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Abstract: The focus of this study is to investigate the impact of different initialization strategies for the
weight matrix of Successor Features (SF) on the learning efficiency and convergence in Reinforcement
Learning (RL) agents. Using a grid-world paradigm, we compare the performance of RL agents, whose
SF weight matrix is initialized with either an identity matrix, zero matrix, or a randomly generated matrix
(using the Xavier, He, or uniform distribution method). Our analysis revolves around evaluating metrics
such as the value error, step length, PCA of Successor Representation (SR) place field, and the distance
of the SR matrices between different agents. The results demonstrate that the RL agents initialized with
random matrices reach the optimal SR place field faster and showcase a quicker reduction in value error,
pointing to more efficient learning. Furthermore, these random agents also exhibit a faster decrease in
step length across larger grid-world environments. The study provides insights into the neurobiological
interpretations of these results, their implications for understanding intelligence, and potential future
research directions. These findings could have profound implications for the field of artificial intelligence,
particularly in the design of learning algorithms.
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1. Introduction

For survival, animals are compelled to explore and interact with their environments.
This interaction is underpinned by the ability to remember details about the environment,
which enables animals to form expectations about future events or states based on their
decisions. This capacity to predict outcomes based on past experiences is a cornerstone
of intelligence. In animal cognition, the hippocampal system governs these predictive
capabilities and memory functions [1] .

The activity of place cells in the hippocampus has long been of interest in the context
of learning and memory. These specialized neurons, integral to the brain’s limbic system,
activate when an animal finds itself in a particular location [2,3]. They essentially form a
cognitive map or a neural embodiment of the spatial environment, which is pivotal for
memory formation and learning. The discovery of place cells has led to numerous theories
attempting to elucidate their role and the overarching function of the hippocampus in
comprehending and learning spatial information.

Among a myriad of theoretical models, the successor representation (SR) has proven
to be an influential explanation for the role of the hippocampus in spatial representation [4].
SR posits that the hippocampus forms a cognitive map that is not a static spatial repre-
sentation but rather a dynamic anticipatory map that predicts future locations based on
the current state [4,5]. The predictive map theory, interpreting place cell activity through
the lens of SR learning, has shown considerable explanatory power for in vivo place cell
activity. When an animal is first exploring an environment, its movements are random,
and the expectation pattern appears symmetrical in all directions. As an animal becomes
familiar with its environment, the activity of its place cells changes. While place cell activity
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exhibits a geodesic pattern during initial exploration, it transitions to an asymmetrical
firing pattern as the animal becomes accustomed to the environment [6].

According to the predictive map theory, the change in the firing pattern can be at-
tributed to a shift in response from the act of visiting a specific location to the expectation
of visiting that location. This shift in place cell activity results in a pattern that leans
toward the animal’s direction of movement because the expectation increases as the animal
nears the location. The SR theory goes beyond predicting the immediate subsequent state,
suggesting that the hippocampus forecasts all future states. This ability to construct a
predictive map of the environment encompasses the animal’s anticipations of future states,
given its current state and behavior. This model elegantly bridges the gap between spatial
navigation and reinforcement learning [7-10].

While SR provides a compelling explanation for place cell activity patterns, it presumes
the animal has comprehensive knowledge of the environment’s size and fully observable
location information. To overcome this limitation and extend the predictive theory to
partially observable environments, recent studies have proposed a feature-based SR model
as a representation of hippocampal activity [5,11].

In contrast to the traditional SR learning, which employs tabular methods and views
each state as a separate entity, feature-based SR—also known as successor feature (SF)—
employs a neural network as a function approximator to learn SR [11]. This adaptation
equips SR learning with the capacity to manage high-dimensional state spaces, making
SF a more plausible neurobiological model than its naive counterpart. Nevertheless, the
approach to initialize the weight matrix of the neural network varies significantly across
the literature [5,11]. Synaptic weights play a crucial role in neural networks, affecting the
speed and success of learning. Despite their crucial role, the influence of different weight
matrix initialization methods on overall learning remains largely unexplored.

In this research, our objective is to investigate the influence of varying synaptic weight
initialization patterns on SF learning. By subjecting SF learners to a basic maze environment
under differing weight initialization patterns, we aim to illuminate the role of weight
initialization in the SF learning process. For the evaluation of these impacts, we conducted
an experiment utilizing identity, zero, and random matrices for weight initialization. With
an e-greedy policy, the performances of the SR agent and the non-random SF agents were
observed to be comparable in a one-dimensional (1D) maze. However, SF agents with
randomly initialized weight matrices exhibited superior performance compared to their
non-random counterparts. In the results section, we delve into the changes in the SR matrix
throughout the learning process. Furthermore, in the discussion section, we reflect upon the
neurobiological implication of weight matrix initialization. This investigation contributes
to the continuous pursuit of understanding intelligence from both neuroscientific and
artificial intelligence viewpoints.

2. Model and Methods
2.1. Successor Representation (SR)

In this study, we assume that an RL agent interacts with the environment through
Markov decision processes (MDP, [12,13]). An MDP is a tuple M := (S, A, R, y) comprising
the following elements. Sets S and A are the state (e.g., spatial locations) and action spaces,
respectively. The function R(s) specifies the immediate reward received in state s, which
can be expressed as R : S — RR. Here, the discount factor y € [0,1) is a weight that reduces
the reward in the distant future.

In RL, the agent’s objective is to discover a policy function 77 : § — A that maximizes
the cumulative discounted reward, often referred to as the return G; = Y72, YR 1,
where Ry = R(S¢). The return essentially represents the sum of all future rewards that
an agent can expect to accumulate, discounted by the factor . In order to solve this
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optimization problem, a common approach is to employ dynamic programming, which
defines and computes the value function of a policy 7 as follows:

VH(S) = En[Gt|St = S], (1)

where E™[-] denotes the expected value when the agent follows policy 7. After determining
V7 (s), also known as policy evaluation, the policy 7 can be improved in a greedy manner.
This process, referred to as greedy policy improvement, is defined as follows: 7/(s) €
argmax,Q"(s,a), where Q7(s,a) := E[Ry41 + YV (5441)|St = s, A = a] [13]. Here,
Q7 (s, a) represents the expected return from taking action a in state s and following policy
7t thereafter.

As proposed in the literature [14], the central premise of SR learning lies in the
decomposition of the value function (Equation (1)). It suggests that the value function can
be decomposed into an expected visiting occupancy and reward of the successor states s’
as follows:

VE(s) = Y ETY 4 (S; = )R()|S: = o]
i=t

S/

= ZM(S, s')R(s),

@

where I(S; = s') yields a value of 1 when an agent visits the successor state s’ at time f;
otherwise, it returns 0. Consequently, M (s, s") represents the discounted expectation of visi-
tation to the successor state s’ from the state s. M(s,s’) can be perceived as a comprehensive
representation that integrates not only the immediate transition probabilities from state s
to state s’ but also the cumulative impact of the agent’s policies and the array of potential
future trajectories. This interpretation underscores the dynamism and predictive capac-
ity of the SR, as it encapsulates the influence of the agent’s decisions and environmental
dynamics on future state visitations [14].

The SR matrix M can be incrementally learned by the agent through the use of the
temporal difference (TD) learning algorithm. This approach allows the agent to continually
update its understanding of the environment based on the difference between the predicted
and actual visitation. The specific TD learning equation for the SR matrix M is derived as
follows [4,14]:

AM(st,s") = ap[I(st = §') + yM(s¢11,8") — M(st,8")]. (3)

2.2. Feature-Based SR

The classical form of SR learning is constrained to tabular environments, limiting
its applicability to more complex high-dimensional settings [15]. An effective means of
circumventing this limitation is the application of a set of feature functions, denoted as
{(s), which allows for the generalization of SR learning [11].

By assuming that the expected reward of state s can be represented as a product of
the feature vector and its corresponding reward weights, denoted as R(s) = ¢(s) T Wyer, we
can reframe the value function (Equation (1)) in a way that accommodates these feature
functions. The revised value function is given as follows:

V(s) = BT 7" i lSt = 5] wrew

e

(4)

1

t
= l/Jn (S)Twrew/

where ¢; denotes ¢(S;). By incorporating a one-hot vector in R!SI for a tabular environ-
ment, §(s) essentially mirrors the M(s, :) vector of SR learning. This is because it represents
the discounted sum of occurrences of ¢(s’) when a transition unfolds under policy 7.
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For clarity, we henceforth refer to ¢”(s) as the SF associated with state s under
policy 7.

The introduction of SF marks a significant broadening of the SR learning framework,
facilitating its application across a wider spectrum of MDP environments, such as partially
observable MDPs and those characterized by continuous states [16].

In our approach, the SFs are approximated utilizing a linear function represented
as follows:

B(s) = WTe(s). ®)

This estimation leans on the presumption that ¢(s) operates as a population vector
of neurons that responds to the state s observed by an agent. The utilization of a linear
function aligns with neurobiological models of hippocampal place cells and finds support
in the literature, reinforcing its relevance and applicability in our research [4,5,15].

To estimate (s), we apply the TD learning to update the weight matrix W.
This procedure parallels the matrix M updating method observed in successor repre-
sentation (SR) learning, thereby offering a streamlined approach to SF estimation in rein-
forcement learning contexts.

AW = awl[gp(st) + 7(sie1) — Plse)]p(s) ©)

It is worth highlighting that Equation (6) corresponds to Equation (3) when ¢(s) is
presented as a one-hot vector. Alongside this, the expectation weight vector associated
with rewards, denoted as wy,y, is updated using a simple delta rule [5,13] as follows:

AWy = “r(Rt - (P(S)TWVEZU>(P(S>' @)

With the established update rules, we are now ready to investigate the SFs’ learning
with different initialization methods of the weight matrix W. Notably, the initial val-
ues of weight matrix W are assumed to play a critical role in the learning performance
and efficiency.

2.3. SF Leaners and Their Weight Initialization Patterns

To explore the influence of different weight initialization methods on the learning
dynamics of SFs, we initialized the weight matrix W using three different methods: identity,
zero, and small random matrices.

2.3.1. Identity Matrix Initialization

The identity matrix initialization method sets the initial weight matrix W as an identity
matrix, W = I. This means that the initial estimates of the SFs are equivalent to the
one-hot encoded state representations. This initialization strategy can be regarded as a
“knowledgeable initialization”, endowing the agents with preliminary information about
the environment [5].

2.3.2. Zero Matrix Initialization

In contrast, the zero matrix initialization method sets all elements of the initial weight
matrix W to zero. This means the SFs initially predict no future state visitations, assuming
no knowledge of the world at the initial state. This initialization method can be seen as a
“naive initialization”, where agents start learning from scratch without any prior knowledge
about the environment.

2.3.3. Small Random Matrix Initialization

Small random matrix initialization, a commonly employed method in machine learn-
ing, sets the initial weight matrix W with small random values drawn from specific distribu-
tions. This technique infuses randomness into the preliminary estimates of SFs, conjecturing
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a mixture of accurate and imprecise understanding of the world at the onset [11]. We em-
ploy a single layer for the successor feature. Given that the expected future visitation cannot
be negative, we ensure that the weights are initialized randomly within the positive domain
by applying an absolute value function. For this investigation, we utilized three prevalent
techniques to initialize small random matrices: the Xavier method, the He method, and a
uniform distribution.

Xavier Method

The Xavier method, also known as Glorot initialization [17], is a popular method for
weight initialization in deep neural networks. This method determines initial weights
by drawing a random number from a uniform probability distribution (U) within the
range of \fl to f In our study, ‘n’ corresponds to the number of input neurons, thereby

representing the size of the one-dimensional (1D) grid world.

He Method

The He initialization technique [18], another approach utilized in this research, derives
initial weights from a Gaussian probability distribution characterized by a mean of zero and
a standard deviation given by 1/2/n, where ‘n’ symbolizes the number of input neurons.

Uniform Distribution

The uniform distribution method represents the most straightforward approach to
initializing small random matrices. In our study, this method involved distributing weights
uniformly across an interval ranging from 0 to 0.1. This choice of distribution infers that
we hold the expectation of future visitation to each successor state as uniformly probable.

2.4. Experimental Setup

To investigate the learning process of each RL agent, we used a simple one-dimensional
(1D) grid world of size N € N spanning from 3 to 100 cells. In this environment, the agent
navigates the grid world using left and right actions (Figure 1). In every episode, the agent
starts at the leftmost position in the grid world. The ultimate goal is to reach the rightmost
end of the world (also known as the terminal state). Upon reaching this terminal state, the
agent receives a reward of 1 point. In contrast, all other states receive a score of 0, which
means no reward. In our investigation, the discount factor y was set to 0.95.

start | - | 7 TP N

Figure 1. Schematic of the 1D grid world following the MDP. V* represents the expected true value
of each cell according to discount factor () when the reward of the terminal state is one.

To maximize the overall discounted reward, the agent selects actions predicated
upon the estimated Q value utilizing an e-greedy policy. This policy prescribes a uniform
random action selection with probability €, while at other times, with a probability of
1 — ¢, the agent chooses the action associated with the highest Q-value estimate. To foster
adequate exploration and promote learning stabilization, the probability € undergoes a
decay according to the rule: ¢, = 0.9 - 0.95% 4 0.1, where k signifies the episode index [19].

The learning rates assigned to each learner—the matrix M for the SR agent and the
matrix W for the SF agents—were uniformly set at )y = ay = 0.1. The learning rate
allocated to the reward position vector, for both the SR agent and the SF agents, was fixed
at o, = 0.1. To equitably compare SR and SF agents, maze environment observations were
utilized as state indices for the SR agent and one-hot coding vectors for the SF agents.
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2.5. Performance Evaluation Metrics

We evaluated the learning performance of SF agents with different weight initialization
methods based on several metrics, including learning speed, final performance, and stability
of learning. In addition to these performance metrics, we also analyzed the changes in the
SR matrix and the weight matrix throughout the learning process. These analyses allowed
us to better understand the dynamics and mechanisms underlying the influence of the
weight initialization on SF learning.

In this evaluation, each agent simulation test was run 10 times, and the mean and
standard deviation of the results are presented in the experimental results section.

2.5.1. Evaluating the Evolution of SR Place Field Matrix

In an effort to elucidate the intricacies of the SR matrix’s evolution and convergence
patterns over the progression of episodes, we utilized Principal Component Analysis
(PCA)—a powerful dimensionality reduction tool [20]. This process was complemented
by calculating the L1 distance between matrices at various stages throughout the learn-
ing episodes. This measurement helped in detailing the patterns of convergence inher-
ent to the SR matrix as the agent gained expertise within the simple maze environment.
This measurement was computed as follows:

N N
dl(A,B) = 22|u1]—b,]| (8)
i=1j=1
In this formula, 4;; and b;; denote individual elements within the SR place field
matrices A and B, respectively. This methodological approach offers a comprehensive
portrayal of the SR matrix’s conversion throughout the unfolding learning episodes.

2.5.2. Value Error

Within a one-dimensional maze that begins from the leftmost position, the optimal
policy would invariably guide movements towards the right. Accordingly, the legitimate
value of the n-th grid cell, denoted as V (s,,), amounts to 7N ", with s, representing the n-th
grid cell. This investigation entailed a comparison of the learning efficiency among diverse
agents, relying on the mean square error (MSE) as a metric. The MSE is the discrepancy
between the true value function, V*, and the value function under the current policy, V.
It is mathematically represented as follows:

1 N=1
MSE = 5 Y (V¥ (1) = V7(s))% ©)

n=1
Apart from the aforementioned metric, we also incorporated an alternative mea-
sure, defined as — AeAéVIiSSO% - This metric specifically provides insight into the rate at

which the value error diminishes over time, hence offering an additional perspective on
learning efficiency.

2.5.3. Step Length

In our analysis, we utilized additional metrics to understand the agent’s learning
progression in a comprehensive manner. The step length, representing the number of steps
the agent takes to reach the goal, was one such measure. As the agent improves its policy

with learning, this step length is expected to decrease. We assessed the rate of change of
A(step length)
~Acpisode
agent’s learning and the pace of policy improvement.

Further, we also evaluated the variability in the rate of step length decrease to under-

stand the stability of learning. This was accomplished by calculating the standard deviation
£ A(step length)
o Aepisode

the step length over episodes, defined as , to gain insights into the speed of the

over the course of learning episodes. This metric allows us to gauge the
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consistency of the agent’s learning progress, providing a more complete picture of the
learning dynamics.

3. Experimental Results
3.1. Accelerated Convergence of Random SF Agents to Asymmetrical SR Place Fields

To elucidate the impact of disparate initial matrix forms on SF agents, we analyzed
the transformational learning history of the weight variables of SF agents, juxtaposing the
findings with those of the SR agent.

3.1.1. Learning History of SR Place Field

In Figure 2, we present characteristic results simulated in a grid world comprising
100 cells. Upon comparison of the learning pattern of the 50th cell’s SR place field across
agents, we noticed that the SF agents equipped with random weights (Xavier, He, and
uniform) exhibited an expedited shift towards asymmetrical SR place fields relative to their
non-random counterparts (SR, identity matrix, and zero matrix).

o N B~ O

:

10th

o N B~ O

SR
0o AN
S ooo

C 10th episode  25th episode  50th episode 100th episode 300th episode 500th episode

o N & O

25th

o N A O

50th
N A o

o

zero
(=
o ® o
o oo

6 _ 201
S44 9 40
3 3 601
-
] 21 80 2
| ] A 100
6 204
£ 4] o 40
T
S 60 1
1 ™5 80
A ‘ 100
T -
10 —— SR B
25 6 | € 20 =0
50 IS zero S 40 1
— 100 | & 41 —— Xavier E 60
— 300 Q He S go
1 — 500 24 ~— Uniform 100
_—A__. 0 _A_. 20406080100 20406080100 20406080100 20406080100 20406080100 20406080100
20 40 60 80100 20 40 60 80100 n-th cell

Figure 2. The simulated learning histories of the SR place field show that the SF agents, with the
initial weight set with random weights, rapidly converge to the asymmetric SR place field. (A) Line
plots of the learned SR place field of 50th cell after the end of the 10th, 50th, 100th, and 300th
episode are shown. Each line and shade show the averaged result with the standard deviation from
10 simulations in a grid world with 100 cells. Each row panel displays the SR agent (first row) or
SF agents with different weight initialization methods (five rows below). (B) Rearranged line plots
from (A) comparing the agents (SR, blue; SF weight initialization with identity matrix, orange; zero
matrix, green; the Xavier method, red; the He method, purple; the uniform distribution, brown).
Each row panel displays the simulated results after the end of the 10th, 25th, 50th, 100th, 300th, and
500th episode. Note that the SF agents with random weights show skewed SR place fields at the 50th
episode, but other agents show symmetrical SR place fields. (C) Learning histories of the whole SR
place field matrix in a grid world with 100 cells are shown according to episodes (column panels)
and learning agents (row panels).
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In detail, the SR place fields of the 50th cell for non-random agents retained a sym-
metrical pattern even at the 50th and 100th episodes (Figure 2B). In contrast, when
we inspected the learned pattern of the comprehensive SR matrix at the 50th episode
(Figure 2C), it became evident that the SR place fields of random agents already displayed
an asymmetrical pattern. This held true even for cells located proximally to the first cell.
On the other hand, non-random agents, with the exception of those in the vicinity of the
goal location, continued to exhibit a symmetrical pattern in their SR place fields.

These observations underscore the intriguing finding that SF agents with random
initial weights converge more rapidly towards asymmetrical SR place fields compared
to non-random agents. This facet is especially pronounced in the early stages of learn-
ing, which can have implications on the temporal dynamics of learning and overall
task performance.

3.1.2. Analyzing SR Matrix Changes with PCA

The comprehensive SR matrix embodies the combined responses of all place cells,
thereby collectively representing the entirety of the grid world. Consequently, to analyze
and monitor the alterations in the learning pattern across episodes, a dimensionality
reduction of the SR matrix is crucial. Borrowing methods from neuroscience research
that are employed to examine large-scale neuronal recordings [21], we utilized PCA for
this purpose.

As hypothesized, and in alignment with the earlier observed transformations in the
SR place field, our findings revealed that agents initialized with random weights followed
a more direct path towards convergence (Figure 3).

5 cells 25 cells

SR
I
zero

>~ Xavier
He
uniform

0 1 2 0 5 10 15
50 cells 100 cells

[ a————

PC1

Figure 3. Principal component analysis (PCA) of the SR place field matrix learning history shows that
SF agents with random weights take shorter routes to converging optima. The simulated results from
four different sizes of grid worlds (N = 5, 25,50, 100) are shown. Each dot shows the PCA results of
SR place fields after each episode (*, first episode). Each line shows the historical route of the SR place
field learning from SR or SF agents (SR, blue; SF weight initialization with identity matrix, orange;
zero matrix, green; the Xavier method, red; the He method, purple; the uniform distribution, brown).
The average of the SR place field matrices from 10 simulations was used for PCA. The distinct trend
in the fourth image arises from a PCA of a large weight matrix. Its unique pattern, differing from the
other images, may reflect specific variances or features within the matrix. The exact cause remains an
area for further exploration.

In the case of a relatively compact grid world (N = 5), a similar progression pattern in
the SR place matrix was noticeable between the SR agents and SF agents initialized with
identity matrices (the upper left panel of Figure 3). On the same note, agents initialized
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with random weights and SF agents with zero matrix initialization demonstrated analogous
navigation patterns. These patterns, however, start to diverge with the expansion of the
grid world (N = 25). Here, random agents appear to emulate each other’s trajectories, just
as non-random agents do (the upper right panel of Figure 3). As we delve into larger grid
worlds, for instance, N = 50 and N = 100, the distinctions between the random and non-
random agents become increasingly apparent (the lower panels of Figure 3). It is in these
settings that agents initialized randomly show a propensity for shorter convergence paths.

It is important to note that there are differences in the scale of the axes, and for the
same axis scale, readers are referred to Figure A1.

3.1.3. Inter-Agent SR Matrix Distance

The PCA results suggest an intriguing possibility: if the randomly initialized agents
achieve faster convergence towards the optimal SR place field, the distance between their
SR place matrices and those of non-random agents should escalate during the learning
process, eventually plateauing upon convergence. Conversely, the distance between the SR
place matrices of non-random agents would remain relatively constant.

To investigate this possibility, we computed the L1 distances between the SR matrices
of the agents, presenting the results as a function of learning episodes (Figure 4). The trends
in the L1 distances over episodes among the six agents support our prediction, with the
distance between random and non-random agents initially increasing before decreasing
once again. Conversely, there is no discernible increase in the L1 distance when comparing
either within the group of random agents or the group of non-random agents. Owing to
the larger SR matrices and consequently larger distances found in larger grid worlds, all
y-axes in Figure 4 are plotted on a logarithmic scale.

To mitigate the influence of the SR matrix’s size on the L1 distance, we can divide the
L1 distance by the total number of elements in the matrix (N x N). This normalization
procedure brings the metric down to the level of a single SR matrix element and further
emphasizes that the distance between the randomly initialized agents and the non-random
ones tends to increase (Figure A2).

-4 NA
]

NA

5 cells

25 cells
—— 50 cells
—— 100 cells

NA

zero

EFE

L1 distance

Xavier

NA
N "

L

o \= NA

1072 1072 1072 1072 1072 1072
Relative episodes
Figure 4. The L1 distance between SR place fields of agents shows that the SF agents with random
weights differ from other non-random agents. Line plots show the change in the L1 distance according

to episode in four different sizes of grid worlds (N = 5,25, 50,100). Since the total number of episodes
episode
mber of episodes

depends on the grid world size, the relative episodes (i5mma ) are shown on the x-axis.
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3.2. Enhanced Value Error and Step Length Reduction in Random Agents

Drawing on Equations (2) and (4), a direct correlation can be established between the
variance in the SR matrix learning and the RL agent’s performance. Herein, we analyze
the anticipated value and step length to highlight the performance differences in the
learning process.

3.2.1. Examination of Mean Square Error Decline Rate

Taking into consideration the ground truth value (V*), the MSE of the estimated value
(V™) was calculated (please refer to Equation (9) in Section 2.5.2). Consistent with our
expectations, we observed that the MSE of V" for the random agents diminished at a faster
pace than for the non-random agents (the upper panel of Figure 5A).

5 cells 25 cells 50 cells 100 cells B 103
E 1071 g
B
10714 4
E 10714 °
8
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— SR 10724 L I
| 2 5 10
10-2 4 10744 o —e—  ZEro
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1.5 2 5
6 2
@ 4
1.0 5
41 < 31
£
= 24
0.51 2 %é
55 1
<
0.0 0 Lol
100 10' 102 10! 10° 10t 103 10t 103 25 50 75 100
Episodes Number of cells

Figure 5. The mean square error of values shows that the estimated value of the SF agents with
random weights decreases to the true value faster than the non-random agents. (A) The upper panel
shows the mean square error (MSE) of the estimated values (V") decreases as the episode progresses.
The lower panel shows the decrease in the MSE per single episode (— AeA}la\i/ISSO%e). The results are
from 10 simulations in four grid worlds of different sizes (arranged by columns). The averages
(lines) and standard deviation (shades) of the SR or SF agents (SR, blue; SF weight initialization
with identity matrix, orange; zero matrix, green; the Xavier method, red; the He method, purple;
the uniform distribution, brown) are shown. (B) The upper panel shows that the averages of the
MSE from last 100 episodes are similar across the SR or SF agents. The lower panel shows that the
average of —x2MSE_ from first 10 episodes of the SF agents with random weights are larger than the

Aepisode
non-random agents. Each circle marker indicates the size of grid worlds, which were simulated.

. AMSE
We examined the rate of MSE decrement, represented as — ¢ pisode

of Figure 5A). Early episodes, up to the 10th, illustrated a higher decrement rate in the
randomized agents, indicating a more rapid reduction in the MSE value. It is noteworthy
that among the random agents, those initialized utilizing the He and Xavier methods
depicted a steeper reduction relative to those initialized uniformly (the lower panel of
Figure 5A,B).

Nevertheless, in the latter episodes, the rate of MSE reduction exhibited minimal
variation across the agents, underlining the comparable efficiency of the initialization
methods in the long run.

(the lower panel

3.2.2. Step Length Reduction

Given the quick reduction observed in the MSE of random agents, we can anticipate a
corresponding accelerated decline in the step length to the goal cell within each episode of
the grid world exploration. Due to their initially high € probability, all RL agents undertake



Electronics 2023, 12, 4212

110f18

an exploration of the grid world that mimics a random walk, which naturally results in
longer step lengths during the early episodes. As shown in Figure 6, as the exploration
episodes advance, the step length predictably shrinks to the size of the grid world.
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Figure 6. The SF agents with random weights converge to the optimal step length more rapidly
and stably than the non-random agents. (A) The upper panel displays the total step length taken to
reach the target state for each episode. In the simulation results from the large grid world (N = 100),
the step length of the SF agents with random weights decreases to the ideal step length for the
first 10 episodes, while the non-random agent decreases to the ideal step length after hundreds of

episodes. The lower panel shows the decrease in total step length with each episode (%).

In the simulation results of the large-scale grid world (N > 50), the jittering of % of the SF
agents with random weights disappears after 10 episodes, whereas its jittering of the non-random
agents persists. The results are from 10 simulations in four grid worlds of different sizes (arranged by
columns). The averages (lines) and standard deviation (shades) of the SR or SF agents (SR, blue; SF
weight initialization with identity matrix, orange; zero matrix, green; the Xavier method, red; the He
method, purple; the uniform distribution, brown) are shown. (B) The top panel shows the average
step length of the first 100 episodes according to grid world size. The lower panel shows the standard

(step length)

deviation of 2 Acpisode of the first 100 episodes according to grid world size.

In smaller grid worlds (where N < 30), no significant differences in the reduction
of step lengths amongst the RL agents were observed. However, as the grid world’s size
expands (N >= 50), it was noted that the step length of random agents diminished at a
faster rate (see Figure 6B, upper).

The trajectory of step length reduction manifested clear distinctions between the two
groups. Non-random agents demonstrated significant fluctuations in the decrement of step

length, while such variance was less prevalent in random agents. This disparity was further
A(step length)

illustrated by calculating the rate of step length reduction, —% episode

, and evaluating its
standard deviation (the lower panel of Figure 6A,B).

For non-random agents, the fluctuations in the rate of step length reduction inflated
exponentially with the increase in grid world size. Conversely, for the random agents,
the fluctuations displayed a linear growth pattern despite the expanding grid world size,

indicating a more stable decrease in step length as the learning process progressed.

4. Related Works

Effective initialization methods, contingent upon the activation function, have been
well documented in the study of Artificial Neural Networks (ANN) utilizing backpropaga-
tion algorithms. The normalized Xavier initialization method [17] is typically employed
with sigmoid and tanh functions, while the He initialization method [18] sees frequent
usage with ReLU functions.
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In this study, the absolute values derived from the Xavier and He methods were
employed to initialize the random agent. It is worth noting that the inclusion of negative
numbers in the weight matrix can result in a negative SR value corresponding to future
occupancy, as we make use of a single-layer function approximator devoid of an activation
function. To address this issue, we can utilize multilayer ANNs as a function approximator.
When a deep neural network is employed as an SF approximator [22,23], it begs the question
as to which activation function in the hidden layer is optimal and, consequently, the most
effective weight initialization method.

Though this paper focused on exploring MDP-based agent learning of environmen-
tal characteristics via the SF algorithm, numerous other algorithms are available that
describe animal-environment interactions and learning mechanisms, for instance, Parti-
cle Swarm Optimization (PSO) that models avian foraging behavior [24,25]. Among the
latest advancements to the PSO algorithm, multi-swarm PSO has been successfully imple-
mented in feature learning for sentiment analysis of Massive Online Open Course lecture
reviews [26].

5. Discussion

In this study, we investigated the role of the initial weight matrix configurations in
the efficiency of SF learning. We scrutinized three initialization methods: the identity
matrix, zero matrix, and random matrix (using Xavier, He, and uniform distribution). Our
results demonstrated that the randomized agents, regardless of the specific initialization
method, outperformed the identity and zero matrix agents. Specifically, we found that
the random agents learned faster, which was evident from the decrease in the MSE of the
estimated value and step length to the goal cell in a grid world environment. Further,
PCA analysis illuminated the distinct patterns of learning in randomized agents compared
to non-randomized ones, which provided additional insight into the evolution of SR
place matrix. Thus, our findings underscore the significant influence of the initial weight
configurations on the effectiveness and speed of SF learning.

5.1. Interpretation of SF Weight Matrix Initialization

Initiating the SF weight matrix as an identity matrix provides the agent with a unique
starting position in its learning journey about the environment. As learning progresses,
each element in the identity matrix corresponds to a particular state, thereby facilitat-
ing the updating of knowledge regarding state transitions. However, this initialization
method could restrict the agent’s versatility in exploring and learning diverse environ-
mental patterns, potentially resulting in slower learning as observed in previous research.
This limitation could be particularly consequential for an agent’s adaptability in increas-
ingly complex or dynamic environments.

Alternatively, initializing the SF weight matrix with zero establishes a “tabula rasa”
situation for the agent. Devoid of any prior knowledge, these agents are heavily influenced
by their environmental interactions and the inherent learning algorithm. Although this
approach broadens the exploration scope, it may decelerate learning due to the absence of
initial guidance. This downside was apparent in studies where agents initiated with a zero
matrix took a longer time to converge compared to their randomly initialized counterparts.

Contrastingly, random matrix initialization strikes a balance between exploration and
exploitation. Incorporating random elements into the SF weight matrix equips the agent with
a degree of “innate knowledge” guiding its initial steps while preserving a vast spectrum for
exploration and learning. Consequently, this initialization method may enhance the learning
efficiency, offering a promising avenue for improving SF learning algorithms.

5.2. Neurobiological Considerations

In the context of RL, the feature vector of the input layer offers a snapshot of the
agent’s current position. Subsequently, this information is transformed by the SF weight
matrix into a population vector, effectively encoding the anticipated future occupancy
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given the policy at hand. This sequence of operations bears striking resemblance to the
neurobiological mechanisms believed to underpin spatial learning.

A collection of studies [4,5,7] suggests that hippocampal CA1 place cells encode SR
through population codes. Viewed through this neurobiological lens, the SF weight matrix
may be interpreted as a close analog to the synaptic weights connecting CA1 place cells
to preceding layers of neurons in the neural hierarchy, such as those in the CA3 and
entorhinal cortex. This parallel between the functioning of RL algorithms and the neuronal
processes that facilitate spatial learning lends support to the use of such algorithms in the
investigation of cognition and its underlying biological substrates.

While the exact mechanisms by which the brain might implement the synaptic update
rule used in our study remain elusive, a body of research has found substantial evidence
that TD learning parallels the activity of dopaminergic neurons in response to reward
prediction errors [27,28]. This aligns with the hypothesis that the neural instantiation of TD
learning might be facilitated through neuroplasticity rules, such as spike timing-dependent
plasticity and heterosynaptic plasticity [15,29]. This conjecture, if further corroborated,
could add an extra layer of understanding to our exploration of the intersections between
artificial intelligence and neurobiology.

From a biological standpoint, it seems reasonable to posit that place coding and reward
prediction coding might be processed in tandem within the brain, which subsequently
synthesizes these elements into anticipated values for a given state. This line of thought
supports the perception of the brain as a device engaging in parallel distributed processing,
as suggested by [30]. Underpinning this proposition, the backpropagation algorithm has
exhibited exceptional capability in tasks such as image recognition [31,32]. Moreover, a
convolutional neural network (CNN) trained with this algorithm has exhibited activation
patterns that bear resemblance to those observed in the visual cortex and the inferior
temporal cortex of the brain [33]. Notably, when the activation pattern of a trained CNN
was used to manipulate an image, it was found to predict neuronal responses in the V4
visual cortex of macaque monkeys [34]. Nevertheless, it is still a matter of ongoing debate
and remains unconfirmed whether the backpropagation algorithm is genuinely operative
within the brain [35,36].

While the biological embodiment of SR learning remains elusive, particularly regard-
ing the brain’s processing location and method for the inner product of the feature vector
and reward vector, there is a notable correlation between the outcomes of SR learning and
the behavior of hippocampal place cells [4,37,38]. However, it warrants further exploration
to fully understand how the brain learns and signifies the sequences of state transitions,
rewards, and state values. Experimental findings have associated the representation of the
reward signal with the orbitofrontal cortex (OFC) [39,40], suggesting the anterior cingulate
gyrus as a probable area for the integration of the OFC’s reward signal and the HPC’s SF
signal [41,42]. In contrast, a study by [43] postulated that the HPC directly encodes the
position of the reward.

Transitioning our focus to the question of ‘how’, we are confronted with the challenge
of extracting a scalar value from the successor feature vector and reward vector [44].
Although this issue extends beyond the scope of the current study, we can glean some
neurobiological insights. Specifically, if the synaptic weights in a neural network at the
developmental stage are randomly initialized, they demonstrate faster convergence to an
optimal state.

5.3. Limitations of the Study

While our study offers valuable insights into the impact of SF weight matrix initializa-
tion on learning efficiency and convergence, it is important to note that these findings are
based on a one-dimensional grid world. The 1D grid world was chosen for its simplicity,
allowing for clear analysis and interpretation. However, the learning patterns and efficiency
we observed may vary with different types of environments. For instance, we noticed more
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distinct learning trajectories in larger grid worlds, while smaller grid worlds exhibited
similar patterns.

In more complex environments, such as two-dimensional or three-dimensional grid
worlds, the state space grows, and agents may face intricate navigation challenges influ-
enced by factors like obstacles, multiple goals, or varying reward structures. Therefore, the
grid-world size is a potential limitation of our study, and our conclusions might be more
applicable to larger grid worlds.

Recognizing this, we believe it is crucial to investigate the proposed methods in
varied scenarios to understand their robustness and generalizability better. Future studies
could broaden the scope by investigating a wider range of MDP environments, such as
two-dimensional grid worlds, to enhance the applicability of our findings and provide a
comprehensive understanding of the learning dynamics in different contexts.

Matrix initialization plays a pivotal role in the behavior and performance of opti-
mization algorithms, especially in the context of neural network models [17,18]. Various
initialization methods have been explored because different strategies can lead to variations
in convergence rates, sensitivity to local minima, and overall model performance. However,
our research does not delve into methods such as orthogonal initialization and sparse
initialization.

While we opted for initialization methods that are well-established in supervised
learning and deep learning literature, it is evident that the landscape of matrix initialization
is vast and multifaceted. Future research could provide a comparative analysis of these
methods in different contexts, shedding light on their strengths, limitations, and optimal
use cases.

Our study relied on certain evaluation metrics, including the MSE of the value error,
step length, and the PCA of the SR place matrix, to analyze the learning efficiency and
convergence. While these metrics provided significant insights, they might not encapsulate
all aspects of an agent’s learning trajectory. For instance, MSE and step length predomi-
nantly focus on the speed of learning, potentially overlooking other critical dimensions
such as the stability and adaptability of learning. Additionally, PCA, while effective in di-
mensionality reduction and visualizing high-dimensional data, may oversimplify complex
learning patterns.

6. Conclusions

This study embarked on an exploratory journey into the role of matrix initialization
in SF learning within the framework of RL. We discovered notable differences in the
learning trajectories of agents with different matrix initialization forms—identity, zero,
and random (Xavier, He, and uniform distribution). Our findings suggest that random
matrix initialization, particularly using the Xavier and He methods, led to more efficient
learning and faster convergence to the optimal state, as evidenced by a quicker decrease
in the value error and step length. The PCA further revealed distinct patterns of SR place
matrix evolution among different agents, reinforcing the importance of matrix initialization
in shaping the learning dynamics.

The study highlights the significance of weight initialization in the learning process.
Our observations demonstrate that the choice of initialization method significantly influ-
ences the learning trajectory and efficiency of the agents. Specifically, agents initialized
with random matrices demonstrated accelerated learning and quicker convergence to
the optimal state. These findings underline the value of exploring diverse initialization
techniques to enhance the effectiveness of SF learning.

The implications of this research extend beyond SF learning and RL, contributing
to our broader understanding of intelligence from both a neuroscientific and artificial
intelligence perspective. By drawing parallels between SF learning and the functioning
of place cells in the brain, the study offers intriguing insights into the neurobiological
processes underlying learning. An intriguing direction for future research is to delve deeper
into the parallels and disparities between biological learning and Al learning algorithms.
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The results of this study shed light on the learning efficiency of agents, mirroring the
learning process of place cells in the brain. Continued efforts to bridge this gap could
lead to the development of more biologically-inspired Al models, possibly leading to
breakthroughs in our understanding of both artificial and natural intelligence.

Funding: This study was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT; Ministry of Science and ICT) (No. NRF-2017R1C1B507279).

Data Availability Statement: The manuscript does not involve experimental data; rather, it relies
on simulations and analyses conducted using custom Python code developed by the author. The
complete source code utilized in this study is accessible through the following dedicated repository:
https:/ /github.com /HyunsuLee/Tuning-W-SF (accessed on 11 September 2023). We encourage
interested readers to explore this repository, as it offers a comprehensive resource for replicating and
verifying the analytical procedures employed in this research.

Acknowledgments: The author would like to thank ChatGPT for their assistance in editing and
improving the language of the paper, as well as for their helpful brainstorming sessions.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

RL Reinforcement Learning
SR Successor Representation
SF Successor Feature

PCA  Principal Component Analysis
MDP  Markov Decision Process

D Temporal Difference

MSE  Mean Square Error

PSO  Particle Swarm Optimization
Al Artificial Intelligence

ANN  Artifical Neural Network
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Figure A1. The same principal component analysis (PCA) of the SR place field matrix learning history
as shown in Figure 3, but drawn to the same scale. Except for the scale, the details are the same as in
Figure 3.
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Figure A2. L1 distances divided by the size of the matrix (N x N) are shown. This normalization
shows the distance between one element of the SR matrix. The random agents are far from the
non-random agents.
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