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Abstract: The existing asynchronous federated learning methods have effectively addressed the
issue of low training efficiency in synchronous methods. However, due to the centralized trust
model constraints, they often need to pay more attention to the incentives for participating parties.
Additionally, handling low-quality model providers is relatively uniform, leading to poor distributed
training results. This paper introduces a blockchain-based asynchronous federated learning protec-
tion framework (BCAFL). It introduces model validation and incentive mechanisms to encourage
party contributions. Moreover, BCAFL tailors matching contribution cumulative strategies for par-
ticipants in different states to optimally utilize their resource advantages. In order to address the
challenge of malicious party poisoning attacks, a multi-party verification dynamic aggregation factor
and filter mechanism are introduced to enhance the global model’s reliability. Through simulation
verification, it is proven that BCAFL ensures the reliability and efficiency of asynchronous collabora-
tive learning and enhances the model’s attack resistance capabilities. With training on the MNIST
handwritten dataset, BCAFL achieved an accuracy of approximately 90% in 20 rounds. Compared to
the existing advanced methods, BCAFL reduces the accuracy loss by 20% when subjected to data
poisoning attacks.

Keywords: blockchain; federated learning; asynchronous training; value of contribution; incentive
mechanism; aggregation factor; filtering mechanism

1. Introduction

Machine learning is an intelligent technology that trains computer systems using a
vast dataset. It enables them to learn from existing data, discover patterns, build models,
and autonomously make predictions, classifications, or decisions. It is widely recognized
that machine learning model training requires substantial data support. However, due to
concerns related to regulations, economic utility, and data privacy, data holders are often
reluctant to actively contribute their raw data, forming isolated “Data Islands”, severely
hindering machine learning development.

Federated learning (FL) [1], a collaborative machine learning framework pioneered by
Google, addresses this challenge. It leverages local private data from participating nodes
for model training and sends local model updates, instead of raw data, to a central server
for aggregation. FL preserves user privacy by not directly exposing sensitive individual
data, making it a promising solution to tackle data isolation and privacy leakage. The
existing literature indicates that federated learning has wide-ranging potential applications
in intelligent healthcare [2], edge networks [3], autonomous driving [4], and smart cities [5].

However, despite the numerous advantages introduced by federated learning, several
challenges still require resolution. The primary challenge lies in the high stability require-
ments for the central server in traditional federated learning. A compromise or failure of the
central server can severely disrupt the entire training task. Moreover, traditional federated
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learning employs synchronous aggregation, necessitating the submission of local model
updates from all participating parties before global model aggregation. Differences in
computational capabilities and local data scales among participants may reduce efficiency.
Specifically, early contributors must wait for the laggard nodes’ updates before performing
model aggregation, potentially causing delays in the overall training process.

Additionally, malicious nodes uploading untrustworthy local models could initiate
poisoning attacks [6], posing a severe security threat to federated learning. In addition to
these issues, the absence of a proper incentive mechanism can deter most data owners from
engaging in federated learning. Under the current paradigms, data providers need more
motivation to share their local data as they might only partially benefit from the outcomes
of federated learning. Finding methods incentivizing data owners to participate actively in
such a scenario becomes crucial.

In 2008, Satoshi Nakamoto introduced the concept of blockchain through the release of
Bitcoin [7], marking the birth of blockchain technology. In recent years, blockchain technol-
ogy has made significant progress in decentralized finance [8]. As blockchain evolves, its
unique technical characteristics have become increasingly prominent. These characteristics
include decentralization, immutability, and traceability [9], which offer viable solutions to
address issues encountered in improving traditional federated learning. The research [10]
has indicated that blockchain can potentially replace the model aggregation mechanism re-
liant on central nodes in traditional federated learning, enhancing its reliability and security.
It can also mitigate the risks of single points of failure and malicious attacks. Furthermore,
the immutability of blockchain ensures the legitimacy of the historical global model. The
global model’s change process becomes tamper-resistant by storing the aggregation records
of model parameters in the blockchain’s distributed ledger, thereby bolstering the model’s
trustworthiness. Most importantly, the traceability feature of blockchain facilitates the
monitoring and auditing of the federated learning process. By storing the training history
of models on the blockchain, any changes to the model parameters can be traced back to
their origins. This not only improves the transparency of model training but also aids in
detecting and preventing malicious attacks. Consequently, blockchain technology holds
significant promise for advancing the field of federated learning.

Nonetheless, asynchronous federated learning faces challenges, too. Frequent ag-
gregation may result in some participants submitting global models based on outdated
versions, potentially leading to lower precision. Dealing with these low-quality models is
paramount, and various strategies, examples of which are assigning distinct weights during
aggregation or implementing anomaly detection techniques to exclude anomalous models,
were proposed in the existing research. However, these methods need more efficiency and
stability, necessitating further exploration and optimization.

In order to tackle the issues mentioned above, this paper presents a novel blockchain-
based asynchronous federated learning solution, making the following contributions:

• The design of a consortium blockchain-based federated learning framework, BCAFL.
This framework not only enhances the reliability of asynchronous federated learning
but also meets the requirements of communication efficiency. Additionally, a consen-
sus algorithm, C-Raft, tailored for asynchronous federated learning, is designed to
improve training efficiency.

• The introduction of a participant contribution calculation method. The corresponding
contribution strategies are devised based on the varying states of participants in the
consensus process. Furthermore, an incentive mechanism based on contributions is
introduced, effectively motivating more participants to engage in federated learning.

• The proposal of a dynamic aggregation factor based on multi-party validation. This
aggregation factor effectively addresses the slow convergence issue of the global model
in asynchronous scenarios, thus, enhancing the efficiency of global model training.

Section 1 of the article introduces the relevant research on the existing asynchronous
federated learning; Section 2 explains the foundational theoretical knowledge of blockchain
and federated learning; Section 3 provides detailed insights into the BCAFL system ar-
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chitecture and module design; Section 4 demonstrates the effectiveness of the proposed
solution through simulation and empirical validation. Finally, Section 5 summarizes the
work presented in the paper.

2. Related Work

In federated learning, participant nodes keep their data locally and construct machine
learning models by exchanging local training parameters. With the increasing significance
of privacy concerns and the growing demand for improved efficiency in industrial applica-
tions of federated learning, more and more scholars are exploring emerging directions in
the field [11].

In the early stages of the federated learning research, the primary focus was on
synchronous federated learning. During this period, some scholars had already begun
to explore integrating federated knowledge with blockchain technology. Kang et al. [12]
designed a multi-weight subjective logic model to compute reputation values and assign
them to participants, using participant reputation as a metric for measuring the reliability
and trustworthiness of the mobile devices. They achieved secure reputation management
for employees with undeniable and tamper-proof characteristics through a decentralized
approach using blockchain technology. Li et al. [13] introduced the blockchain-based
BFLC framework for global model storage and local model exchange. They designed
an efficient committee consensus mechanism that minimizes the potential for malicious
attacks. Simulated experiments demonstrated the effectiveness and security of the BFLC
framework. Peng et al. [14] proposed VFChain, a verifiable and auditable federated
learning framework based on a blockchain system. They stored aggregated models in a
committee that could be securely rotated within the blockchain. They also introduced a
novel blockchain authentication data structure to enhance the search efficiency of verifiable
evidence.

The blockchain aspect of the articles mentioned above primarily relies on a consensus
algorithm called the committee-based approach. As the integration between blockchain
and federated learning becomes more seamless, novel consensus algorithms better suited
for federated learning are proposed. Qu et al. [15] introduced a novel energy-recovering
consensus algorithm that reinvested energy wasted on the meaningless challenges of PoW
into federated learning. They also proposed a data trading mechanism based on reverse
games to prevent training data leakage, along with a privacy-preserving model verification
mechanism to validate the accuracy of the training models. Muhammad Shayan et al. [16]
presented a fully decentralized multi-party machine learning peer-to-peer (P2P) approach
called Biscotti. It utilized blockchain and cryptographic primitives to coordinate privacy-
preserving ML processes among peer clients.

Furthermore, the consensus algorithms presented in the following articles offer innova-
tive solutions for integrating federated learning and blockchain. Zhang et al. [17] assessed
worker reliability by calculating reputation values based on model quality parameters.
They employed blockchain to store historical reputation values, ensuring tamper resis-
tance and non-repudiation. P. Ramanan et al. [18] introduced BAFFLE, a non-aggregate,
blockchain-driven federated learning approach. BAFFLE leveraged intelligent contracts
to coordinate model aggregation and update tasks in federated learning, partitioning the
global parameter space into different blocks and using scoring and bidding strategies to im-
prove the computational performance. Umer Majeed et al. [19] allocated separate channels
for learning each global model in a blockchain network, storing global models as Merkle
Patricia trees. However, this method had limitations, as users relied on the integrity of their
respective edge devices. Lu et al. [20] proposed a secure data-sharing architecture based on
blockchain authorization, integrating federated learning into the consensus process of a
permission blockchain, allowing consensus computations to be used simultaneously for
federated training. Pokhrel and Choi [4] presented a framework that captured the impact
of controllable networks and BFL parameters on system performance. They conducted a
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rigorous analysis of oVML system dynamics to quantify end-to-end latency and provide
valuable insights for deriving optimal block arrival rates.

However, these articles are based on synchronous federated learning and suffer from
the “Buckets effect”, where the aggregation time for each round depends on the partici-
pant who sends their local model latest. Chen et al. [21] proposed a novel heterogeneous
semi-asynchronous federated learning mechanism called HSA-FL. They allocated different
training intensities to clients based on their heterogeneous communication and computa-
tional capabilities. They also designed two aggregation rules: adaptive update and fixed
adaptive, effectively reducing training time and improving training accuracy. Ma et al. [22]
introduced a semi-asynchronous federated learning mechanism, analyzing the quantitative
relationship between convergence boundaries and various factors. They deployed adaptive
learning rates for employees based on relative participation frequencies, addressing three
challenges: edge heterogeneity, non-IID data, and communication resource constraints.
Wu et al. [23] presented a semi-asynchronous FL protocol called SAFA to address issues
such as low round efficiency and low convergence rates in federated learning under ex-
treme conditions. However, this article did not integrate blockchain technology and had
limited capabilities in handling single-point failures.

Pure asynchronous federated learning holds a significant advantage regarding global
model aggregation efficiency but also introduces some new challenges. Zhu et al. [24]
proposed an outdated compensation algorithm to mitigate model staleness in asynchronous
federated learning. They also developed an online client selection algorithm to minimize
training latency without the prior knowledge of channel conditions or local computation
states, ensuring model accuracy and training efficiency. Zhou et al. [25] introduced a two-
stage weighted asynchronous federated learning with adaptive learning rates, utilizing
delayed gradients to alleviate the impact of non-IID data. While the methods mentioned
above propose solutions for asynchronous federated learning, they do not incorporate
blockchain technology, which poses certain security risks. Mondal et al. [26] presented an
anomaly detection protocol to minimize the risk of data poisoning attacks in asynchronous
federated learning. They used gradient clipping to limit the effects of model poisoning
attacks further and designed a new protocol to prevent premature convergence in hetero-
geneous learning environments. Feng et al. [27] used an entropy-weighted approach to
measure the quality of model updates. They determined the proportion and allowed local
update delays in global aggregation through score design. Please refer to Table 1 for a
comparison between this proposal and the existing proposal.

Table 1. The comprehensive situation of the existing schemes.

Work Synchronize
Combined

with
Blockchain

Resist Data
Poisoning

Incentive
Mechanism

Consensus
Protocol

[12] Sync Yes Yes Yes Committee
[13,14] Sync Yes No Yes Committee

[15] Sync Yes No Yes PoFL
[16] Sync Yes No No PoFL
[17] Sync Yes No No PoR
[18] Sync Yes No No PoA
[19] Sync Yes No No N/A
[20] Sync Yes No No PoQ
[4] Sync Yes Yes No PBFT/PoW

[21–23] Semi-Async No No No -
[24] Async No No No -
[25] Async No No No -

[26] Async Yes Yes No Depends on
fabric

[27] Async Yes Yes No PoW
The Proposed Async Yes Yes Yes C-Raft



Electronics 2023, 12, 4214 5 of 20

The studies above have introduced methods to overcome challenges in federated
learning, such as convergence, privacy, training efficiency, and heterogeneous environ-
ments. However, these methods still have limitations, such as overlooking incentives in
asynchronous scenarios and offering limited approaches to handling low-quality model con-
tributors. Therefore, this paper introduces the BCAFL method, which combines blockchain
and federated learning to address model verification, incentives, and inefficient aggregation
challenges, thereby enhancing model aggregation efficiency and system robustness.

3. Preliminary Knowledge

This chapter succinctly elucidates the fundamental concepts of blockchain, consensus
algorithms, and federated learning to ensure readers have a transparent background
understanding of the subsequent content.

3.1. Blockchain

The essence of blockchain is a distributed ledger that combines the advantages of
various technologies such as cryptography, peer-to-peer communication, and distributed
storage. It achieves trustworthiness in transactions between parties in trustless scenarios.
Blockchain can be categorized into public, consortium, and private chains [28], depending
on the use case and requirements.

Blockchain’s consensus algorithms dictate the rules for achieving consensus in dis-
tributed systems, ensuring that nodes can reach a consistent opinion, despite issues such as
node failures, network latency, and communication errors. The proof of work [29] (PoW)
consensus mechanism offers high security and fairness. However, the proof of stake [30]
(PoS), represented by PoS, competes for blockchain’s accounting rights based on the amount
and duration of coin holding. While it addresses the energy consumption issues of PoW,
it introduces challenges such as the “nothing-at-stake” problem, long-range attacks, and
short-range attacks [31].

The delegated proof of stake [32] (DPoS) is an improved PoS algorithm with low energy
consumption and high performance. Nodes vote to elect a specific number of representative
nodes based on their coin holdings. Elected representative nodes are responsible for
maintaining the stability and security of the network. However, because the number
of representative nodes is typically small compared to the overall network, it poses a
centralization risk.

The consortium chains control node participation through admission mechanisms and
primarily uses consensus algorithms such as Byzantine fault tolerance [33] (BFT), crash
fault tolerance [34] (CFT), and derived algorithms. Practical Byzantine fault tolerance
(PBFT) is a BFT-based consensus algorithm that supports fault tolerance and can tolerate
no more than one-third of Byzantine nodes among the total network nodes.

The raft algorithm [35], as a typical CFT algorithm, can ensure consensus consistency
even when less than half of the nodes in the network fail or experience network failures.
It sets three consensus roles: leader, candidate, and follower, decomposing the consensus
problem into leader election, log replication, and safety.

• Leader Election: Raft allocates a continuous sequence of terms; at the start of each
term, a leader is elected. If a follower does not receive a heartbeat from the leader
within a certain period, it transitions to a candidate. It initiates a new round of leader
election to ensure robustness in consensus algorithms.

• Log Replication: The leader receives client requests and appends them as log entries
to its log. Once a log entry is committed, the leader notifies the followers and allows
them to replicate these log entries locally, thus, maintaining consistency.

• Security: Raft ensures that only nodes with the latest log are eligible to become
leaders, thereby preventing outdated leaders from creating partitioned copies.

By integrating blockchain technology, end-to-end encryption can be achieved during
federated learning for secure, privacy-preserving model parameter exchange and updates.
In blockchain-based asynchronous federated learning frameworks, blockchain applications
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provide higher levels of network security for local device collaboration and foster multi-
party participation in collaborative research.

3.2. Federated Learning

Federated learning enables multiple terminal computing devices to conduct model
training locally, uploading information containing local model updates to a central server
while ensuring that the raw data remain local, achieving “available but not visible” data.
Let us break down the provided mathematical expressions and summarize the federated
learning process:

Suppose there are N federated learning participants, each with a local dataset nk
consisting of m samples, where nk = {(x1, y1), (x2, y2), . . . , (xm, ym)}(1 ≤ k ≤ N). Here, xi
represents an input sample, and yi is the corresponding label. Participant Pk’s local training
parameters for one iteration in federated learning are denoted as wk = {w1, w2, . . . , wm},
and the local loss function for participant Pk is Lossk(wk, nk).

The objective function for the federated learning model training is defined as follows:

minF(WG) =
1
N

N

∑
k=1

nk
n

Lossk(wk, nk) (1)

where F(WG) represents the global objective function, WG stands for the global model
parameters, n represents the total number of local data samples across all participants, and
n = ∑N

k=1 nk. The process of federated learning can be summarized as follows:
Step 1: Initialization of the Global Model:
Set hyperparameters for federated learning, including the number of iterations, local

training iteration count, learning rate, etc. Broadcast the initial global model W0
G to all

participants.
Step 2: Local Model Training:
In the t-th iteration, participants retrieve the previous global model Wt−1

G and compute
gradients using optimization algorithms such as stochastic gradient descent (SGD):

∇g(wt−1
G ; nk) =

1
nk

nk

∑
j=1

∂Loss( f (wt−1
G , xj), yj)

∂wt−1
G

(2)

Update local models using the computed gradients:

wt
k = wt−1

G − η∇g(wt−1
G ; nk) (3)

Here, Loss( f (wt−1
G , xj), yj) represents the loss function, and ∇g(wt−1

G ; nk) is the gradi-
ent of the local model.

Step 3: Global Model Aggregation
Participants train their local models using their respective datasets nk, resulting in

local models wt
k.

The central server collects the local models and aggregates them to generate a new
global model Wt

G, often achieved through methods such as federated averaging [36]:

Wt
G = Aggregate(wt

1, wt
2, . . . , wt

N) (4)

Step 4: Broadcast and Next Iteration:
All participants receive the broadcast of the new global model Wt

G. The participants
iterate further with the updated global model until they reach the maximum number of
iterations or achieve model convergence.
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4. Solution Design
4.1. System Architecture

Unlike the traditional centralized model update approach, this method does not wait
for all participants to upload their local models in asynchronous federated learning. Instead,
it immediately updates the global model upon receiving valid local models. However, this
asynchronous approach also introduces particular challenges, with two main challenges
being low efficiency in global model training and privacy–security risks.

Challenge 1. Dependency on central server stability aggregating the global model relies on the
stability of the central server. The entire asynchronous federated learning task would fail if the
central server is attacked and becomes incapacitated.

Challenge 2. Due to the asynchronous nature and quality issues, asynchronous federated learning
faces issues such as unsynchronized global model clocks, low-quality local models, and even the risk
of maliciously poisoned local model aggregations. If local models are directly aggregated with the
previous version of the global model, the convergence speed of the global model significantly decreases.

The following section introduces the design strategies for each component, as pre-
sented in the text:
Blockchain: Blockchain technology plays a pivotal role. It is utilized to record key
information during the global model iteration process and the accumulation of participants’
contributions. Each block is linked to the previous block through a pointer, forming an
immutable chain structure. The block mainly includes the following recorded content:

• Task Info: The task details are exclusively stored in the genesis block. It includes
the task publisher’s ID, reward function based on contribution values, contribution
collateralization function (proportional to local data volume), maximum iteration
count (T), and timestamp.

• Term Info: Details about the leader’s ID, term number, and transaction buffer pool sta-
tus.

• Model Info: Information about the local model provider, training time, IPFS address,
validation set, global model IPFS address and hash value.

• Contribution Updates: Additional contribution values from the model provider and
leader’s appended contribution values.

• Other Parameters: Parameters such as the public keys of all participants, contribution
factor α, filtering coefficient σ, and adjustment factor β.

C-Raft Consensus Algorithm: Consensus algorithms favor selecting participants with
higher contribution levels when electing leaders. This preference is rooted in enhancing
the efficiency and performance of the entire federated learning system. However, this
inclination presents a challenge. As leaders, participants must invest more computational
resources to execute model aggregation and parameter updates. Consequently, this might
slow down the progress of their local model training. In order to address this issue, the
paper proposes the following strategy: When a participant is chosen as a leader, they
temporarily suspend their local model training and focus on tasks such as global model
aggregation. This design ensures that leaders can dedicate their computational consensus
efforts to model aggregation and parameter updates while preventing highly contributive
participants from consistently engaging in the model aggregation process. As a result, the
strategy ensures stability and diversity in the federated learning ecosystem.

Transactions: Transactions are data records generated during the communication pro-
cess among nodes within a blockchain. In this context, transactions encompass training
information and validation details related to model aggregation and verification. This
paper’s transactions include data pertinent to model aggregation and validation. The leader
node maintains a transaction pool as a buffer for pending models awaiting aggregation.
Conversely, follower nodes maintain a buffer queue, temporarily storing validation requests.
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Contribution Values: Contribution values represent the contributions of each participant to
the federated learning task. This paper draws inspiration from the conceptual framework of
the PoS mechanism and regards contribution values as a form of PoS-like tokens. The role
of contribution values as a prerequisite for participation in the training task is paramount.
In this study, the design of contribution values considers different consensus statuses,
ensuring a judicious distribution across varying circumstances. Furthermore, contribution
values play a significant role in subsequent stages, including incentive mechanisms, model
aggregation, and consensus elections.

Participants: Asynchronous federated training underscores the immediate global model
aggregation upon receiving a valid local model. In the proposed consensus-based asyn-
chronous federated learning (BCAFL), each participant serves as a trainer in federated
learning and an active participant in the blockchain consensus—participants within the
consensus algorithm alternate between leader and follower roles. A participant main-
tains only the most recent global model when in the leader state. Conversely, when in
the follower state, the participant locally manages three models: the latest global model,
the training model, and the locally trained model obtained after training. The training
model corresponds to a historical version of the global model. The newest global model
is employed to validate the local models’ pending aggregation. Notably, to minimize
communication resource consumption, all models in BCAFL are stored in IPFS [37]. During
the communication process, only the model addresses are forwarded. Refer to Figure 1 for
the specific mechanism.

Figure 1. Participants’ local training and global model iteration process.

Filtering Mechanism: This mechanism primarily addresses exceptional scenarios. The fun-
damental concept is to disregard the current update and cease the global model aggregation
iteration when the disparity between the local training precision of the participating parties
and the multi-party evaluation becomes exceedingly substantial. This precautionary step is
taken to maintain the integrity of the collaborative process.

Aggregation Factor: The aggregation factor proposed in this paper comprehensively incor-
porates several pivotal elements, encompassing the local training precision of the individual
model contributors, the contributions of other participating parties, and the validation
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outcomes. By taking these factors into account collectively, the aggregation factor configu-
ration ensures the aggregation process’s reliability for the global model, maintaining its
established integrity throughout.

By incorporating blockchain technology and consensus algorithms to select leader
nodes instead of centralized servers, the decentralized replacement is facilitated, and the
iterative process of the global model through block-based recording is enabled. Simulta-
neously, an incentive mechanism based on contribution value is established to motivate
participants. This encourages engagement and mitigates malicious leaders’ adverse impact
on federated learning tasks, thereby addressing Challenge 1.

Throughout this process, ensuring security remains paramount, and thus, a secu-
rity verification mechanism is introduced. Through digital signatures, hash validation,
and similar methods, the legitimacy and trustworthiness of locally submitted models by
participants are ensured, effectively preventing the occurrence of malevolent behaviors.
Furthermore, the introduction of the concept of an aggregation factor is implemented to
manage the aggregation process of local models intricately. This factor determines the
aggregation weight of each local model within the global model. This strategy is designed
to uphold the convergence rate of the global model, effectively countering Challenge 2.

Therefore, the holistic approach presented in this study integrates blockchain, con-
sensus algorithms, incentive structures, security verification, and the aggregation factor to
create a robust framework that addresses the outlined challenges and fosters an environ-
ment conducive to efficient federated learning.

4.2. Workflow

The workflow of BCAFL is illustrated in Figure 2. In asynchronous federated learning,
considering the involvement of N total nodes in the training process, denoted as Pk, with
each participating entity possessing a local dataset of size nk, the procedure for aggregating
a complete round of the global model can be outlined as follows:

Step 1: The task initiator initiates an asynchronous federated learning task, and
the potential participants submit registration applications. These applications include
information about their local dataset size and historical cumulative contribution value. The
task initiator reviews the applications, selects eligible participants based on predefined
criteria, and deducts a particular contribution score as collateral. Subsequently, employing
a consensus algorithm, a leader is determined, and this leader publishes the initial training
information to the genesis block.

Step 2: Participant Pk acquires the latest global model, denoted as wt−1
G , and verifies its

hash. Employing the stochastic gradient descent (SGD) optimization algorithm, Pk trains
its local dataset.

Step 3: Each participant collects their local model parameters wτ
k , local training accu-

racy Ak(wτ
k ), model hash Hash(wτ

k ), and training time. This compilation is then signed
using a private key. Participants who have completed their local training store the verified
model wτ

k on the InterPlanetary File System (IPFS). Subsequently, they asynchronously
transmit the local model update information to the leader for model validation. In this con-
text, the model training time is assumed to be reliable, achieved through the time-consuming
proof mechanisms established under Intel SGX [38] trusted hardware technology.

Step 4: The leader compares training duration and data sizes, confirming training
authenticity. Once confirmed, the aggregation request is added to the transaction pool and
converted into a verification request before being broadcast to other participants. Upon
receipt, the participants verify the legality of the signature and retrieve the corresponding
local model from IPFS.

Step 5: Using their local dataset, participants verify the legality of the obtained local
model wτ

k . The verification results are signed using the participant’s private key and
forwarded to the leader.

Step 6: After collecting more than 2N
3 verification results (excluding Pk and the leader),

the leader calculates the aggregation factor and initiates a filtering mechanism. The un-
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filtered local updates are then subject to aggregation, yielding the new global model wt
G

for the next round. The leader packages all the valid verifications, the new global model,
contribution updates, and consensus-related information into a block broadcast to all the
participants for verification.

Step 7: The leader appends the valid block to the blockchain and uploads the new
global model to IPFS. If the leader reaches the specified aggregation count, they proactively
conclude their term and trigger a new leader election.

Step 8: The participants retrieve the new global model for the subsequent round and
commence training anew from Step 2. This process continues until the maximum iteration
count is reached or convergence is achieved.

Step 9: Upon the conclusion of the federated learning task, the task initiator allocates
rewards to participants based on their accumulated contribution scores.

Figure 2. The overall flow of the BCAFL.

4.3. Participants Contribute Values

The participants play a pivotal role in the collaborative model training process in fed-
erated learning. They serve as providers of data resources and offer valuable computational
resources for federated learning tasks. However, due to the inherent inequality in the local
data sample sizes and computational resources among participants, it becomes crucial to
establish an appropriate mechanism for quantifying their resource contributions.

Given that each participant in federated learning is treated as a network node within a
blockchain context, where consensus among blockchain nodes is required, the participants
must also undergo role transitions based on consensus algorithms. The proposed contri-
bution calculation method in this paper takes into account how participants contribute
differently to asynchronous federated learning tasks based on their roles in the consensus
process. Specifically, the leaders are primarily responsible for tasks such as request for-
warding, global model aggregation, and block generation. Meanwhile, the participants are
mainly responsible for local model training and model verification tasks.

Each participant can spend extended periods in either a leader or follower state within
the consensus process. When a participant is in a leader state, their primary contribution lies
in their communication resources. Conversely, when participants transition to a follower
state, their contributions revolve around the local data and computational resources, while
their contribution in terms of communication resources diminishes. Therefore, considering
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these two distinct scenarios, different contribution calculation methods are established for
the participants in these two consensus states.

Contribution Value of Leader: The primary responsibilities of a leader include providing
aggregation and communication services to followers. Therefore, calculating the leader’s
contribution value involves obtaining a certain proportion of the followers’ contributions.
For instance, if a participant Pk sets a commission coefficient σ in advance, after the aggre-
gation, the contribution value obtained by Pk is denoted as C(wτ

k ). Then, the leader Pj’s
contribution value Cj(wτ

k ) for this aggregation can be expressed as:

Cj(wτ
k ) = σC(wτ

k ) (5)

Based on this strategy, leaders, driven by rational choices, prioritize nodes with higher
commission coefficients for verification and aggregation.

Contribution Value of Followers: Given the variations in resources among participants, the
calculation of contribution value considers relative data contribution and comprehensive
evaluation parameters. The comprehensive evaluation parameter considers the provider’s
training accuracy, other participants’ contributions, and model verification accuracy. The
contribution value calculation formula is as follows:

C(wτ
k ) =

1

1 + e−α· nk
n̂ ·A f inal(wτ

k )
(6)

Here, C(wτ
k ) represents the contribution value obtained by the provider Pk of the cur-

rent legitimate local model. Alpha serves as a modulating factor to control the contribution
value’s growth rate. nk and n̂ represent the local data volume of Pk and the maximum num-
ber of samples among participating parties, respectively. A f inal(wτ

k ) is the comprehensive
evaluation parameter for the legitimate local model wτ

k aggregated by participating parties
Pk in their t-th participation in the global model. The contribution value of participating
parties increases with the increase in their number of legitimate aggregations.

Cτ
k = Cτ−1

k + C(wτ
k )− Cτ

j (7)

According to the calculation method of contribution value, we can understand that
the cumulative contribution of participants during the leader’s period is relatively slow.
This is to avoid excessive centralized model aggregation computation. In this way, we can
ensure that the cumulative contribution of different participants is reasonably balanced
throughout the federated learning process. The participants with high contributions will
not continuously aggregate models and ignore the importance of local training but instead
have the opportunity to actively participate in local model training at appropriate times,
thus, maintaining the diversity of local models.

4.4. C-Raft Consensus Algorithm

In order to further enhance the iterative efficiency of asynchronous federated learning
and improve system reliability, this paper innovatively introduces the C-Raft consensus
algorithm. Constructed upon the raft algorithm and comprehensively addressing the
three critical sub-problems of raft, namely, leader election, log replication, and security,
the C-Raft algorithm also incorporates the following innovative improvements to suit
the asynchronous federated learning process better, the process of the C-Raft consensus
algorithm shown in Figure 3:
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Appoint candidate: While respecting raft’s original leader election method, this paper
proposes a wheel selection method based on contribution value weights. This method
assigns weights to each participant proportional to their contribution values and selects
candidates with probabilities based on these weights. The weight calculation formula is
as follows:

Cweight =
Ck

Ctotal
(8)

In this context, Ck represents the current contribution value of each participating
party, Ctotal represents the total contribution value of all nodes, and Cweight represents the
probability of selecting Pk as a candidate.

Figure 3. Process of the C-Raft consensus algorithm.

Log replication: When the leader generates a new global model, it packages the relevant
parameters of this round’s aggregation and transaction pool into a block and performs log
synchronization. The follower verifies the accuracy of the information in the block based on
verifying the log term number and identifier. If the block verification fails, the log sync is
rejected. If more than N

2 participants reject the leader, it is considered that the global model
aggregation has failed. When the cumulative failure count for this term exceeds f times for
block verification reasons, it is marked as a malicious participant, banned from participating
in subsequent training tasks, and its deduction contribution value is confiscated.

Leader’s active termination: The duration of the leader’s term is designed to be influenced
by their accumulated contribution value. Specifically, the leader voluntarily retires after
generating a certain number of blocks consecutively. The formula for calculating the
continuous block generation quantity is:

Termlen = max
(
2×

(
Ĉ− Ck

)
, 2N + 1

)
(9)

where Ĉ is the maximum contribution value among the participants when the leader is
elected, and Ck is the contribution snapshot when the leader is elected.
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The formula shows that the duration of tenure for each participant at the beginning
of the task depends on the total number of participants. As the task progresses, the
contribution values of each node gradually increase and vary from each other. When the
gap between the lowest and highest contribution values is substantial, the difference in
contribution values is chosen as the duration of tenure. This strategy was devised for
two reasons:

Prioritize Global Stability: The participating nodes with a significant contribution are
considered resource-rich, and selecting them as leaders can help maintain the stability
of the federated learning task. Therefore, this strategy increases the likelihood of these
high-contributing nodes being designated leaders (Formula (8)), ensuring that the task
proceeds in a stable environment.

Fully Utilize Participant Differences: The different participants differ regarding local data
volume, training efficiency, and communication resources. Through the leader mecha-
nism, some participants with relatively abundant communication resources but slightly
lower model quality can contribute their communication resources by serving as leaders,
accumulating their contribution values.

This design fully leverages the strengths of different participants, contributing to the
rapid convergence of the federated learning model.

4.5. Dynamic Aggregation Factor and Filtering Mechanism Based on Multi-Party Verification

The study [39] reveals that the weights of local models play a crucial role, directly
affecting the aggregation speed and result. Its outdated local model may lead to relatively
low accuracy when computing resources are limited at a specific node. Over-reliance on
the updates of this particular node may further cause a decline in the accuracy of the global
model. Conversely, if a node has abundant data resources, even with an outdated local
model, these models may have relatively high accuracy. In such cases, we have more
reason to fully utilize the updates of these nodes to promote faster convergence of the
global model. Therefore, in federated learning, it is necessary to carefully balance the
contributions of each node to ensure the rational utilization of local model updates, thereby
achieving optimal performance and efficient convergence of the global model.

The article [40] proposes an asynchronous federated model aggregation method based
on the accuracy of local models with the aggregation formula:

wt
G =

wt−1
G + γt × wτ

k
1 + γt (10)

In this paper, γt is the dynamic aggregation factor proposed. The local model with
the poisoning attack will be validated by the committee and assigned a relatively low
weight, but the specific committee’s weight assignment strategy is not provided. Therefore,
this paper proposes a two-dimensional dynamic aggregation factor global model aggrega-
tion method based on training accuracy and multi-party model validation. This method
considers the contribution of each verification party while collecting model evaluations
and can resist f antagonistic nodes (malicious participants) in federated learning with a
total of 3 f + 1 participating parties. The main idea is that leaders collect the validation
results of most participating parties and eliminate extreme evaluation values to calculate
the aggregation factor. The main steps are as follows and all process in Algorithm 1:
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Algorithm 1 Dynamic aggregation factor based on multi-party verification.

Input: T, f , M, wt−1
G , At−1

G , Ak(wτ
k ), β, σ

Output: A f inal(wk), wt
G

1: for t← 1 to T do
2: for each leader Pj do
3: Collect local model wt

k, and accuracy Ak(wτ
k ).

4: Broadcasts local model wτ
k and collect verification.

5: if number of validations ≥ M then
6: Calculate contribution score Vj→k = Cj · Aj→k(wτ

k )

7: Calculate distances: distj = ∑M
i=1,i 6=j |Vj→k −Vi→k|

8: Sort distances and select smallest f values to obtain Vmin = [dist1, dist2, . . . , dist f ]

9: Calculate aggregated validation score: V(wτ
k ) =

1
f ∑

f
i=1 Aj→k(wτ

k )

10: if
V(wτ

k )
Ak(wτ

k )|Ak(wτ
k )−V(wτ

k )|+ε
< σ then

11: Leader refuses aggregation
12: else
13: Calculate Comprehensive evaluation parameter A f inal(wk) = βV(wτ

k ) + (1−
β)Ak(wτ

k )

14: Calculate aggregation factor: γt =
A f inal(wτ

k )

Ak(wτ
k )

15: Update global model: wt
G =

wt−1
G +γt×wτ

k
1+γt

16: end if
17: end if
18: end for
19: end for

Step 1: When the number of validations for a local model to be aggregated in a trans-
action pool reaches M(M ≥ 2 f + 1), the leader obtains all the evaluations and calculates
the validation score.

Vj→k = Cj · Aj→k(wτ
k ) (11)

where Cj is the contribution value of the verification party Pj, Aj→k(wτ
k ) is the validation

result provided by Pj to the model contributor Pk for the model wτ
k .

Step 2: Calculate the distance between each validation score and other validation scores:

distj =
M

∑
i=1,i 6=j

| Vj→k −Vi→k | (12)

Considering the worst case, where all f malicious validation results are collected, select
the minimum distance values among the first f to obtain Vmin = [dist1, dist2, . . . , dist f ], and
take the average of the corresponding validation results Aj→k (wτ

k ).

V(wτ
k ) =

1
f

f

∑
i=1

Aj→k(wτ
k ) (13)

Step 3: Through the training accuracy Ak
(
wτ

k
)

of the model provider and the validation
result V

(
wτ

k
)

calculated in the previous step, the leader performs a filtering mechanism to
mitigate the negative impact of extreme values:

V
(
wτ

k
)

Ak
(
wτ

k
)∣∣Ak

(
wτ

k
)
−V

(
wτ

k
)∣∣+ ε

< σ (14)
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where ε is set to ensure that the denominator is not zero, generally set as 10−6; σ(0 < σ ≤ 1)
is the filtering coefficient, used to identify the strictness of the filtering. The closer σ is to 0,
the lower the strictness of filtering, i.e., the filtering is only performed when Ak

(
wτ

k
)

and
V
(
wτ

k
)

significantly differ. In this paper, σ is set to 1.

Step 4: Consider both local precision Ak
(
wτ

k
)

and validation result V
(
wτ

k
)

and assign
a balance factor β(0 < β ≤ 1) to balance local training accuracy and validation evaluation
indicators.

A f inal(wτ
k ) = βV(wτ

k ) + (1− β)Ak(w
τ
k ) (15)

The final step is calculating the comprehensive evaluation parameter A f inal(wτ
k ) and

comparing it with the precision ratio of the model contributors to obtain the aggregation
factor for this round.

γt =
A f inal

(
wτ

k
)

Ak
(
wτ

k
) (16)

Finally, we bring γt into the Formula 10 to obtain the new global model of this round.

5. Experimental Evaluation
5.1. Experimental Environment

The experimental hardware configuration consists of 6 workstations equipped with
Intel i7-10700 and 16GB RAM, running on the Ubuntu 20.04.6 LTS system. Python3.7 is
used to implement a blockchain based on the C-Raft consensus algorithm, allowing for the
creation of a blockchain network within a local area network. Each node in the blockchain
trains a local model and submits its weight to the leader node for broadcasting. After being
verified by followers, the leader node aggregates the training results, generating a block
that is broadcasted for verification and block production across the entire network.

5.2. Experimental Settings

The experimental data are from the MNIST and CIFAR-10 datasets. The MNIST dataset
consists of 60,000 training and 10,000 testing samples, each of which is a 28 × 28 grayscale
image representing a handwritten digit from 0 to 9. The convolutional neural network used
to train the MNIST handwriting dataset consists of two 5 × 5 convolutional layers and two
fully connected layers, as shown in Figure 4. The CIFAR-10 dataset contains 50,000 training
samples and 10,000 testing samples, each of which is an RGB image of size 32 × 32. The
labels include ten general objects such as “airplane”, “dog”, and “car”, with approximately
6000 images per class and a total of 50,000 training images and 10,000 testing images for
evaluating the performance of machine learning algorithms. The convolutional neural
network used to train the CIFAR-10 dataset consists of two 5 × 5 convolutional layers
and three fully connected layers, as shown in Figure 5. Each workstation runs 2–3 nodes
for federated learning and consensus communication. For each node, a random selection
of 750–1500 non-overlapping data samples is allocated as its local dataset. The training
parameters for the two datasets, as well as the distribution of each node’s dataset, are
shown in Table 2, and the participating blockchain nodes for training are [5, 8, 11, 14, 17],
with port numbers set from 7001 to 7017, corresponding to the number of training set
samples in Table 2 one-to-one. In the aggregation precision and running time experiment,
we set the value of β in Equation (15) to 0.7.

Figure 4. Convolutional Neural Network (CNN) structures on the MNIST handwritten dataset.
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Figure 5. Convolutional Neural Network (CNN) structures on the CIFAR-10 dataset.

Table 2. Distributed model training related parameters.

MNIST CIFAR-10

Epoch 5 10

BatchSize 64 256

TrainSet
[1047, 1102, 1082, 952, 1284, 1265,

1218, 775, 924, 1383, 1137, 1213, 863,
970, 1122, 1232, 1252]

[1159, 903, 944, 1004, 1458, 897, 890,
808, 1077, 1251, 1127, 1080, 1071,

1018, 1210, 1212, 1278]

5.3. Aggregation Precision

The experimental results show the trend in global model accuracy with the number
of aggregation rounds for 5-node to 17-node models. The frequency of model submission
for each node was randomly assigned to simulate uneven node computing power and
poor network conditions. Due to the leader not participating in each training round,
there is a fluctuation in accuracy when the leader’s tenure ends and the next leader takes
over. Therefore, the curve shows a fluctuating upward trend. Poor computing power and
network conditions increase the experiment’s randomness but enhance its reference value
for practical environments. As shown in Figure 6a, compared to the CIFAR-10 dataset,
the MNIST handwritten dataset is lighter. Under five node numbers, the global model
significantly improves before 20 training rounds, with an average accuracy of 0.84. At
60 rounds, the average accuracy is 0.9. With the CIFAR-10 dataset shown in Figure 6b,
training of a five-layer convolutional neural network cannot achieve high accuracy in
the early stages of training aggregation. However, the average accuracy reaches 0.56 at
80 rounds.

(a) MNIST (b) CIFAR-10

Figure 6. The training accuracy of global models on MNIST and CIFAR-10 datasets.

5.4. Running Time

The metrics include the time it takes for the leader to broadcast the model submitted
by the provider to other follower nodes, the validation time of the follower nodes, the time
for the leader to validate and aggregate the model, and the consensus time. As shown in
Figure 7a, the average time indicators for the MNIST dataset under five node numbers
are [2.34, 2.33, 1.49, 2.07, 2.20], while those for the CIFAR-10 dataset shown in Figure 7b
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are [2.56, 2.52, 3.08, 1.99, 2.01]. As the number of nodes increases, the running time of the
process does not increase with the node.

(a) MNIST (b) CIFAR-10

Figure 7. Single round aggregation time.

5.5. Data Poisoning

This paper proposes dynamic aggregation factor verification to prevent model providers
from uploading false training models or local models with inaccuracy. Followers use local
datasets to verify the models provided by the model provider. The leader analyzes the
honesty of the model provider by referring to the average validation accuracy of 2

3 of the fol-
lowers and the claimed training accuracy of the model provider. If the condition satisfied by
Formula N is met, the model provider’s model aggregation request is accepted. To simulate
model provider misbehavior, experiments use the actual accuracy of the model provider’s
training results but interfere with the model provider’s provided model weights by adding
a random perturbation to the weight matrix of the model with a uniform distribution
interval of [−0.5, 0.5], to simulate model provider cheating:

wdisturbed = wraw + rand(wraw · shape)− 0.5 (17)

In this experiment, we no longer simulate uneven node computing power or poor network
conditions to reflect better the impact of data poisoning on the global model. Additionally,
we set the value of β in Equation (15) to 1. As shown in Figure 8a, first, it can be observed
that without the ideal state where simulated nodes are not in good condition, the curve
does not fluctuate as much as in Figure 6a, and the curve becomes smoother. Additionally,
node05N represents the case where no malicious node generally runs in a 5-node blockchain
system, node05W1N represents the case where there is one malicious node in a 5-node
blockchain system, and node08W2N represents the case where there are two malicious
nodes in an 8-node blockchain system. As can be seen from the figure, the accuracy is 0.9
after 20 rounds in all three situations, and the behavior after 20 rounds is consistent. Due
to the existence of a dynamic aggregation factor verification mechanism, the leader node
selectively ignores models with a significant difference between the evaluation accuracy of
the followers and the claimed accuracy of the model provider when aggregating models.
This shows that in the case of less than f malicious nodes, the model aggregation is still
unaffected by this scheme. The node05R represents the distributed training accuracy of
the DBAFL scheme, with five nodes running without data poisoning. The node05RW1R
represents the training accuracy when one node is malicious during the training with five
nodes. The node08RW2R represents the training accuracy when two nodes are malicious
in an eight-node scenario. As shown in Figure 8b, the average training accuracy of DBAFL
after twenty rounds is 95.8%, 73.3%, and 75.8%, respectively. It can be seen that the training
accuracy decreases by approximately 20% when a node engages in the data poisoning
attack. On the other hand, the average accuracy of BCAFL under the same attack conditions
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is 92.8%, 93.3%, and 95.1%, respectively. It can be observed that the BCAFL scheme is better
at resisting data stealing attacks compared to the DBAFL scheme.

(a) The BCAFL Scheme (b) The DBAFL Scheme

Figure 8. Protection against data poisoning comparison.

6. Conclusions

This paper proposes an innovative asynchronous federated learning framework, called
BCAFL, based on blockchain technology, to address the issues of system reliability, training
efficiency, and participation incentives in the existing asynchronous federated learning
methods. By leveraging the decentralized and tamper-proof nature of blockchain, BCAFL
eliminates the dependence on a single central server, enhances the security and trustworthi-
ness of asynchronous federated learning, and introduces model verification and incentive
mechanisms to encourage active participation and ensure high-quality model updates
from participants, resulting in improved collaboration willingness and contribution. To
address the different states of participants in consensus, an adaptive contribution strategy
is designed to maximize the resource advantages of each participant. Finally, a dynamic
aggregation factor and filtering mechanism based on multi-party validation are introduced
to ensure that only legitimate and high-quality model updates are incorporated into the
final global model, thus, enhancing the reliability of the global model.

Through simulation and experimentation, we have confirmed that the increase in the
number of participating nodes does not significantly impact the overall efficiency of the
BCAFL method. Under different numbers of nodes in distributed training on the MNIST
handwritten dataset, we achieved an accuracy of approximately 90% in 20 rounds, while
on the CIFAR-10 dataset, with five layers of network training, we achieved an average
accuracy of approximately 50% in 80 rounds. Our approach can better resist data poisoning
attacks through the filtering mechanism. With a total of 3 f + 1 participants, it can fight
f malicious participant nodes, ensuring global accuracy does not decline with negative
attacks. Compared to the existing DBAFL method, our approach can reduce the accuracy
loss by 20% during data poisoning attacks. Although DBAFL uses committee mechanisms
to resist data poisoning, it needs to be explained in detail in the paper, and its actual
performance may be better.

In future work, we will consider using BCAFL in non-independent distributed datasets.
At the same time, we will introduce an efficient differential privacy algorithm for BCAFL,
which adds adaptive noise to the local training process of the participants to prevent privacy
data leakage caused by inference attacks. We will further improve the training efficiency
while enhancing the privacy protection performance.
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