
model to provide semantic information to the Seq2Seq + AM model at the time of prediction,
and the output of the language model has information about the word composition of
the grapheme code, so we concat the output yLM

t of the language model and the state
sSeq

t , and send the result to the fully connected layer to obtain the overall output yt by
Equation (11),

sSeq
t = fr

(
cSeq

t , sSeq
t−1, ySeq

t−1

)
(10)

yFM2
t = W

(
yLM

t + sSeq
t

)
. (11)

Because the model fuses the Seq2Seq + AM model with the language model after the
decoder works, it is called the latter fusion model. Its structure is shown in Figure 6.

Figure 6. Structure of latter fusion model.
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3.3.3. Complete Fusion Model

The above-mentioned two fusion models, respectively, let the language model provide
semantic information before and after the decoding of the Seq2Seq + AM model, and both
can theoretically improve its generalization ability. We combine these approaches, fusing
both before and after the decoder works, as shown in Equations (12) and (13). This is called
a complete fusion model. Its structure is shown in Figure 7.

sFM3
t = fr

(
cSeq

t + yLM
t , sSeq

t−1, ySeq
t−1

)
(12)

yFM3
t = W

(
yLM

t + sFM3
t

)
(13)

Figure 7. Structure of complete fusion model.

4. Experimental Results
4.1. Dataset

The Mongolian online handwriting dataset used in this article is called MOLHW [4].
The MOLHW dataset focuses on traditional Mongolian word-level online handwriting.
This dataset comprises 164,631 handwritten Mongolian word samples contributed by
200 different writers. It encompasses over forty thousand commonly used Mongolian
words, carefully selected from a substantial Mongolian corpus. The coordinate points for
these words were gathered through a dedicated mobile application where volunteers wrote
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out the designated words. The dataset was partitioned into training, validation, and test
sets in a 7:1:2 ratio.

The corpus for training the language model in this article comes from Mongolian
electronic documents, including 1,641,488 Mongolian words, which is 40 times the vocab-
ulary size of MOLHW, and each Mongolian word is represented using a grapheme code.
This dataset was likewise partitioned into training, validation, and test sets following a
7:1:2 ratio.

4.2. Evaluation Index

The fusion model was evaluated using the average char error count (ACEC) and word
error rate (WER). ACEC is the edit distance between the predicted and target sequences.
The edit distance determines the similarity of two strings, i.e., the minimum number of
operations required to convert from one string to the other, including the three operations
of inserting character I, deleting character D, and replacing character S. The edit distances of
all samples are counted and averaged to obtain the ACEC, which is intuitively the average
number of incorrect characters per word. If a deletion, insertion, or replacement occurs,
the sample is considered to be incorrectly identified.

WER is calculated by Equation (14):

WER =
I + D + S

N
, (14)

where N is the total number of samples, and I, D, and S are the respective numbers of
insert error, delete error, and replace error samples.

Since ACEC represents the average number of character errors and WER is the word
error rate, smaller values of ACEC and WER in the experimental results represent higher
recognition accuracy.

Language models use perplexity (PPL) to measure how well they predict a sample.
The idea is to evaluate a language model by assigning a high or low sentence probability
value to the test set. The higher the sentence probability, the lower the perplexity, which
means that the model is better trained. The perplexity is calculated by Equation (15):

perplexity(S) = p(w1, w2, · · · , wm)
− 1

m , (15)

where S is the sequence of Mongolian word grapheme codes for which the probability is to
be calculated, and w1∼wm are the characters in the sequence.

4.3. Experimental Results of Language Model

A GRU-based language model with a batch size of 128 was trained using the RMSprop
optimization algorithm [22] with a learning rate of 0.0005. The number of GRU layers
and number of neurons in the hidden layer were used as hyperparameters, perplexity
was used as an evaluation index, and a simple search strategy was used to adjust the
hyperparameters. The optimal model was selected based on the loss in the validation set
and evaluated on the test set using the optimal path decoding algorithm.

The experimental results of the language model using the search strategy to find
the optimal number of hidden layer neurons are shown in Table 1. In this experiment,
the number of layers of the GRU network was fixed at one, and three experiments with
different numbers of neurons were conducted. The results show that the PPL performance
of both the training and test sets decreases and then increases as the number of neurons
increases, which indicates that the model’s overfitting and generalization ability deteriorate
as the number of parameters increases. Therefore, the number of hidden layer neurons was
selected as 128.
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Table 1. Number of neurons of language model tuning experiment result.

Number of Neurons train_PPL test_PPL

64 4.181 4.380
128 3.880 4.236
256 3.905 4.296

Bold font indicates optimal results.

The experimental results of the language model using the search strategy to find the
optimal number of network layers are shown in Table 2. Based on the previous experiment,
the number of hidden neurons per layer of GRU was fixed at 128. In the model, the number
of GRU layers was searched from one to four. The experimental results show that the PPL
of the test set decreases when the number of layers increases from one to three, i.e., the
performance of the model improves, but when the number of layers is changed from three
to four, the PPL of the test set increases due to the mismatch between the model parameters
and the dataset, the performance of the model decreases, and the predicted words become
more incorrect.

Table 2. Layers of language model tuning experiment result.

Layer train_PPL test_PPL

1 3.880 4.236
2 3.734 4.156
3 3.607 4.045
4 3.680 4.054

Bold font indicates optimal results.

Combining the two experimental findings, the hyperparameters of the optimal lan-
guage model were selected. The number of layers of the GRU network was three, and the
number of neurons in the hidden layer was 128.

4.4. Experimental Results of Fusion Model

This article’s baseline model, Seq2Seq + AM, is entirely based on the model proposed
in reference [4]. The writing trajectory consists of sequential two-dimensional coordinates
representing the writing order. We employ a sliding window that moves along the writing
order and combines all coordinates within the window to form a data frame. The model’s
hyperparameters were determined based on the optimal configuration outlined in refer-
ence [4], which consists of three layers, a hidden layer size of 128, and a sliding window
size of 20.

We built an attention-based Seq2Seq baseline model and compared it with three
fusion models.

Table 3 shows the experimental results of the three fusion models, which all improve
the accuracy of the Mongolian online handwritten text recognition task compared to the
baseline model, with the largest improvement being that of the complete fusion model,
which reduces the average number of character errors from 0.473 to 0.428 and the word
error rate from 24.28% to 21.05% on the test set.

Table 3. Experimental results of three fusion models.

Model train_ACEC train_WER test_ACEC test_WER

Seq2Seq + AM [4] 0.234 13.52% 0.473 24.28%
former fusion model 0.226 12.62% 0.449 21.44%
latter fusion model 0.217 11.56% 0.435 21.22%
complete fusion model 0.202 10.89% 0.428 21.05%

Bold font indicates optimal results.
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When training the fusion model, neural network parameters such as the weight
parameter W and bias vector b in the baseline model are updated when the losses are
computed by backpropagation, while the neural network parameters in the language
model remain the same as the parameters of the optimal language model obtained from the
previous experiments. To address this situation, we conducted experiments to update the
parameters of the language model simultaneously with the training of the fusion model,
with results as shown in Table 4.

Table 4. Comparative experiment on language model parameter training.

Language Model Parameters train_ACEC train_WER test_ACEC test_WER

no further updates 0.202 10.89% 0.428 21.05%
synchronized training 0.186 9.698% 0.409 20.30%

Bold font indicates optimal results.

The experimental results show that the recognition rate of Mongolian online hand-
writing can be improved by synchronizing the parameters of the language model with
the complete fusion model. The ACEC on the test set is reduced to 0.409, and the WER
is reduced to 20.30%. This is because the semantic information is more suitable for the
MOLHW dataset after the language model parameters are adjusted.

5. Discussion

The experimental results indicate that the addition of a language model led to a
3.23% reduction in the baseline model’s WER. We believe that the primary reason for
the performance improvement is that the language model can prevent the generation of
words that do not adhere to Mongolian grammar. Mongolian language features numerous
grammatical rules for word formation, where certain characters are restricted to the word’s
initial position, while others can only appear at the word’s end. For instance, characters such
as “ ” are prohibited from appearing at the beginning of a word, while characters such
as “ ” are only allowed in the middle of a word. Traditional handwriting recognition
models focus solely on extracting effective features from text images or writing trajectories,
subsequently mapping them into character sequences, without the ability to automatically
learn these underlying text construction rules. We believe that incorporating a pre-trained
language model can effectively address this issue.

The MOLHW dataset used in this paper was only made publicly available in 2023,
which is why there is relatively limited research reported on it. In a separate study, our
team achieved Mongolian online handwritten recognition on the MOLHW dataset using
an LSTM-CTC model [7]. The comparison of our approach with the LSTM-CTC model is
presented in Table 5. The LSTM-CTC model by Tengda et al. [7] achieved a training ACEC
of 0.347 and a training WER of 21.432%. During testing, it achieved a test ACEC of 0.528
and a test WER of 30.14%. Our model outperformed the others, achieving the best results.
During training, our model achieved an ACEC of 0.202 and a WER of 10.89%. During test-
ing, it achieved an ACEC of 0.428 and a WER of 21.05%. These results demonstrate the
superior performance of our approach in reducing both character error and word error
rates compared to the LSTM-CTC and Seq2Seq + AM models.

Table 5. Comparison with other studies.

Model train_ACEC train_WER test_ACEC test_WER

LSTM-CTC [7] 0.347 21.432% 0.528 30.14%
Seq2Seq + AM [4] 0.234 13.52% 0.473 24.28%
Ours 0.202 10.89% 0.428 21.05%

Bold font indicates optimal results.
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This study has several limitations: (1) The hyperparameter tuning for the language
model was performed using a simple grid search strategy, and more sophisticated opti-
mization methods were not explored. (2) The baseline model was based on the reference [4]
without further investigation into potentially better model parameters. (3) While the
model’s recognition performance has improved, it has not yet reached the level required
for practical end-to-end applications. In future research, we need to not only optimize
model parameters but also analyze the causes of misidentification to discover methods for
further improving accuracy. Specifically, we will delve into an in-depth investigation of the
challenges associated with recognizing visually similar Mongolian characters.

In conclusion, as summarized above, employing a pre-trained language model to pro-
vide contextual semantic information for encoder–decoder-based handwriting recognition
models proves to be an effective approach for addressing the issue of a vast vocabulary.

6. Conclusions

This research aims to improve Mongolian online handwriting recognition by incor-
porating a language model into the Seq2Seq + AM model. Mongolian script, known as
“Mongol Bichig,” presents unique challenges due to its complex characters and extensive
vocabulary. This study introduces fusion models that integrate the language model with
the decoder, enhancing recognition accuracy.

Experimental results on the MOLHW dataset demonstrate significant improvements.
The complete fusion model, when coupled with synchronized language model parameters,
reduces character and word error rates, making it an effective tool for Mongolian online
handwriting recognition.

In conclusion, this study introduces an innovative approach to boost the accuracy
of Mongolian online handwriting recognition. The fusion models, particularly the syn-
chronized complete fusion model, show promise for practical applications, benefiting
Mongolian script-based handwritten text recognition.
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